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Goal of this lecture

Understand what structured prediction is

Learn how to formulate a problem to be successful in practice
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What is structured prediction?
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Structured Prediction

In ”typical” machine learning

f : X → <

the input X can be anything, and the output is a real number (e.g.,
classification, regression)

In Structured Prediction
f : X → Y

the input X can be anything, and the output is a complex object (e.g.,
image segmentation, parse tree)

In this lecture Y is a discrete space, ask me later if you are interested in
continuous variables.
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Structured Prediction and its Applications

We want to predict multiple random variables which are related

Computer Vision:

Semantic Segmentation (output: pixel-wise labeling)
Object detection (output: 2D or 3D bounding boxes)
Stereo Reconstruction (output: 3D map)
Scene Understanding (output: 3D bounding box reprinting the layout)
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Structured Prediction and its Applications

We want to predict multiple random variables which are related

Natural Language processing

Machine Translation (output: sentence in another language)
Parsing (output: parse tree)

Computational Biology

Protein Folding (output: 3D protein)
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Why structured?

Independent prediction is good but...

Neighboring pixels should have same labels (if they look similar).
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Graphical Model

A graphical model defines

A family of probability distributions over a set of random variables

This is expressed via a graph, which encodes the conditional independences
of the distribution

Two types of graphical models: Directed and undirected
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Bayesian Networks

The graph G = (V , E) is acyclic and directed

Factorization over distributions by conditioning on parent nodes

p(y) =
∏
i∈V

p(yi |ypa(i))

Example

p(y) = p(yl |yk)p(yk |yi , yj)p(yi )p(yj)

R. Urtasun (UofT) Structured Prediction June 20, 2014 10 / 63



Undirected Graphical Model

Also called Markov Random Field, or Markov Network

Graph G = (V , E) is undirected and has no self-edges

Factorization over cliques

p(y) =
1

Z

∏
r∈R

ψr (yr )

with Z =
∑

y∈Y
∏

r∈R ψr (yr ) the partition function

Example

p(y) =
1

Z
ψ(yi , yj)ψ(yj , yk)ψ(yi )ψ(yj)ψ(yk)

Difficulty: Exponentially many configurations

Undirected models will be the focus of this lecture
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Factor Graph Representation

Graph G = (V ,F , E), with variable nodes V, factor nodes F and edges E

Scope of a factor N(F ) = {i ∈ V : (i ,F ) ∈ E}

Factorization over factors

p(y) =
1

Z

∏
F∈F

ψF (yN(F ))
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Factor Graph vs Graphical Model

Factor graphs are explicit about the factorization

Figure : from [Nowozin et al]
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Capacity

They define the family of distributions and thus the capacity

Figure : from [Nowozin et al]
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Markov Random Fields vs Conditional Random Fields

Markov Random Fields (MRFs) define

p(y) =
1

Z

∏
F∈F

ψF (yN(F ))

Conditional Random Fields (CRFs) define

p(y|x) =
1

Z (x)

∏
F∈F

ψF (yN(F ); x)

x is not a random variable (i.e., not part of the probability distribution)
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Energy vs Probabilities

The probability is completely determined by the energy

p(y) =
1

Z

∏
F∈F

ψF (yN(F ))

=
1

Z
exp

(
log(ψF (yN(F )))

)
=

1

Z
exp

(
−
∑
F∈F

EF (yF )

)

where EF (yF ) = − log(ψF (yN(F )))
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Parameterization: log linear model

Factor graphs define a family of distributions

We are interestested in identifying individual members by parameters

EF (yF ) = −wTφF (yF )

Figure : from [Nowozin et al]
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Learning Tasks

Estimation of the parameters w

EF (yF ) = −wTφF (yF )

Learn the structure of the model

Learn with hidden variables
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Inference Tasks

Given an input x ∈ X we want to compute

MAP estimate or minimum energy configuration

argmax
y∈Y

p(y|x) = argmax
y∈Y

1

Z

∏
F∈F

ψF (yN(F ); x,w)

= argmax
y∈Y

exp(−
∑
F∈F

EF (yF , x,w))

= argmin
y∈Y

∑
F∈F

EF (yF , x,w)

Marginals p(yi ) or max marginals maxyi∈Yi p(yi ), which requires computing
the partition function Z , i.e.,

log(Z (x,w)) = log
∑
y∈Y

exp(−E (y; x,w))

µF (yF ) = p(yF |x,w)
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Inference in Markov Random Fields
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MAP Inference

Compute the MAP estimate is typically NP-hard

max
y∈Y

p(y|x) = max
y∈Y

∑
r∈R

wTφr (yr )

Notable exceptions are:

Belief propagation for tree-structure models

Graph cuts for binary energies with sub modular potentials

Branch and bound: exponential in worst case, but works much faster in
practice

Difficulties

Deal with the exponentially many states in y

We are going to see examples of the three techniques
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Belief Propagation

Compact notation
θr (yr ) = wTφr (yr )

Inference can be written as

max
y∈Y

∑
r∈R

θr (yr )

For the example

max
yi ,yj ,yk ,yl

{θF (yi , yj) + θG (yj , yk) + θG (yk , yl)}
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Belief Propagation

θ∗(y) = max
yi ,yj ,yk ,yl

{θF (yi , yj) + θG (yj , yk) + θH(yk , yl)}

= max
yi ,yj

θF (yi , yj) + max
yk

θG (yj , yk) + max
yl

θH(yk , yl)
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Belief Propagation

θ∗(y) = max
yi ,yj

θF (yi , yj) + max
yk

θG (yj , yk) + max
yl

θH(yk , yl)︸ ︷︷ ︸
rH→yk

(yk )

= max
yi ,yj

θF (yi , yj) + max
yk

θG (yj , yk) + rH→yk (yk)
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Tree Generalization

θ∗(y) = max
yi ,yk ,yk ,yl ,ym

θF (yi , yj) + θG (yj , yk) + θI (ym, yk) + θH(yl , yk)

= max
yi ,yj

θF (yi , yj) + max
yk

θG (yj , yk) + max
ym

θI (ym, yk) + max
yl

θH(yl , yk)

= max
yi ,yj

θF (yi , yj) + max
yk

θG (yj , yk) + rH→yk (yk) + rI→yk (yk)

= max
yi ,yj

θF (yi , yj) + max
yk

θG (yj , yk) + qyk→G (yk)
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Factor Graph Max Product

Iteratively updates and passes messages:

rF→yi ∈ <Yi : factor to variable message

qyi→F ∈ <Yi : variable to factor message

Figure : from [Nowozin et al]
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Variable to factor

Let M(i) be the factors adjacent to variable i, M(i) = {F ∈ F : (i ,F ) ∈ E}

Variable-to-factor message

qyi→F (yi ) =
∑

F ′∈M(i)\{F}

rF ′→yi (yi )

Figure : from [Nowozin et al]
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Factor to variable

Factor-to-variable message

rF→yi (yi ) = max
y ′
F∈YF ,y ′

i =yi

θ(y ′F ) +
∑

j∈N(F )\{i}

qyj→F (y ′j )



Figure : from [Nowozin et al]
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Message Scheduling

1 Select one variable as tree root

2 Compute leaf-to-root messages

3 Compute root-to-leaf messages

Figure : from [Nowozin et al]
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Max Product v Sum Product

Max sum version of max-product

1 Compute leaf-to-root messages

qyi→F (yi ) =
∑

F ′∈M(i)\{F}

rF ′→yi (yi )

2 Compute root-to-leaf messages

rF→yi (yi ) = max
y ′
F∈YF ,y ′

i =yi

θ(y ′F ) +
∑

j∈N(F )\{i}

qyj→F (y ′
j )


Sum-product

1 Compute leaf-to-root messages

qyi→F (yi ) =
∑

F ′∈M(i)\{F}

rF ′→yi (yi )

2 Compute root-to-leaf messages

rF→yi (yi ) = log
∑

y ′
F∈YF ,y ′

i =yi

exp

θ(y ′F ) +
∑

j∈N(F )\{i}

qy ′
j→F (y ′j )
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Computing marginals

Partition function can be evaluated at the root

logZ = log
∑
yr

exp

 ∑
F∈M(r)

rF→yr (yr )


Marginal distributions, for each factor

µF (yF ) = p(yF ) =
1

Z
exp

θF (yF ) +
∑

i∈N(F )

qyi→F (yi )
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µF (yF ) = p(yF ) =
1

Z
exp

θF (yF ) +
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µyi (yi ) = p(yi ) =
1

Z
exp

 ∑
F∈M(i)

rF→yi (yi )
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Generalizations to loops

It is call loopy belief propagation (Perl, 1988)

no schedule that removes dependencies

Different messaging schedules (synchronous/asynchronous, static/dynamic)

Slight changes in the algorithm
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MAP LP Relaxation Task

Integer Linear Program (LP) equivalence [Werner 2007]:

Inference task:
ŷ = arg max

y

∑
r

θr (yr )

Variables br (yr ):
y1 y2y1,2

maxb1,b2,b12



b1(0)
b1(1)
b2(0)
b2(1)

b12(0, 0)
b12(1, 0)
b12(0, 1)
b12(1, 1)



> 

θ1(0)
θ1(1)
θ2(0)
θ2(1)

θ12(0, 0)
θ12(1, 0)
θ12(0, 1)
θ12(1, 1)


s.t.

br (yr ) ∈ {0, 1}

∑
yr
br (yr ) = 1∑

yp\yr bp(yp) = br (yr )
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MAP LP Relaxation Task

LP relaxation:

max
b1,b2,b12



b1(1)
b1(2)
b2(1)
b2(2)

b12(1, 1)
b12(2, 1)
b12(1, 2)
b12(2, 2)



> 

θ1(1)
θ1(2)
θ2(1)
θ2(2)

θ12(1, 1)
θ12(2, 1)
θ12(1, 2)
θ12(2, 2)


s.t.

br (yr ) ∈ {0, 1}∑
yr

br (yr ) = 1∑
yp\yr

bp(yp) = br (yr )

Can be solved by any standard LP solver but slow because of typically
many variables and constraints. Can we do better?
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MAP LP Relaxation Task

Observation: Graph structure in marginalization constraints.

y1 y2y1,2

Use dual to take advantage of structure in constraint set

Set of parents of region r : P(r)

Set of children of region r : C (r)

∀r , yr , p ∈ P(r)
∑
yp\yr

bp(yp) = br (yr )

Lagrange multipliers for every constraint:

∀r , yr , p ∈ P(r) λr→p(yr )
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MAP LP Relaxation Task

Re-parameterization of score θr (yr ):

θ̂r (yr ) = θr (yr ) +
∑

p∈P(r)

λr→p(yr )−
∑

c∈C(r)

λc→r (yc)

Properties of dual program:

min
λ

q(λ) = min
λ

∑
r

max
yr

θ̂r (yr )

Dual upper-bounds primal ∀λ
Convex problem

Unconstrained task

Doing block coordinate descent in the dual results on message passing
(Lagrange multipliers are your messages)
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MAP LP Relaxation Task

Block-coordinate descent solvers iterate the following steps:

Take a block of Lagrange multipliers

Optimize sub-problem of dual function w.r.t. this block while keeping
all other variables fixed

Advantage: fast due to analytically computable sub-problems

Same type of algorithms also exist to compute approximate marginals
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Graph-Cuts for MRF Inference

Theorem [Kolmogorov and Zabih, 2004]: If the energy function is a function
of binary variables containing only unary and pairwise factors, the discrete energy
minimization problem

min
y

∑
r∈R

E (yr , x)

can be formulated as a graph cut problem if an only off all pairwise energies are
sub modular

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0)
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The ST-mincut problem

The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]
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Back to our energy minimization

Construct a graph such that

1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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St-mincut and Energy Minimization

[Source: P. Kohli]
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How are they equivalent?

A B 

C D 

0     1 

0 

1 
xi 

xj 

=  A  + 
0 0 

C-A C-A 

0     1 

0 

1 

0 D-C 

0 D-C 

0     1 

0 

1 

0 
B
+C-
A-D 

0 0 

0     1 

0 

1 
+ + 

if x1=1 add C-
A 

if x2  = 1 add 
D-C 

B+C-A-D ! 0 is true from the submodularity of !ij
  

A = !ij
 (0,0)        B = !ij(0,1)           C = !ij

 (1,0)          D = !ij
 (1,1) 

!ij (xi,xj)  = !ij(0,0)  
    + (!ij(1,0)-!ij(0,0)) xi + (!ij(1,0)-!ij(0,0)) xj  
    + (!ij(1,0) + !ij(0,1) - !ij(0,0) - !ij(1,1)) (1-xi) xj 

[Source: P. Kohli]
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Graph Construction

[Source: P. Kohli]
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How to compute the St-mincut?

[Source: P. Kohli]
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How does the code look like

[Source: P. Kohli]
R. Urtasun (UofT) Structured Prediction June 20, 2014 46 / 63



How does the code look like

[Source: P. Kohli]

R. Urtasun (UofT) Structured Prediction June 20, 2014 46 / 63



How does the code look like

[Source: P. Kohli]
R. Urtasun (UofT) Structured Prediction June 20, 2014 46 / 63



How does the code look like

[Source: P. Kohli]
R. Urtasun (UofT) Structured Prediction June 20, 2014 46 / 63



Example: Figure-Ground Segmentation

Binary labeling problem

(Original) (Color model) (Indep. Prediction)

Figure : from [Nowozin et al]
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Example: Figure-Ground Segmentation

Markov Random Field

E (y, x,w) =
∑
i

log p(yi |xi ) + w
∑

(i,j)∈E

C (xi , xj)l(yi 6= yj)

with C (xi , xj) = exp(γ||xi − xj ||2), and w ≥ 0.

(w=0) (w small) (w medium) (large w)

Figure : from [Nowozin et al]

Why do we need the condition w ≥ 0?
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Generalization to Multi-label Problems

Optimal solution is not possible anymore

Solve to optimality subproblems that include current iterate

This guarantees decrease in the objective

Figure : from [Nowozin et al]
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Metric vs Semimetric

Two general classes of pairwise interactions

Metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0

V (α, β) ≤ V (α, γ) + V (γ, β)

Semi-metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0
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Examples for 1D label set

Truncated quadratic is a semi-metric

V (α, β) = min(K , |α− β|2)

with K a constant.

Truncated absolute distance is a metric

V (α, β) = min(K , |α− β|)

with K a constant.

Potts model is a metric

V (α, β) = K · T (α 6= β)

with T (·) = 1 if the argument is true and 0 otherwise.
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Move Making Algorithms

Alpha Expansion: Checks if current nodes want to switch to label α

Alpha - Beta Swaps: Checks if a node with class α wants to switch to β.

Binary problems that can be solve exactly for certain type of potentials

Figure : Alpha-beta Swaps. Figure from [Nowozin et al]
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Binary Moves

α− β moves works for semi-metrics

α expansion works for V being a metric

Figure : from P. Kohli tutorial on graph-cuts

For certain x1 and x2, the move energy is sub-modular
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Graph Construction

The set of vertices includes the two terminals α and β, as well as image
pixels p in the sets Pα and Pβ (i.e., fp ∈ {α, β}).

Each pixel p ∈ Pαβ is connected to the terminals α and β, called t-links.

Each set of pixels p, q ∈ Pαβ which are neighbors is connected by an edge
ep,q
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Learning in graphical models
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Learning Tasks

Estimation of the parameters w

EF (yF ) = −wTφF (yF )

Learn the structure of the model

Learn with hidden variables
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Learning the parameters

Log-loss learning

Max margin learning

One parameter extensions

Pseudolikelihood

Perturb and MAP approaches

Contrastive Divergence

· · ·
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Supervised Learning

We are given a dataset of S = {(xi , yi ), · · · , (xN , yN)}

We also have the task loss that we want to minimize ∆ : Y × Y → R

We want to find the weights by solving

min
w

E(x,y)∼D{∆(y , f (x))}

with f (x) = argmax
y∈Y

wTφ(x, y)

This is difficult, so we can replace it by an empirical estimate, a surrogate
loss and add regularizer to prevent overfitting

min
w

∑
(x,y)∈D

`(w, x , y) +
C

p
‖w‖pp,

Typical supervised learning algorithms are convex.

Why is this problem difficult?
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Max-margin Learning

Regularized Risk Minimization

min
w

∑
(x,y)∈S

`(w, x , y) +
C

p
‖w‖pp,

In structured SVMs

`hinge(w, x , y) = max
ŷ∈Y

{
∆(y , ŷ) + w>Φ(x , ŷ)−w>Φ(x , y)

}

Optimize the unconstrained problem

min
w

∑
(x,y)∈S

max
ŷ∈Y

{
∆(y , ŷ) + w>Φ(x , ŷ)−w>Φ(x , y)

}
+

C

p
‖w‖pp,

Convex but non-smooth.

Use sub gradient methods
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Equivalent Formulation

Optimize the unconstrained problem

min
w

∑
(x,y)∈S

max
ŷ∈Y

{
∆(y , ŷ) + w>Φ(x , ŷ)−w>Φ(x , y)

}
+

C

p
‖w‖pp,

Write as constraints

min
w

∑
(x,y)∈S

ξ2
n +

C

p
‖w‖pp,

s.t. max
ŷ∈Y

{
∆(y , ŷ) + w>Φ(x , ŷ)−w>Φ(x , y)

}
≤ ξn

Or equivalently

min
w

∑
(x,y)∈S

ξ2
n +

C

p
‖w‖pp,

s.t. ∀ŷ `(y , ŷ) + w>Φ(x , ŷ)−w>Φ(x , y) ≤ ξn

Use cutting plane methods as exp. many constraints
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}
+

C

p
‖w‖pp,

Write as constraints

min
w

∑
(x,y)∈S

ξ2
n +

C

p
‖w‖pp,

s.t. max
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Log-loss Learning

Regularized Risk Minimization

min
w

∑
(x,y)∈S

`(w, x , y) +
C

p
‖w‖pp,

CRF loss: The conditional distribution is

px,y (ŷ ; w) =
1

Z (x , y)
exp

(
∆(y , ŷ) + w>Φ(x , ŷ)

)
Z (x , y) =

∑
ŷ∈Y

exp
(
∆(y , ŷ) + w>Φ(x , ŷ)

)
where ∆(y , ŷ) is a prior distribution and Z (x , y) the partition function, and

`log (w, x , y) = ln
1

px,y (y ; w)
.

Convex problem

Problem: to do gradient descent I need to compute Z

R. Urtasun (UofT) Structured Prediction June 20, 2014 61 / 63



Log-loss Learning

Regularized Risk Minimization

min
w

∑
(x,y)∈S

`(w, x , y) +
C

p
‖w‖pp,

CRF loss: The conditional distribution is

px,y (ŷ ; w) =
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CRF loss: The conditional distribution is

px,y (ŷ ; w) =
1

Z (x , y)
exp

(
∆(y , ŷ) + w>Φ(x , ŷ)

)
Z (x , y) =

∑
ŷ∈Y

exp
(
∆(y , ŷ) + w>Φ(x , ŷ)

)
where ∆(y , ŷ) is a prior distribution and Z (x , y) the partition function, and

`log (w, x , y) = ln
1

px,y (y ; w)
.

Convex problem

Problem: to do gradient descent I need to compute Z
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Relation between loss functions

The CRF program is

(CRF) min
w

 ∑
(x,y)∈S

lnZ(x , y)− d>w +
C

p
‖w‖pp

 ,

where (x , y) ∈ S ranges over training pairs and d =
∑

(x,y)∈S Φ(x , y) is the

vector of empirical means, and

Z(x , y) =
∑
ŷ∈Y

exp
(

∆(y , ŷ) + w>Φ(x , ŷ)
)

In structured SVMs

(structured SVM) min
w

 ∑
(x,y)∈S

max
ŷ∈Y

{
∆(y , ŷ) + w>Φ(x , ŷ)

}
− d>w +

C

p
‖w‖pp

 ,
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A family of structure prediction problems

One parameter extension of CRFs and structured SVMs [Hazan & Urtasun,
NIPS 2010]

min
w

 ∑
(x,y)∈S

lnZε(x , y)− d>w +
C

p
‖w‖pp

 ,

d is the empirical means, and

lnZε(x , y) = ε ln
∑
ŷ∈Y

exp

(
∆(y , ŷ) + w>Φ(x , ŷ)

ε

)

CRF if ε = 1, Structured SVM if ε = 0 respectively.

One can devise a single algorithm to solve both problems
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Structured Prediction in Practice
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Recipe for Success using Structure Prediction

What are my random variables?

How are they related? i.e., graph
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will take care of that!
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How are they related? i.e., graph

How do I encode my prior knowledge about the problem?

E (y1, · · · , yn, x) =
∑
r∈R

wT
r φr (yr , x)

Advise: Forget about probabilities in your potentials, the partition function
will take care of that!

p(y|x) =
1

Z
exp(−E (y, x))

How can I do inference? Why is this complicated?

min
y1,··· ,yn

E (y1, · · · , yn)

If you know how to do inference you will know how to do learning! Where
does the complication come from?
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Why Would I Use Structure Prediction?

Why to worry about math if I can hack up something quickly? → there is
still room for hackers!

It allows you to abstract and encode models to solve your problems

Captures well the combinatorial structure of some problems

Easy to reason jointly about multiple problems

Why do I care about holistic (i.e., joint) models?

Well understood inference algorithms, some of them exact!

Good learning algorithms exist as well
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What’s not so good?

Use as a keyword, approaches that don’t think about how the problem is
represented, how the energy looks like, etc.

Particularly overloaded terms, e.g., high-order potentials

Problems with continuous variables: we need better algorithms!

Do I need to understand inference? Yes, yes and yes! I don’t think this is a
negative point though

Is a log-linear model expressive enough?

Where does the structure come from?

Can I learn everything from unlabeled data? How deep are you?
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First task: 3D indoor scene understanding

R. Urtasun (UofT) 3D Structure Prediction June 20, 2014 6 / 32



3D layout for Indoors

Task: Estimate the 3D layout from a single image

What’s the metric? how do I know if I did well?

How would you parameterize this problem? (i.e., what are your random
variables?)

What prior knowledge would you like to encode?
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3D layout for Indoors

Isn’t this a segmentation task where each pixel can be labeled as a wall?

What are the φr (yr , x)?
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Geometric Features as Unaries

Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image orientation map geometric context

How do I construct my unaries φi (x, yi )?

What are my pairwise potentials φij (x, yi , yj )?

What’s the problem with smoothness potentials?

Are we missing something? What extra knowledge do we have?
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Manhattan World for Segmentation

Labels are not appearing at random in the image

We can encode that the world is Manhattan by expressing ordering
constraints

What would that be?

What’s the order of the potentials?

Can we do inference easily?

Which algorithm will you use? would it take a long time? would it be
optimal?
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Encoding Manhattan World Structure

Let’s assume that I can compute vanishing points

How should I express the problem? how many degrees of freedom do I have?

What have I lost with respect to before?

What have I won?
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We parameterize a layout with 4 variables yi ∈ Y, i ∈ {1, ..., 4} [Lee et al.
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Energy of the problem

Let’s define the energy. Which potentials will you use?

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x)

We will like to maximize the yellow pixels in the left wall, green in the
frontal wall, etc

We will also like to minimize the other colors in those walls, e.g., all but
yellow in left wall
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More on energy

original image orientation map geometric context

How do I express this in my potentials?

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x)

How many yi ’s do I need to define them?

Do I need other potentials?

Why did I need more potentials than just geometric features before?
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Inference

Is inference easy in this model? Why?

What can we do?

Multi-label problem, message passing seems the best option

Problem: High order potentials → very very slow !

Let’s think about it for a second, maybe we can do something

Remember we want to compute sum of features in faces, and search over all
possible faces

Let’s first take a detour
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Integral Images

We are interested in computing the sum of some features inside a rectangle,
and we want to vary the rectangle

How can we do this efficiently?

Compute the sum area table, also called integral image

s(i , j) =
i∑

k=0

j∑
l=0

f (k, l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

Then compute the sum on the rectangle by accessing 4 numbers

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Can we do something similar in our case?
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Generalization to 3D

Faces are generalizations of rectangles

We need to extend the concept of integral images to 3D

This is called integral geometry [Schwing et al. 12a]

How does this work?

φ{left w}(yi , yj , yk , x) = H1(yi , yj , x)− H2(yj , yk , x)

H1(yi , yj , x)

H2(yj , yk , x)

yi

yj

yk
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What are the implications?

We can now write the problem in terms of potentials of order at most 2

E (y1, · · · , y4) =
∑

r

wT
r (yr , x)

and r only contains sets of 2 random variables

Life is a bit more complicated than what I showed you as I was varying the
parameterization to make you understand easily

Good news is that it still depends on pairwise potentials (which are
accumulators) but there is quite a few more

Some of this r share the same weights, as they come from the integral
geometry.

If they are not shared then they do not represent the same problem

This speed ups the message passing inference by a few orders of magnitude
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Exact Inference?

Can we compute the optimal solution?

The graph of the previous problem loops

Message passing will not give the optimal

What other algorithms do you know that give the optimal solution?

Let’s look at branch and bound
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Branch and Bound

We have to define:

1 A parameterization that defines sets of hypothesis.

2 A scoring function f

3 Tight bounds on the scoring function that can be computed very efficiently
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Parameterization of the Problem

Layout with 4 variables yi ∈ Y, i ∈ {1, ..., 4} [Lee et al. 09]

How do we define Y?

Is this problem continuous or discrete?

We parameterize the sets by intervals of minimum and maximum angles

{[y min
1 , y max

1 ], · · · , [y min
4 , y max

4 ]}

Why intervals?

We have defined already the scoring function. What about the bounds?
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Properties of the Bounds

Derive bounds f̄ for the original scoring function wTφ(y, x) that satisfy:

1 The bound of the interval Ŷ has to upper-bound the true cost of each
hypothesis y ∈ Ŷ,

∀y ∈ Ŷ, f̄ (Ŷ) ≥ wTφ(y, x).

2 The bound has to be exact for every single hypothesis,

∀y ∈ Y, f̄ (y) = wTφ(y, x).

Can we define this for our problem?
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Intuitions from 2D

Let’s look at the 2D case again

We want to compute the bounding box that maximizes a scoring function

Let’s try to do this with branch and bound

We define an interval as the max and min of the x and y axis of the rectangle

The scoring function sums features in the rectangle defined by the BBox

E (y1, · · · , y4) =
∑

i∈BBox(y)

fi (x)
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Branch and Bound for BBox prediction

The scoring function sums features in the rectangle defined by the BBox

E (y1, · · · , y4) =
∑

i∈BBox(y)

fi (x)

Some features are positive and some are negative

Trick: Divide the space into negative and positive features

E (y1, · · · , y4) =
∑

i∈BBox(y)

f +
i (x)

︸ ︷︷ ︸
f +(y,x)

+
∑

i∈BBox(y)

f −i (x)

︸ ︷︷ ︸
f −(y,x)

Bound the positive and negative independently

bound(E (Ȳ)) = f̄ +(Ȳ, x) + f̄ −(Ȳ, x)
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Bounding the functions

Energy was defined as

E (y1, · · · , y4) =
∑

i∈BBox(y)

f +
i (x)

︸ ︷︷ ︸
f +(y,x)

+
∑

i∈BBox(y)

f −i (x)

︸ ︷︷ ︸
f −(y,x)

Bound the positive and negative independently

bound(E (Ȳ)) = f̄ +(Ȳ, x) + f̄ −(Ȳ, x)

These bounds are very simple? What are they?

How can we compute them very fast?

What’s the complexity of computing them?

How many integral images do we need?
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Algorithm for 2D BBox [Lampert et al. 06]

How do we split?

When do we terminate?
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3D layout estimation

Let’s go back to our problem

We parameterize the sets by intervals of minimum and maximum angles

{[y min
1 , y max

1 ], · · · , [y min
4 , y max

4 ]}

The scoring function sums features over the faces

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x) =

∑
α

fα(y, x)

with α = {floor , left w , right w , ceiling , front w}
What about the bounds?
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Bounds for 3D layout

The scoring function sums features over the faces

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x) =

∑
α

fα(y, x)

with α = {floor , left w , right w , ceiling , front w}
Let’s bound each ”face” α separately

Recall where the features come from

original image orientation map geometric context

Some features are positive, some are negative. Why? How do I know which
ones are positive/negative?

R. Urtasun (UofT) 3D Structure Prediction June 20, 2014 27 / 32



Deriving bounds

Inference can be then done by

E (y1, · · · , y4) =
∑
α

f +
α (x , y) + f −α (x , y),

We can bound each of this terms separately

bound(E (Ŷ, x)) =
∑
α∈F

f̄ +
α (Ŷ, x) + f̄ −α (Ŷ, x)

We construct bounds by computing the max positive and min negative
contribution of the score within the set Ŷ for each face α ∈ F .

f̄front-wall(Ŷ) = f +
front-wall(x , yup) + f −front-wall(x , ylow ),

(Front Wall) (Minimal left wall) (Maximal left wall)
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Efficient bounds

How can we compute the bounds efficiently?

What’s the complexity?

How many evaluations?
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Results

[A. Schwing and R. Urtasun, ECCV12]

Table : Pixel classification error in the layout dataset of [Hedau et al. 09].

OM GC OM + GC Other Time

[Hoiem07] - 28.9 - - -
[Hedau09] (a) - 26.5 - - -
[Hedau09] (b) - 21.2 - - 10-30 min
[Wang10] 22.2 - - -
[Lee10] 24.7 22.7 18.6 - -

[delPero11] - - - 16.3 12 min
Ours 18.6 15.4 13.6 - 0.007s

Table : Pixel classification error in the bedroom data set [Hedau et al. 10].

[delPero11] [Hoiem07] [Hedau09](a) Ours
w/o box 29.59 23.04 22.94 16.46

Takes on average 0.007s for exact solution over 504 possibilities !

It’s 6 orders of magnitude faster than the state-of-the-art!
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Qualitative Results
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Conclusion

Conclusion:

We have studied structured prediction including learning and inference

We have investigated how to think to solve a real-world problem

Relations to previous two talks:

RBMs are graphical models

Your potentials φr (yr ) can be ”deep”

Open questions:

Latent variable models: non-convex learning

Learn the structure of the graph

Go beyond log-linear models

MAP inference: high order potentials

Continuos Markov random fields

If you are interested in doing research at University of Toronto, talk to me!
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