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Abstract
We consider the problem of detecting change in two 

sets of samples, and explore two approaches: 
distributional and structural change detection.

Distributional change detection is aimed at estimating 
a divergence between the probability densities behind 
the two sets of samples.  We first explain that the two-
step approach of first estimating the probability densities 
and then computing the divergence from the estimated 
densities results in systematic under-estimation of the 
divergence.  Then we introduce methods to direct 
estimate the ratio of densities and the difference of 
densities, which are shown to be more reliable than the 
density estimation approach.
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Abstract (cont.)
Structural change detection tries to identify change in 

element-wise dependency structure in multi-dimensional  
samples.  We first consider the Gaussian sparse 
covariance selection setup and introduce approaches 
based on LASSO and fused-LASSO.  Then we extend 
our discussion to non-Gaussian Markov networks, which 
generally suffer computational intractability of the 
normalization term, and introduce the importance 
sampling technique and the score matching method.  
Finally, we cover a method to directly compare two 
Markov networks for change detection.

No solid background on change detection is 
necessary, but basic knowledge of elementary statistics, 
linear algebra, and optimization is assumed.
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Change Detection
Goal: Given two sets of samples, we want to 

compare the probability distributions behind

Two approaches:
 Distributional change detection: Flexible and robust
 Structural change detection: Interpretable
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{x0i0}n
0
i0=1

i.i.d.∼ p0(x){xi}ni=1
i.i.d.∼ p(x)
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Distributional Change Detection

Goal: Detect change in probability distributions 
behind two sets of samples through divergence
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{xi}ni=1
i.i.d.∼ p(x)

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)

Divergence(p, p0) < ε ?



7Motivating Example 1
Region-of-interest detection in images:
 and          are significantly different      

when a visually salient object is included inside. 

p(x)

p0(x)

p(x) p0(x)



8Motivating Example 2
Event detection in movies:
 and          are significantly different 

when an irregular event occurs.

a c eb d f g h i j
Time

p(x) p0(x)

p(x) p0(x)



Motivating Example 3
Event detection from Twitter:
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Change score
for BP oil spill



Contents

1. Distributional change detection
A) Problem setup and motivating examples
B) Distances

I. Density-ratio divergences
II. Density-difference distances

C) Distance approximation
2. Structural change detection

10



Distances and Divergences 11

Distance:
Non-negativity:
Non-degeneracy:
Symmetry:
 Triangularity:
A divergence is a pseudo-distance.
We consider distances/divergences between 

probability densities.

{xi}ni=1
i.i.d.∼ p(x)

{x0j}n
0
j=1

i.i.d.∼ p0(x)d(p, p0)
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Kullback-Leibler Divergence 13

 Compatible with maximum likelihood.
 Invariant under input transformation.

(Jacobians cancel in the density ratio) 
 Doesn’t satisfy symmetry and triangularity.
 Sensitive to outliers

(due to log and ratio).

Kullback & Leibler (1951)

p(x)

p0(x)



f-Divergences 14

 yields the KL-divergence:

To avoid the log function, let us use

F (pkp0) =
Z
p0(x)f

µ
p(x)

p0(x)

¶
dx

Ali & Silvey (1966), Csiszár (1967)

: Convex function such that              



Pearson (PE) Divergence 15

 Compatible with least-squares.
 Invariant under input transformation.
 Doesn’t satisfy symmetry and triangularity.
 Sensitive to outliers (no log, but still ratio).

Pearson (1900)

p(x)

p0(x)



Relative Density Ratio

Density ratio          can diverge to infinity.
Relative density ratio is always bounded:
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p(x)

βp(x) + (1− β)p0(x)
<
1

β

Yamada et al. (NIPS2011, NeCo2013)



Relative Pearson (rPE) Divergence17

 Compatible with least-squares.
 Invariant under input transformation.
 Robust against outliers.
 Doesn’t satisfy symmetry and triangularity.
 Not clear how to choose   .

pβ(x) = βp(x) + (1 − β)p0(x)

rPE(pkp0) = PE(pkpβ) =
Z
pβ(x)

µ
p(x)

pβ(x)
− 1

¶2
dxrPE(pkp0) = PE(pkpβ) =

Z
pβ(x)

µ
p(x)

pβ(x)
− 1

¶2
dx
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Density Difference

 Density ratio based 
distance:
 Is the ratio 1?

Density difference 
based distance:
 Is the difference 0?

19

p(x) p0(x)

p(x)

p0(x) p(x)− p0(x)



Lt-Distance 20

 Proper distance.
 Robust against outliers (no ratio).
When         :
 Compatible with least-squares.
 Not invariant under input transformation.
When         :
 Invariant under input transformation

(because f-div).

Lt(p, p0) =
Z ¯̄̄
p(x)− p0(x)

¯̄̄t
dx t ≥ 0

t = 2

t = 1

L1(p, p0) =
Z
p0(x)

¯̄̄ p(x)
p0(x)

− 1
¯̄̄
dx

f(t) = |t− 1|



KL vs. L2 for Outliers

L2-distance is bounded.
KL-divergence is unbounded.
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p(x) = 0.9p0(x) + 0.1q(x− μ)
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Distance Approximation
via Density Estimation

1. Estimate densities                from samples:

 Maximum likelihood estimation
 Bayes estimation
 Kernel density estimation
 Nearest-neighbor density estimation.

2. Plug-in the estimated densities                :
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{xi}ni=1
i.i.d.∼ p(x)

bp(x), bp0(x)

p(x), p0(x)

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)

bL2(p, p0) = Z ³bp(x)− bp0(x)´2dxcKL(pkp0) = Z bp(x) log bp(x)bp0(x)dx



Drawback of Plug-In
Density Estimation Approach

Densities are estimated without regard to 
taking their ratio later.
Division by    magnifies estimation error in   .
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bp0 bp

bp0
bp

p0
p p/p0

bp/bp0



Guiding Principle
Vapnik’s principle:

 Support vector machine avoids 
general density estimation and
directly learns the boundary.

Let’s avoid separately estimating        and        , 
and directly compare the densities!

25

p(x) p0(x)

Vapnik (Wiley 1998)

Cortes & Vapnik (MLJ1995)

When solving a problem of interest,
one should not solve a more general

problem as an intermediate step



Vapnik’s Principle
in Distance Approximation

Directly estimate the density ratio / difference:

without estimating each density               .
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Knowing
densities

Knowing density
ratio / difference

p(x), p0(x)

p(x), p0(x)

f(x) = p(x)− p0(x)

f(x) = p(x)− p0(x)
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KL-Divergence Approximation 28

 Directly approximate the density ratio with log-loss:

 Expectation is approximated by empirical average.

KL(pkp0) =
Z
p(x) log r(x)dx

Nguyen et al. (NIPS2007, IEEE-IT2010)
Sugiyama et al. (NIPS2007, AISM2008)

subject to

Z er(x)p0(x)dx = 1 and er ≥ 0
br = argminer KL(pker · p0)



29Solution for Linear Model
Linear-in-parameter model:

Empirical optimization problem:

 The solution tends to be sparse due to           .

rα(x) =

bX
j=1

αjφj(x) = α
>φ(x)

subject to
1

n0

n0X
i0=1

rα(x
0
i0) = 1 and α ≥ 0

bα = argmax
α

1

n

nX
i=1

log rα(xi)

:Fixed basis functions
:Parameters

α = (α1, . . . ,αb)
>

φ(x) = (φ1(x), . . . ,φb(x))
>

α ≥ 0



30Solution for Linear Model

Thanks to convexity, global optimal solution 
can be obtained by simple gradient-projection.
Resulting KL-divergence

approximator:

KL(pkp0) ≈ 1

n

nX
i=1

log bα>φ(xi)

subject to
1

n0

n0X
i0=1

α>φ(x0i0 ) and α ≥ 0

bα = argmax
α

1

n

nX
i=1

logα>φ(xi)



Other Models
Kernel model:
 Nonparametric

Log-linear model:
 Always positive
 Compatible with Markov networks

Gaussian mixture model:
 More flexible
 Non-convex optimization

Probabilistic PCA mixture:
 Local dimension reduction
 Non-convex optimization
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rα(x) =

bX
j=1

αjN(x;μj ,Σj)

rα(x) = exp

⎛⎝ bX
j=1

αjφj(x)

⎞⎠
rα(x) =

nX
j=1

αjK(x,xj)



Numerical Example
Gaussian kernel model:
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rα(x) =
nX
j=1

αj exp

µ
−kx− xjk

2

2σ2

¶

r(x) =
p(x)

p0(x)

p(x)

p0(x)

br(x)



Model Selection
Choice of the Gaussian bandwidth affects the 

performance.
Cross-validation (CV):

Split              into estimation and validation subsets.

Repeat this estimation-validation process for all 
combinations

CV gives an almost unbiased estimator of KL.
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Group 1 Group 2 Group k-1  

Estimation Validation

{xi}ni=1
Group k  

br(x) P
x00 br(x00)



34Numerical Example

Model selection by CV works.

True KL
(without constant)

CV score

r(x) =
p(x)

p0(x)

p(x)

p0(x)



35Comparison with KDE
 d-dimensional Gaussians with covariance identity and
 Denominator: mean (0,0,0,…,0)
 Numerator: mean (1,0,0,…,0)

Kernel density estimation (KDE):
 Estimate two densities separately and take ratio.
 Gaussian widths are chosen by CV.

Ratio:
 Estimate the density ratio directly.
 Gaussian width is chosen by CV.
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KDE

Ratio

N
or

m
al

iz
ed

 M
S

E

d

Accuracy as a Function
of Input Dimensionality

Density ratio approach works better.



PE-Divergence Approximation 37

 Directly approximate the density ratio by least-squares:

 Expectation is approximated by empirical average.

Kanamori et al. (NIPS2008, JMLR2009)

br = argminer
Z
p0(x)

³er(x)− r(x)´2dx
= argminer

Z
p0(x)

³er(x)´2dx− 2 Z p(x)r(x)dx

PE(pkp0) =
Z
p0(x)

³
r(x)− 1

´2
dx =

Z
p(x)r(x)dx− 1

PE(pkp0) ≈
Z
p(x)br(x)dx− 1



PE-Divergence Approximation
for Linear Model

Solution is given analytically:

Resulting PE-divergence approximator:
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bh = 1

n

nX
i=1

φ(xi)

bG =
1

n0

n0X
i0=1

φ(x0i0)φ(x
0
i0)
>

bα = argmin
α

⎡⎣ 1
n0

n0X
i0=1

rα(x
0
i0)
2 − 2

n

nX
i=1

rα(xi)

⎤⎦

PE(pkp0) ≈ 1

n

nX
i=1

bα>φ(xi)− 1 = bh>(bG+ λI)−1bh− 1

bα = argmin
α

h
α> bGα− 2bh>α+ λα>α

i
rα(x) = α

>φ(x)

= (bG+ λI)−1bh



MATLAB Implementation
for Gauss Kernel Model

Relative density ratio can also be estimated 
in the almost same way.
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n=1000; x=randn(n,1); y=randn(n,1)+1/2;
x2=x.^2; xx=repmat(x2,1,n)+repmat(x2',n,1)-2*x*x'; s=exp(-xx);
y2=y.^2; yx=repmat(y2,1,n)+repmat(x2',n,1)-2*y*x'; t=exp(-yx);
PE=mean(s*((t'*t/n+eye(n))¥(mean(s,2))))-1;

bhj = 1

n

nX
i=1

exp

µ
−kxi − xjk

2

2σ2

¶ bGj,j0 = 1

n0

n0X
i0=1

exp

µ
−kx

0
i0 − xjk2
2σ2

¶
exp

µ
−kx

0
i0 − xj0k2
2σ2

¶
rα(x) =

nX
j=1

αj exp

µ
−kx− xjk

2

2σ2

¶
PE(pkp0) ≈ bh>(bG+ λI)−1bh− 1



f-Divergences and Duality

Fenchel transform (convex conjugate):

Conjugate of conjugate:

 KL-divergence:

 PE-divergence:

40

F (pkp0) =
Z
p0(x)f

µ
p(x)

p0(x)

¶
dx

: Convex function such that              

f∗(r) = − inf
t
[f(t)− rt]

f(t) = − inf
r
[f∗(r) − rt]

f(t)

f 0(t) = r

f∗(r) = exp(r − 1)

f∗(r) = r2/2 + r



Lower Bound of f-Divergences

Lower bound of f-divergences:

Sample approximation gives

41

bF (pkp0) = −min
α

⎡⎣ 1
n0

n0X
i0=1

f∗(rα(x0i0))−
1

n

nX
i=1

rα(xi)

⎤⎦

F (pkp0) = − inf
r

∙Z
p0(x)f∗(r(x))dx−

Z
p(x)r(x)dx

¸

F (pkp0) =
Z
p0(x)f

µ
p(x)

p0(x)

¶
dx

f(t) = − inf
r
[f∗(r) − rt]
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L2-Distance Approximation 43

 Directly approximate the density difference by LS:

 Expectation is approximated by empirical average.

Kim & Scott (IEEE-TPAMI2010)
Sugiyama et al. (NIPS2012, NeCo2013)

L2(p, p0) ≈
Z bf(x)2dx

bf = argminef
Z ³ ef(x)− f(x)´2 dx

f(x) = p(x)− p0(x)L2(p, p0) =
Z
f(x)2dx

= argminef
Z ³ ef(x)´2 dx− 2 Z f(x) ef(x)dx



Solution for Linear Model

(Regularized) solution is given analytically:
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fα(x) =

bX
j=1

αjφj(x) = α
>φ(x)

bα = argmin
α

Z ³
fα(x)

´2
dx+

1

n0

n0X
i0=1

fα(x
0
i0)
2 − 1

n

nX
i=1

fα(xi)

bα = argmin
α

h
α>Gα− 2bh>α+ λα>α

i
= (G+ λI)−1bh

bh = 1

n

nX
i=1

φ(xi)−
1

n0

n0X
i0=1

φ(x0i0)G =

Z
φ(x)φ(x)>dx



Resulting L2-Distance Approximator
Two ways to approximate the L2-distance

by density-difference estimation:
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L2(p, p0) =
Z ³

p(x)− p0(x)
´
f(x)dx ≈ bh>α

L2(p, p0) =
Z
f(x)2dx ≈ bα>Gbα

bh = 1

n

nX
i=1

φ(xi)−
1

n0

n0X
i0=1

φ(x0i0)

G =

Z
φ(x)φ(x)>dx

bα = (G+ λI)−1bh f(x) = p(x)− p0(x) ≈ bα>φ(x)



Bias Reduction
Consider their linear combination:

 For small    ,

 removes the regularization-induced bias:
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κbh>bα+ (1− κ)bα>Gbα
= bh>G−1bh− λ(2− κ)bh>G−2bh+ op(λ)

bL2(X ,X 0) = 2bh>bα− bα>Gbα

κbh>bα+ (1− κ)bα>Gbα κ ∈ R



Density-Difference Estimation (1)47



Difference of kernel
Density estimators (KDE)

Least-squares density
-difference estimation (LSDD)



Density-Difference Estimation (2)48





KDE LSDD



L2-Distance Approximation
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 KDE significantly under-estimates.
 LSDD slightly over-estimates.



L2-Distance vs. KL-Divergence 50

L2-distance is less sensitive to outliers.

Outlier



Robust Two-Sample Test
Two-sample test: Are two                             

distributions the same?
 Null: Two are the same
 Alternative: Two are different

51

L2-based test is more robust against outliers.

Outlier

Change
outlier mean

Change
outlier rate 



Unsupervised Change Detection
 Identify change points in time-series:

Use the distance between the distributions 
of sliding-windowed past and current data.
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Time

a c eb d

a cb

cb d

ge f

f g h i j k l

f g h

g h i

j k l

r

Y (t + r − 1)

(
Y (t + r)
Y (t + r + 1)

(
y(t + r)

Y(t+ r)

(
k

(
Y(t)

( )
y(t)

Y (t)( )
Y (t + 1)

Y (t + 2r − 1)

Time



Results 53

CENSREC Speech Data HASC Accelarometer Data

run stair-up stair-downnoise noise noise

KL-div KL-div

L2-dist L2-dist

Original Originalspeech speech pause pause

L2 is more robust against noise.



Mutual Information

Mutual information is the KL-divergence 
from the joint density            to the 
product of marginal densities              .
 Independence can be measured:
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MI =

Z Z
p(x,y) log

p(x,y)

p(x)p(y)
dxdy

and are
independent

p(x,y)
p(x)p(y)

MI ≥ 0



Mutual Information Approximation

Estimation of density ratio

from

gives an MI approximator:

55

MI =

Z Z
p(x,y) log

p(x,y)

p(x)p(y)
dxdy

{(xi,yi)}ni=1
i.i.d.∼ p(x,y)

{(xi,yi0)}ni,i0=1
i.i.d.∼ p(x)p(y)

r(x,y) =
p(x,y)

p(x)p(y)

cMI = 1

n

nX
i=1

log br(xi,yi)



Variations of MI 56

Squared-loss MI (Pearson divergence):

Relative SMI:

Quadratic MI:

SMI =

Z Z
p(x)p(y)

µ
p(x,y)

p(x)p(y)
− 1

¶2
dxdy

QMI =

Z Z ³
p(x,y)− p(x)p(y)

´2
dxdy

pβ(x,y) = βp(x,y) + (1− β)p(x)p(y)

rSMI =

Z Z
pβ(x,y)

µ
p(x,y)

pβ(x,y)
− 1

¶2
dxdy



57Usages of MI Approximator
MI between input and output:
 Feature selection/extraction
 Clustering

MI between inputs:
 Independent component analysis
 Higher-order canonical correlation analysis
 Object matching

MI between input and residual:
 Causal direction inference

Input Output

Input Input
x0

Input Output

Residual



Summary of 
Distributional Change Detection

Compute a divergence between distributions:
 Separate density estimation does not work well, 

because Vapnik’s principle is violated.
 Direct estimation of density ratio/difference seems 

more sensible.
Don’t simply use KL as a divergence measure 

just because it is popular.
 Relative PE and L2 could be more robust against 

outliers and computationally more efficient.
MI can also be approximated in the same way.
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A Little Break: Artist Agent 59
Ning et al. (ICML2012)

Brush movement learning by reinforcement learning.
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From Distributional Change
to Structural Change

Through distance estimation, distributional 
change can be detected.
We investigate how distributions are changed 

through interaction between variables.

62

{xi}ni=1
i.i.d.∼ p(x)

x = (x(1), . . . , x(d))>

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)



Motivating Examples
Word co-occurrence in Twitter
Gene regulatory networks
Fraud detection in smart grid

63

CLB5 CLB6 FLOI FLO10 HO

SWI6

MBP1_
SWI6

SWI4

CDC10 PCL1 SPT16CDC11
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Gauss Model

Conditional independence:

Graphical representation:
 Node: Each variable
 Edge: Exists if
 Only connected variables affect! 

65

x = (x(1), . . . , x(d))>

: (sparse) inverse covariance matrixΘ

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)
Θi,j 6= 0

Θk,k0 = 0 ⇐⇒ x(k)⊥⊥x(k0) | {x(`)}` 6=k,k0

x(1)⊥⊥x(2) | x(3)



Structural Change Detection
with Gauss Models

Use Gauss models for        and        :

Detect sparse change in covariance structure:

66

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

Change

p(x) p0(x)

q(x;Θ) q(x;Θ0)

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)

Θ −Θ0

q(x;Θ0)



Structural Change Detection
by Graphical Lasso (Glasso)

Sparse maximum likelihood estimation:

67

{xi}ni=1
i.i.d.∼ p(x)

max
Θ

nX
i=1

log q(xi;Θ)− λkΘk1 max
Θ0

n0X
i0=1

log q(x0i0 ;Θ
0)− λ0kΘ0k1

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

Tibshirani (JRSS1996), Friedman et al. (Biostat2008)

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)

λ,λ0 ≥ 0



Structural Change Detection
by Glasso

 Scalable to high-dimensional datasets.
 Statistical properties have been well studied.
 Does not work if true      and      are dense.
 Choice of     and      is not straightforward.

68

Θ Θ0

λ λ0

max
Θ

nX
i=1

log q(xi;Θ)− λkΘk1 max
Θ0

n0X
i0=1

log q(x0i0 ;Θ
0)− λ0kΘ0k1

Both      and      
are sparse

Change             
is sparse

Θ Θ0 Θ −Θ0



Structural Change Detection
by Fused Lasso (Flasso)

Directly penalize the difference of parameters 
to be sparse:

 Scalable to high-dimensional datasets.
Work well even if true      and      are dense.

69

Tibshirani et al. (JRSS2005)
Zhang & Wang (UAI2010)

max
Θ,Θ0

nX
i=1

log q(xi;Θ) +

n0X
i0=1

log q(x0i0 ;Θ
0)− γkΘ−Θ0k1

Θ Θ0

γ ≥ 0
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Correlation and Dependence

Gauss models cannot
capture higher-order
correlations.
No correlation does not

imply independence.
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No correlation
but dependent

Independence

No correlation

: (sparse) inverse covariance matrixΘ

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

x(1)

x(2)



Nonparanormal Models

Gaussian after element-wise transformation:

 More flexible than ordinary Gauss models.
 Still restrictive

in representation
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f(x) = (f1(x
(1)), . . . , fd(x

(d)))>

x = (x(1), . . . , x(d))>

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
f(x)>Θf(x)

¶ dY
k=1

|f 0k(x(k))|

: Monotone and
differentiable function
fk

Liu et al. (JMLR2009)



Pairwise Markov Networks 73

Gaussian:
Nonparanormal:
Polynomial:

 High representation capability.

 Normalization                              is intractable.

f (x, x0) = xx0

f (x, x0) = f(x)f(x0)

: feature vectorf(x, x0)

f (x, x0) = [xt, xt−1x0, . . . , x, x0, 1]>

θ = (θ>1,1, . . . , θ
>
d,d)

>
x = (x(1), . . . , x(d))>

q(x; θ) =
q(x;θ)

Z(θ)
q(x;θ) = exp

⎛⎝X
k≥k0

θ>k,k0f (x
(k), x(k

0))

⎞⎠

Z(θ) =

Z
q(x; θ)dx



Importance Sampling 74

1. Draw pseudo-samples from a proposal density:

2. Approximate the integration by
importance-weighted sample average:

 Law of large numbers guarantees consistency. 
 Unstable due to large variance.

≈ 1

n00

n00X
i00=1

q̄(x00i00 ;θ)
p(x00i00)

n00→∞−→
Z
q(x;θ)dx

Z(θ) =

Z
q(x;θ)dx =

Z
q̄(x;θ)

p00(x)
p00(x)dx

{x00i00}n
00
i00=1

i.i.d.∼ p00(x) (e.g., Gaussian)



Score Matching 75

Hyvärinen (JMLR2005)

Learn unnormalized density model            by    
least-squares matching of score functions:

Empirical version (use integration-by-parts):

 No normalization is needed.

min
θ

Z
p(x)kψ(x; θ)−∇x log p(x)k2dx

q(x;θ)

ψ(x;θ) = ∇x log q(x; θ)

Z
ψk(x; θ)∂x(k)p(x)dx = −

Z
∂x(k)ψk(x; θ)p(x)dx

∇x = (∂x(1) , . . . , ∂x(d))>

min
θ

nX
i=1

S(xi; θ) S(x; θ) =

dX
k=1

³
ψk(x; θ)

2 + 2∂x(k)ψk(x; θ)
´



Contents

1. Distributional change detection
2. Structural change detection

A) Density estimation approach
B) Density-ratio estimation approach

76



Avoiding Density Estimation
Fused lasso + Score matching:

Work well even if true      and      are dense.
 Higher-order correlations can be captured.
 Still need explicit modeling of        and        .
Vapnik’s principle:

77

max
Θ,Θ0

nX
i=1

S(xi; θ) +

n0X
i0=1

S(x0i0 ; θ
0)− γkθ − θ0k1

Θ Θ0

γ ≥ 0

p(x) p0(x)

Don’t solve
a more general problem



Direct Change Modeling
in Markov Networks

Without separately modeling        and        ,    
we directly model the density ratio :

 Individual parameters        are not necessary, 
but their difference is enough.

78

Liu et al. (ECML2013, NeCo2014)

p(x) p0(x)
p(x)/p0(x)

α = θ − θ0
θ,θ0

r(x) =
p(x)

p0(x)
≈ q(x; θ)

q(x;θ0)
∝ exp

Ã X
k≥k0

(θk,k0 − θ0k,k0)>f(x(k), x(k
0))

!

q(x;θ) =
1

Z(θ)
exp

Ã X
k≥k0

θ>k,k0f (x
(k), x(k

0))

!



Ratio of Markov Network Models

Normalization:

 Simple sample averaging is consistent:

79

rα(x) =
1

N(α)
exp

ÃX
k≥k0

α>k,k0f(x
(k), x(k

0))

!
α = (α>1,1. . . . ,α

>
d,d)

>

N(α) =

Z
p0(x) exp

Ã X
k≥k0

α>k,k0f (x
(k), x(k

0))

!
dx

≈ 1

n0

n0X
i0=1

exp

ÃX
k≥k0

α>k,k0f(x
0(k)
i0 , x

0(k0)
i0 )

!

r(x) =
p(x)

p0(x)
=⇒

Z
p0(x)r(x)dx =

Z
p(x)dx= 1



Sparse Density-Ratio Estimation

Density-ratio matching under KL-divergence:

Sample approximation gives

 Tractable for any feature                     .
Add a smoothing regularizer:
Add a group-sparsity regularizer:
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Sugiyama et al. (NIPS2007, AISM2008)

min
α
log

1

n0

n0X
i0=1

exp

⎛⎝X
k≥k0

α>k,k0f(x
0(k)
i0 , x

0(k0)
i0 )

⎞⎠− 1

n

nX
i=1

X
k≥k0

α>k,k0f(x
(k)
i , x

(k0)
i )

+γ
X
k≥k0

kαk,k0k

rα(x) ≈
p(x)

p0(x)min
α

Z
p(x) log

p(x)

p0(x)rα(x)
dx



Primal Optimization

 Simple gradient-projection gives the global solution.
 Efficient when more samples than parameters.
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subject to
X
k≥k0

kαk,k0k ≤ Cγ

min
α
log

1

n0

n0X
i0=1

exp

⎛⎝X
k≥k0

α>k,k0f(x
0(k)
i0 , x

0(k0)
i0 )

⎞⎠
− 1
n

nX
i=1

X
k≥k0

α>k,k0f (x
(k)
i , x

(k0)
i ) + ηkαk2



Dual Optimization

 Simple gradient-projection gives the global solution.
 Efficient when more parameters than samples.
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αk,k0 = max (0, kmk,k0k− γ)
mk,k0

ηkmk,k0k



Gaussian Data
(d=40, n=n’=100, Change in 15 Edges) 

 All use the Gaussian model.
 KLIEP and Flasso work well.

83

λ = λ0

kΘ
k
,k
0 k

kΘ
k
,k
0 k

kΘ
k
,k
0 k

KLIEP Flasso Glasso

λγγ



Gaussian Data
(d=40, n=n’=50, Change in 15 Edges) 

KLIEP works well
even with small samples.
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λγγ

kΘ
k
,k
0 k

kΘ
k
,k
0 k

kΘ
k
,k
0 k

KLIEP Flasso Glasso λ = λ0

α = θ − θ0



Non-Gaussian Data
(d=9, n=n’=5000, Change in 7 Edges)

KLIEP (Poly) works well.
Poly:
NPN:
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f (x, x0) = [xt, xt−1x0, . . . , x, x0, 1]>

No correlation,
no nonparanormal

γ

kα
k
,k
0 k

KLIEP (Poly) 

f(x) = sign(x)x2



Take-Home Messages

Directly learn the change:
 Flexible and robust distributional change detection

by direct density-ratio/density-difference estimation
 Interpretable and tractable structural change detection 

by group-sparse density-ratio estimation
Software: http://sugiyama-www.cs.titech.ac.jp/~sugi/software/
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{xi}ni=1
i.i.d.∼ p(x) {x0i0}n

0
i0=1

i.i.d.∼ p0(x)

Sugiyama et al., 
Density Ratio Estimation

in Machine Learning,
Cambridge University Press, 2012

Schölkopf et al. (eds.),
Empirical Inference, Festschrift
in Honor of Vladimir N. Vapnik,

Springer, 2013

Don’t solve
a more general

problem
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PE-Divergence Approximation 89

 Directly approximate the density ratio by least-squares:

 Expectation is approximated by empirical average.

Kanamori et al. (NIPS2008, JMLR2009)

br = argminer
Z
p0(x)

³er(x)− r(x)´2dx
= argminer

Z
p0(x)

³er(x)´2dx− 2 Z p(x)r(x)dx

PE(pkp0) =
Z
p0(x)

³
r(x)− 1

´2
dx =

Z
p(x)r(x)dx− 1

PE(pkp0) ≈
Z
p(x)br(x)dx− 1



Contents

1. Distributional change detection
A) Problem setup and motivating examples
B) Distance approximation

I. Kullback-Leibler divergence
II. Pearson divergence
III. Relative Pearson divergence
IV. L2-distance

2. Structural change detection

90



rPE-Divergence Approximation 91

 Directly approximate the relative density ratio by LS:

 Expectation is approximated by empirical average.

Yamada et al. (NIPS2011, NeCo2013)

pβ(x) = βp(x) + (1 − β)p0(x)

rPE(pkp0) ≈
Z
p(x)brβ(x)dx − 1

brβ = argminer
Z
pβ(x)

µer(x)− p(x)

pβ(x)

¶2
dx

= argminer
Z
pβ(x) (er(x))2 dx − 2 Z p(x)er(x)dx

rPE(pkp0) =
Z
pβ(x)

µ
p(x)

pβ(x)
− 1

¶2
dx =

Z
p(x)

p(x)

pβ(x)
dx− 1



Solution for Linear Model

(Regularized) solution is given analytically:

Resulting rPE-divergence approximator:
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bh = 1

n

nX
i=1

φ(xi)

bαβ = argmin
α

β

n0

n0X
i0=1

rα(x
0
i0)
2 +

1− β

n

nX
i=1

rα(xi)
2 − 2

n

nX
i=1

rα(xi)

rPE(pkp0) ≈ 1

n

nX
i=1

bα>β φ(xi)− 1 = bh>( bGβ + λI)−1bh− 1

bαβ = argmin
α

h
α> bGβα− 2bh>α+ λα>α

i
= ( bGβ + λI)−1bh bGβ =

β

n0

n0X
i0=1

φ(x0i0)φ(x
0
i0)
> +

1− β

n

nX
i=1

φ(xi)φ(xi)
>

rα(x) = α
>φ(x)


