Structured Prediction for Scene Understanding I

Raquel Urtasun

University of Toronto

June 20, 2014

- Understand what structured prediction is
- Learn how to formulate a problem to be successful in practice

- Introduction to Structure prediction
- Inference

Learning

• A practical example

What is structured prediction?

• In "typical" machine learning

$$f: \mathcal{X} \to \Re$$

the input \mathcal{X} can be anything, and the output is a real number (e.g., classification, regression)

• In Structured Prediction

$$f:\mathcal{X}\to\mathcal{Y}$$

the input \mathcal{X} can be anything, and the output is a **complex** object (e.g., image segmentation, parse tree)

• In "typical" machine learning

$$f: \mathcal{X} \to \Re$$

the input \mathcal{X} can be anything, and the output is a real number (e.g., classification, regression)

• In Structured Prediction

$$f:\mathcal{X}\to\mathcal{Y}$$

the input \mathcal{X} can be anything, and the output is a **complex** object (e.g., image segmentation, parse tree)

 \bullet In this lecture ${\cal Y}$ is a discrete space, ask me later if you are interested in continuous variables.

• In "typical" machine learning

$$f: \mathcal{X} \to \Re$$

the input \mathcal{X} can be anything, and the output is a real number (e.g., classification, regression)

• In Structured Prediction

$$f:\mathcal{X}\to\mathcal{Y}$$

the input \mathcal{X} can be anything, and the output is a **complex** object (e.g., image segmentation, parse tree)

 $\bullet\,$ In this lecture ${\cal Y}$ is a discrete space, ask me later if you are interested in continuous variables.

Structured Prediction and its Applications

We want to predict multiple random variables which are related

- Computer Vision:
 - Semantic Segmentation (output: pixel-wise labeling)
 - Object detection (output: 2D or 3D bounding boxes)
 - Stereo Reconstruction (output: 3D map)
 - Scene Understanding (output: 3D bounding box reprinting the layout)

Structured Prediction and its Applications

We want to predict multiple random variables which are related

- Natural Language processing
 - Machine Translation (output: sentence in another language)
 - Parsing (output: parse tree)

- Computational Biology
 - Protein Folding (output: 3D protein)

MRLLILALLGICSLTAYIVEGVGSEVSDKR TCVSLTTQRLPVSRIKTYTITEGSLRAVIF ITKRGLKVCADPQATWVRDVVRSMDRKSNT RNNMIQTKPTGTQQSTNTAVTLTG

• Independent prediction is good but...

• Neighboring pixels should have same labels (if they look similar).

• Independent prediction is good but...

• Neighboring pixels should have same labels (if they look similar).

A graphical model defines

- A family of probability distributions over a set of random variables
- This is expressed via a graph, which encodes the conditional independences of the distribution

• Two types of graphical models: Directed and undirected

Bayesian Networks

- The graph $G = (V, \mathcal{E})$ is acyclic and directed
- Factorization over distributions by conditioning on parent nodes

$$p(\mathbf{y}) = \prod_{i \in V} p(y_i | y_{pa}(i))$$

• Example

$$p(\mathbf{y}) = p(y_i|y_k)p(y_k|y_i, y_j)p(y_i)p(y_j)$$

Undirected Graphical Model

- Also called Markov Random Field, or Markov Network
- Graph $G = (V, \mathcal{E})$ is undirected and has no self-edges
- Factorization over cliques

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{r \in \mathbb{R}} \psi_r(\mathbf{y}_r)$$

with $Z = \sum_{\mathbf{y} \in \mathcal{Y}} \prod_{r \in \mathbb{R}} \psi_r(\mathbf{y}_r)$ the partition function

Example

$$p(\mathbf{y}) = \frac{1}{Z} \psi(y_i, y_j) \psi(y_j, y_k) \psi(y_i) \psi(y_j) \psi(y_k)$$

- Difficulty: Exponentially many configurations
- Undirected models will be the focus of this lecture

R. Urtasun (UofT)

Factor Graph Representation

- Graph $G = (V, \mathcal{F}, \mathcal{E})$, with variable nodes \mathcal{V} , factor nodes \mathcal{F} and edges \mathcal{E}
- Scope of a factor $N(F) = \{i \in V : (i, F) \in \mathcal{E}\}$
- Factorization over factors

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_F(\mathbf{y}_{N(F)})$$

Factor Graph vs Graphical Model

• Factor graphs are explicit about the factorization

Figure : from [Nowozin et al]

• They define the family of distributions and thus the capacity

Figure : from [Nowozin et al]

Markov Random Fields vs Conditional Random Fields

• Markov Random Fields (MRFs) define

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_F(\mathbf{y}_{N(F)})$$

• Conditional Random Fields (CRFs) define

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{F \in \mathcal{F}} \psi_F(\mathbf{y}_{N(F)}; \mathbf{x})$$

• x is not a random variable (i.e., not part of the probability distribution)

• The probability is completely determined by the energy

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_F(\mathbf{y}_{N(F)})$$
$$= \frac{1}{Z} \exp\left(\log(\psi_F(\mathbf{y}_{N(F)}))\right)$$
$$= \frac{1}{Z} \exp\left(-\sum_{F \in \mathcal{F}} E_F(y_F)\right)$$

where $E_F(y_F) = -\log(\psi_F(\mathbf{y}_{N(F)}))$

Parameterization: log linear model

- Factor graphs define a family of distributions
- We are interestested in identifying individual members by parameters

$$E_F(\mathbf{y}_F) = -\mathbf{w}^T \phi_F(\mathbf{y}_F)$$

• Estimation of the parameters w

$$E_F(\mathbf{y}_F) = -\mathbf{w}^T \phi_F(\mathbf{y}_F)$$

- Learn the structure of the model
- Learn with hidden variables

Inference Tasks

Given an input $x \in \mathcal{X}$ we want to compute

• MAP estimate or minimum energy configuration

$$\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_F(\mathbf{y}_{N(F)}; \mathbf{x}, \mathbf{w})$$

$$= \operatorname{argmax}_{y \in \mathcal{Y}} \exp(-\sum_{F \in \mathcal{F}} E_F(\mathbf{y}_F, \mathbf{x}, \mathbf{w}))$$

$$= \operatorname{argmin}_{y \in \mathcal{Y}} \sum_{F \in \mathcal{F}} E_F(\mathbf{y}_F, \mathbf{x}, \mathbf{w})$$

 Marginals p(y_i) or max marginals max_{y_i∈y_i} p(y_i), which requires computing the partition function Z, i.e.,

$$\log(Z(\mathbf{x}, \mathbf{w})) = \log \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}; \mathbf{x}, \mathbf{w}))$$
$$\mu_F(\mathbf{y}_F) = \rho(\mathbf{y}_F | \mathbf{x}, \mathbf{w})$$

Inference Tasks

Given an input $x \in \mathcal{X}$ we want to compute

• MAP estimate or minimum energy configuration

$$\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_F(\mathbf{y}_{N(F)}; \mathbf{x}, \mathbf{w})$$

$$= \operatorname{argmax}_{y \in \mathcal{Y}} \exp(-\sum_{F \in \mathcal{F}} E_F(\mathbf{y}_F, \mathbf{x}, \mathbf{w}))$$

$$= \operatorname{argmin}_{y \in \mathcal{Y}} \sum_{F \in \mathcal{F}} E_F(\mathbf{y}_F, \mathbf{x}, \mathbf{w})$$

 Marginals p(y_i) or max marginals max_{y_i∈y_i} p(y_i), which requires computing the partition function Z, i.e.,

$$\log(Z(\mathbf{x}, \mathbf{w})) = \log \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}; \mathbf{x}, \mathbf{w}))$$
$$\mu_F(\mathbf{y}_F) = p(\mathbf{y}_F | \mathbf{x}, \mathbf{w})$$

Inference in Markov Random Fields

$$\max_{y \in \mathcal{Y}} p(\mathbf{y}|x) = \max_{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{T} \phi_{r}(\mathbf{y}_{r})$$

Notable exceptions are:

• Belief propagation for tree-structure models

$$\max_{y \in \mathcal{Y}} p(\mathbf{y}|x) = \max_{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{T} \phi_{r}(\mathbf{y}_{r})$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials

$$\max_{y \in \mathcal{Y}} p(\mathbf{y}|x) = \max_{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{T} \phi_{r}(\mathbf{y}_{r})$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

$$\max_{y \in \mathcal{Y}} p(\mathbf{y}|x) = \max_{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{T} \phi_{r}(\mathbf{y}_{r})$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

Difficulties

• Deal with the exponentially many states in **y**

$$\max_{y \in \mathcal{Y}} p(\mathbf{y}|x) = \max_{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{T} \phi_{r}(\mathbf{y}_{r})$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

Difficulties

• Deal with the exponentially many states in **y**

We are going to see examples of the three techniques

$$\max_{y \in \mathcal{Y}} p(\mathbf{y}|x) = \max_{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{T} \phi_{r}(\mathbf{y}_{r})$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

Difficulties

• Deal with the exponentially many states in y

We are going to see examples of the three techniques

Belief Propagation

Compact notation

$$\theta_r(\mathbf{y}_r) = \mathbf{w}^T \phi_r(\mathbf{y}_r)$$

• Inference can be written as

• For the example

$$\max_{y_i,y_j,y_k,y_l} \{\theta_F(y_i,y_j) + \theta_G(y_j,y_k) + \theta_G(y_k,y_l)\}$$

$$\theta^*(\mathbf{y}) = \max_{y_i, y_j, y_k, y_l} \{\theta_F(y_i, y_j) + \theta_G(y_j, y_k) + \theta_H(y_k, y_l)\}$$

$$= \max_{y_i,y_j} \theta_F(y_i,y_j) + \max_{y_k} \theta_G(y_j,y_k) + \max_{y_l} \theta_H(y_k,y_l)$$

Belief Propagation

$$\begin{aligned} \theta^*(\mathbf{y}) &= \max_{y_i, y_j} \theta_F(y_i, y_j) + \max_{y_k} \theta_G(y_j, y_k) + \underbrace{\max_{y_l} \theta_H(y_k, y_l)}_{r_{H \to y_k}(y_k)} \\ &= \max_{y_i, y_j} \theta_F(y_i, y_j) + \max_{y_k} \theta_G(y_j, y_k) + r_{H \to y_k}(y_k) \end{aligned}$$

Belief Propagation

$$\begin{aligned} \theta^*(\mathbf{y}) &= \max_{y_i, y_j} \theta_F(y_i, y_j) + \max_{y_k} \theta_G(y_j, y_k) + \underbrace{\max_{y_l} \theta_H(y_k, y_l)}_{r_{H \to y_k}(y_k)} \\ &= \max_{y_i, y_j} \theta_F(y_i, y_j) + \max_{y_k} \theta_G(y_j, y_k) + r_{H \to y_k}(y_k) \end{aligned}$$

$$\theta^*(\mathbf{y}) = \max_{y_i, y_j} \theta_F(y_i, y_j) + \underbrace{\max_{y_k} \theta_G(y_j, y_k) + r_{H \to y_k}(y_k)}_{r_{G \to y_j}(y_j)}$$

 $= \max_{y_i, y_j} \theta_F(y_i, y_j) + r_{G \to y_j}(y_j)$

$$\theta^{*}(\mathbf{y}) = \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \underbrace{\max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + r_{H \to y_{k}}(y_{k})}_{r_{G \to y_{j}}(y_{j})}$$
$$= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + r_{G \to y_{j}}(y_{j})$$

$$\theta^{*}(\mathbf{y}) = \max_{\substack{y_{i}, y_{k}, y_{k}, y_{l}, y_{m}}} \theta_{F}(y_{i}, y_{j}) + \theta_{G}(y_{j}, y_{k}) + \theta_{I}(y_{m}, y_{k}) + \theta_{H}(y_{I}, y_{k})$$

=
$$\max_{\substack{y_{i}, y_{j}}} \theta_{F}(y_{i}, y_{j}) + \max_{\substack{y_{k}}} \theta_{G}(y_{j}, y_{k}) + \max_{\substack{y_{m}}} \theta_{I}(y_{m}, y_{k}) + \max_{\substack{y_{l}}} \theta_{H}(y_{l}, y_{k})$$

 $\begin{aligned} \theta^{*}(\mathbf{y}) &= \max_{y_{i}, y_{k}, y_{k}, y_{l}, y_{m}} \theta_{F}(y_{i}, y_{j}) + \theta_{G}(y_{j}, y_{k}) + \theta_{I}(y_{m}, y_{k}) + \theta_{H}(y_{l}, y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + \max_{y_{m}} \theta_{I}(y_{m}, y_{k}) + \max_{y_{l}} \theta_{H}(y_{l}, y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + r_{H \to y_{k}}(y_{k}) + r_{I \to y_{k}}(y_{k}) \end{aligned}$

$$\begin{aligned} \theta^{*}(\mathbf{y}) &= \max_{y_{i}, y_{k}, y_{k}, y_{l}, y_{m}} \theta_{F}(y_{i}, y_{j}) + \theta_{G}(y_{j}, y_{k}) + \theta_{I}(y_{m}, y_{k}) + \theta_{H}(y_{I}, y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + \max_{y_{m}} \theta_{I}(y_{m}, y_{k}) + \max_{y_{l}} \theta_{H}(y_{I}, y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + r_{H \to y_{k}}(y_{k}) + r_{I \to y_{k}}(y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + q_{y_{k} \to G}(y_{k}) \end{aligned}$$

$$\begin{aligned} \theta^{*}(\mathbf{y}) &= \max_{y_{i}, y_{k}, y_{k}, y_{l}, y_{l}, y_{m}} \theta_{F}(y_{i}, y_{j}) + \theta_{G}(y_{j}, y_{k}) + \theta_{I}(y_{m}, y_{k}) + \theta_{H}(y_{I}, y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + \max_{y_{m}} \theta_{I}(y_{m}, y_{k}) + \max_{y_{l}} \theta_{H}(y_{I}, y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + r_{H \to y_{k}}(y_{k}) + r_{I \to y_{k}}(y_{k}) \\ &= \max_{y_{i}, y_{j}} \theta_{F}(y_{i}, y_{j}) + \max_{y_{k}} \theta_{G}(y_{j}, y_{k}) + q_{y_{k} \to G}(y_{k}) \end{aligned}$$

Iteratively updates and passes messages:

- $r_{F \to y_i} \in \Re^{\mathcal{Y}_i}$: factor to variable message
- $q_{y_i \to F} \in \Re^{\mathcal{Y}_i}$: variable to factor message

Figure : from [Nowozin et al]

Variable to factor

- Let M(i) be the factors adjacent to variable i, $M(i) = \{F \in \mathcal{F} : (i, F) \in \mathcal{E}\}$
- Variable-to-factor message

$$q_{y_i \to F}(y_i) = \sum_{F' \in \mathcal{M}(i) \setminus \{F\}} r_{F' \to y_i}(y_i)$$

Figure : from [Nowozin et al]

• Factor-to-variable message

$$r_{F \to y_i}(y_i) = \max_{y'_F \in \mathcal{Y}_F, y'_i = y_i} \left(\theta(y'_F) + \sum_{j \in N(F) \setminus \{i\}} q_{y_j \to F}(y'_j) \right)$$

Figure : from [Nowozin et al]

Message Scheduling

- Select one variable as tree root
- Ompute leaf-to-root messages
- Ompute root-to-leaf messages

Figure : from [Nowozin et al]

Max Product v Sum Product

Max sum version of max-product

Compute leaf-to-root messages

$$q_{y_i \to F}(y_i) = \sum_{F' \in \mathcal{M}(i) \setminus \{F\}} r_{F' \to y_i}(y_i)$$

Ompute root-to-leaf messages

$$r_{F \to y_i}(y_i) = \max_{y'_F \in \mathcal{Y}_F, y'_i = y_i} \left(\theta(y'_F) + \sum_{j \in N(F) \setminus \{i\}} q_{y_j \to F(y'_j)} \right)$$

1

Sum-product

Compute leaf-to-root messages

$$q_{y_i o F}(y_i) = \sum_{F' \in \mathcal{M}(i) \setminus \{F\}} r_{F' o y_i}(y_i)$$

2 Compute root-to-leaf messages

$$r_{F
ightarrow y_i}(y_i) = \log \sum_{y'_F \in \mathcal{Y}_F, y'_i = y_i} \exp \left(heta(y'_F) + \sum_{j \in N(F) \setminus \{i\}} q_{y'_j
ightarrow F}(y'_j)
ight)$$

R. Urtasun (UofT)

Structured Prediction

`

Max Product v Sum Product

Max sum version of max-product

Compute leaf-to-root messages

$$q_{y_i \to F}(y_i) = \sum_{F' \in \mathcal{M}(i) \setminus \{F\}} r_{F' \to y_i}(y_i)$$

Ompute root-to-leaf messages

$$r_{F \to y_i}(y_i) = \max_{y'_F \in \mathcal{Y}_F, y'_i = y_i} \left(\theta(y'_F) + \sum_{j \in N(F) \setminus \{i\}} q_{y_j \to F(y'_j)} \right)$$

Sum-product

Compute leaf-to-root messages

$$q_{y_i o F}(y_i) = \sum_{F' \in \mathcal{M}(i) \setminus \{F\}} r_{F' o y_i}(y_i)$$

 $\textbf{O} \quad \text{Compute root-to-leaf messages} \\ r_{F \to y_i}(y_i) = \log \sum_{y'_F \in \mathcal{Y}_F, y'_i = y_i} \exp \left(\theta(y'_F) + \sum_{j \in N(F) \setminus \{i\}} q_{y'_j \to F}(y'_j) \right)$

R. Urtasun (UofT)

`

Computing marginals

• Partition function can be evaluated at the root

$$\log Z = \log \sum_{y_r} \exp \left(\sum_{F \in M(r)} r_{F \to y_r}(y_r) \right)$$

• Marginal distributions, for each factor

$$\mu_F(y_F) = p(y_F) = \frac{1}{Z} \exp\left(\theta_F(y_F) + \sum_{i \in N(F)} q_{y_i \to F}(y_i)\right)$$

Computing marginals

• Partition function can be evaluated at the root

$$\log Z = \log \sum_{y_r} \exp \left(\sum_{F \in \mathcal{M}(r)} r_{F \to y_r}(y_r) \right)$$

Marginal distributions, for each factor

$$\mu_F(y_F) = p(y_F) = \frac{1}{Z} \exp\left(\theta_F(y_F) + \sum_{i \in N(F)} q_{y_i \to F}(y_i)\right)$$

• Marginals at every node

$$\mu_{y_i}(y_i) = p(y_i) = \frac{1}{Z} \exp\left(\sum_{F \in \mathcal{M}(i)} r_{F \to y_i}(y_i)\right)$$

- It is call loopy belief propagation (Perl, 1988)
- no schedule that removes dependencies
- Different messaging schedules (synchronous/asynchronous, static/dynamic)
- Slight changes in the algorithm

Integer Linear Program (LP) equivalence [Werner 2007]:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} \sum_{r} \theta_{r}(\mathbf{y}_{r})$$
• Variables $b_{r}(\mathbf{y}_{r})$:
$$\begin{bmatrix} b_{1}(0) \\ b_{1}(1) \\ b_{2}(0) \\ b_{2}(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(1,1) \end{bmatrix}^{\top} \begin{bmatrix} \theta_{1}(0) \\ \theta_{1}(1) \\ \theta_{2}(0) \\ \theta_{2}(1) \\ \theta_{12}(0,0) \\ \theta_{12}(1,0) \\ \theta_{12}(1,1) \end{bmatrix} \qquad b_{r}(\mathbf{y}_{r}) \in \{0,1\}$$
s.t.

Integer Linear Program (LP) equivalence [Werner 2007]:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} \sum_{r} \theta_{r}(\mathbf{y}_{r})$$
• Variables $b_{r}(\mathbf{y}_{r})$:

$$\begin{bmatrix} b_{1}(0) \\ b_{1}(1) \\ b_{2}(0) \\ b_{2}(1) \\ b_{12}(1, 0) \\ b_{12}(1, 0) \\ b_{12}(1, 1) \end{bmatrix}^{\top} \begin{bmatrix} \theta_{1}(0) \\ \theta_{1}(1) \\ \theta_{2}(0) \\ \theta_{2}(1) \\ \theta_{12}(0, 0) \\ \theta_{12}(1, 0) \\ \theta_{12}(1, 1) \end{bmatrix}$$
s.t. $b_{r}(\mathbf{y}_{r}) \in \{0, 1\}$
s.t. $\sum_{\mathbf{y}_{r}} b_{r}(\mathbf{y}_{r}) = 1$

Integer Linear Program (LP) equivalence [Werner 2007]:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} \sum_{r} \theta_{r}(\mathbf{y}_{r})$$
• Variables $b_{r}(\mathbf{y}_{r})$:

$$\begin{bmatrix} b_{1}(0) \\ b_{1}(1) \\ b_{2}(0) \\ b_{2}(1) \\ b_{12}(1,0) \\ b_{12}(1,0) \\ b_{12}(1,1) \end{bmatrix}^{\top} \begin{bmatrix} \theta_{1}(0) \\ \theta_{1}(1) \\ \theta_{2}(0) \\ \theta_{2}(1) \\ \theta_{12}(0,0) \\ \theta_{12}(1,0) \\ \theta_{12}(1,0) \\ \theta_{12}(1,1) \end{bmatrix}$$
s.t.
$$\begin{array}{c} b_{r}(\mathbf{y}_{r}) \in \{0,1\} \\ \sum_{\mathbf{y}_{r}} b_{r}(\mathbf{y}_{r}) = 1 \\ \sum_{\mathbf{y}_{p} \setminus \mathbf{y}_{r}} b_{p}(\mathbf{y}_{p}) = b_{r}(\mathbf{y}_{r}) \end{array}$$

Integer Linear Program (LP) equivalence [Werner 2007]:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} \sum_{r} \theta_{r}(\mathbf{y}_{r})$$
• Variables $b_{r}(\mathbf{y}_{r})$:

$$\max_{b_{1},b_{2},b_{12}} \begin{bmatrix} b_{1}(0) \\ b_{1}(1) \\ b_{2}(0) \\ b_{2}(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(1,1) \end{bmatrix}^{\top} \begin{bmatrix} \theta_{1}(0) \\ \theta_{1}(1) \\ \theta_{2}(0) \\ \theta_{2}(1) \\ \theta_{12}(0,0) \\ \theta_{12}(1,0) \\ \theta_{12}(1,0) \\ \theta_{12}(1,1) \end{bmatrix}$$
s.t.
$$b_{r}(\mathbf{y}_{r}) \in \{0,1\}$$
s.t.
$$\sum_{\mathbf{y}_{r}} b_{r}(\mathbf{y}_{r}) = 1$$

$$\sum_{\mathbf{y}_{p} \setminus \mathbf{y}_{r}} b_{p}(\mathbf{y}_{p}) = b_{r}(\mathbf{y}_{r})$$

$$\max_{b_1,b_2,b_{12}} \begin{bmatrix} b_1(1) \\ b_1(2) \\ b_2(1) \\ b_2(2) \\ b_{12}(1,1) \\ b_{12}(2,1) \\ b_{12}(1,2) \\ b_{12}(2,2) \end{bmatrix}^\top \begin{bmatrix} \theta_1(1) \\ \theta_1(2) \\ \theta_2(2) \\ \theta_2(2) \\ \theta_{12}(1,1) \\ \theta_{12}(2,1) \\ \theta_{12}(1,2) \\ \theta_{12}(2,2) \end{bmatrix}$$

s.t. $egin{aligned} & b_r(\mathbf{y}_r) \in \{0,1\} \ & \sum_{y_r} b_r(\mathbf{y}_r) = 1 \ & \sum_{\mathbf{y}_p \setminus \mathbf{y}_r} b_p(\mathbf{y}_p) = b_r(\mathbf{y}_r) \end{aligned}$

$$\max_{b_r} \sum_{r,\mathbf{y}_r} b_r(\mathbf{y}_r) \theta_r(\mathbf{y}_r)$$

s.t. $egin{aligned} & b_r(\mathbf{y}_r) \in \{0,1\} \ & \sum_{y_r} b_r(\mathbf{y}_r) = 1 \ & \sum_{\mathbf{y}_p \setminus \mathbf{y}_r} b_p(\mathbf{y}_p) = b_r(\mathbf{y}_r) \end{aligned}$

 $\max_{b_r} \sum_{r,\mathbf{y}_r} b_r(\mathbf{y}_r)\theta_r(\mathbf{y}_r)$

$$egin{aligned} & b_r(\mathbf{y}_r) \in \{0,1\} \ & \sum_{y_r} b_r(\mathbf{y}_r) = 1 \end{aligned}$$
 s.t.

Marginalization

LP relaxation:

 $\max_{b_r} \sum_{r,\mathbf{y}_r} b_r(\mathbf{y}_r)\theta_r(\mathbf{y}_r)$

 $b_r(\mathbf{y}_r) \in \{0,1\}$ Local probability b_r s.t.

Marginalization

I P relaxation:

br

 $\sum b_r(\mathbf{y}_r)\theta_r(\mathbf{y}_r)$ s.t. max r, \mathbf{y}_r

 $b_r(\mathbf{y}_r) \in \{0,1\}$ Local probability b_r Marginalization

Can be solved by any standard LP solver but **slow** because of typically many variables and constraints. Can we do better?

LP relaxation:

$$\max_{b_r} \sum_{r,\mathbf{y}_r} b_r(\mathbf{y}_r) \theta_r(\mathbf{y}_r) \qquad \text{s.t.}$$

 $\underline{b_r(y_r)} \leftarrow \{0, 1\}$ Local probability b_r Marginalization

Can be solved by any standard LP solver but **slow** because of typically many variables and constraints. Can we do better?

Observation: Graph structure in marginalization constraints.

Use dual to take advantage of structure in constraint set

- Set of parents of region r: P(r)
- Set of children of region r: C(r)

$$orall r, \mathbf{y}_r, p \in P(r)$$
 $\sum_{\mathbf{y}_p \setminus \mathbf{y}_r} b_p(\mathbf{y}_p) = b_r(\mathbf{y}_r)$

• Lagrange multipliers for every constraint:

$$\forall r, \mathbf{y}_r, p \in P(r) \qquad \lambda_{r \to p}(\mathbf{y}_r)$$

Re-parameterization of score $\theta_r(\mathbf{y}_r)$:

$$\hat{\theta}_r(\mathbf{y}_r) = \theta_r(\mathbf{y}_r) + \sum_{p \in P(r)} \lambda_{r \to p}(\mathbf{y}_r) - \sum_{c \in C(r)} \lambda_{c \to r}(\mathbf{y}_c)$$

Properties of dual program:

$$\min_{\lambda} q(\lambda) = \min_{\lambda} \sum_{r} \max_{\mathbf{y}_{r}} \hat{\theta}_{r}(\mathbf{y}_{r})$$

• Dual upper-bounds primal $\forall \lambda$

- Convex problem
- Unconstrained task
- Doing block coordinate descent in the dual results on message passing (Lagrange multipliers are your messages)

Block-coordinate descent solvers iterate the following steps:

- Take a block of Lagrange multipliers
- Optimize sub-problem of dual function w.r.t. this block while keeping all other variables fixed

Advantage: fast due to analytically computable sub-problems

Same type of algorithms also exist to compute approximate marginals

Theorem [Kolmogorov and Zabih, 2004]: If the energy function is a function of binary variables containing only unary and pairwise factors, the discrete energy minimization problem

$$\min_{\mathbf{y}} \sum_{r \in \mathcal{R}} E(\mathbf{y}_r, x)$$

can be formulated as a graph cut problem if an only off all pairwise energies are sub modular

$$E_{i,j}(0,0) + E_{i,j}(1,1) \le E_{i,j}(0,1) + E_{i,j}(1,0)$$

The ST-mincut problem

• The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]

R. Urtasun (UofT)

Back to our energy minimization

Construct a graph such that

- 1 Any st-cut corresponds to an assignment of x
- 2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]

R. Urtasun (UofT)

[Source: P. Kohli]

How are they equivalent?

 $A = \Theta_{ii}(0,0)$ $B = \Theta_{ii}(0,1)$ $C = \Theta_{ii}(1,0)$ $D = \Theta_{ii}(1,1)$

$$\begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \theta_{ij}\left(x_{i},x_{j}\right) \\ \displaystyle + \left(\theta_{ij}(1,0) - \theta_{ij}(0,0)\right) x_{i} + \left(\theta_{ij}(1,0) - \theta_{ij}(0,0)\right) x_{j} \\ \displaystyle + \left(\theta_{ij}(1,0) + \theta_{ij}(0,1) - \theta_{ij}(0,0) - \theta_{ij}(1,1)\right) (1 - x_{i}) x_{j} \end{array}$$

 $B+C-A-D \ge 0$ is true from the submodularity of θ_{ii}

[Source: P. Kohli]

[Source: P. Kohli]

[Source: P. Kohli]

R. Urtasun (UofT)

Structured Prediction

[Source: P. Kohli]

R. Urtasun (UofT)

[Source: P. Kohli]

R. Urtasun (UofT)
Graph Construction

Graph Construction

[Source: P. Kohli]

[Source: P. Kohli]

How to compute the St-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity

[Source: P. Kohli]

Graph *g;

For all pixels p

/* Add a node to the graph */ nodeID(p) = g->add_node();

```
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
```

end

```
for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q));
end
```

```
g->compute_maxflow();
```

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

Example: Figure-Ground Segmentation

Binary labeling problem

(Indep. Prediction)

Example: Figure-Ground Segmentation

Markov Random Field

$$E(\mathbf{y}, \mathbf{x}, \mathbf{w}) = \sum_{i} \log p(y_i | x_i) + w \sum_{(i,j) \in \mathcal{E}} C(x_i, x_j) I(y_i \neq y_j)$$

with $C(x_i, x_j) = \exp(\gamma ||x_i - x_j||^2)$, and $w \ge 0$.

• Why do we need the condition $w \ge 0$?

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

Two general classes of pairwise interactions

• Metric if it satisfies for any set of labels α,β,γ

$$egin{array}{rcl} V(lpha,eta)=0&\leftrightarrow&lpha=eta\ V(lpha,eta)&=&V(eta,lpha)\geq 0\ V(lpha,eta)&\leq&V(lpha,\gamma)+V(\gamma,eta) \end{array}$$

• Semi-metric if it satisfies for any set of labels α, β, γ

$$V(\alpha, \beta) = 0 \quad \leftrightarrow \quad \alpha = \beta$$
$$V(\alpha, \beta) = V(\beta, \alpha) \ge 0$$

Two general classes of pairwise interactions

• Metric if it satisfies for any set of labels α,β,γ

$$egin{array}{rcl} V(lpha,eta)=0&\leftrightarrow&lpha=eta\ V(lpha,eta)&=&V(eta,lpha)\geq 0\ V(lpha,eta)&\leq&V(lpha,\gamma)+V(\gamma,eta) \end{array}$$

• Semi-metric if it satisfies for any set of labels α, β, γ

$$egin{array}{rcl} V(lpha,eta)=0 & \leftrightarrow & lpha=eta \ V(lpha,eta) & = & V(eta,lpha)\geq 0 \end{array}$$

Examples for 1D label set

• Truncated quadratic is a semi-metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|^2)$$

with K a constant.

• Truncated absolute distance is a metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|)$$

with K a constant.

Examples for 1D label set

• Truncated quadratic is a semi-metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|^2)$$

with K a constant.

• Truncated absolute distance is a metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|)$$

with K a constant.

• Potts model is a metric

$$V(\alpha,\beta) = K \cdot T(\alpha \neq \beta)$$

with $T(\cdot) = 1$ if the argument is true and 0 otherwise.

Examples for 1D label set

• Truncated quadratic is a semi-metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|^2)$$

with K a constant.

• Truncated absolute distance is a metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|)$$

with K a constant.

• Potts model is a metric

$$V(\alpha,\beta) = K \cdot T(\alpha \neq \beta)$$

with $T(\cdot) = 1$ if the argument is true and 0 otherwise.

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha Beta Swaps: Checks if a node with class α wants to switch to β .
- Binary problems that can be solve exactly for certain type of potentials

Figure : Alpha-beta Swaps. Figure from [Nowozin et al]

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha Beta Swaps: Checks if a node with class α wants to switch to β .
- Binary problems that can be solve exactly for certain type of potentials

Figure : Alpha-beta Swaps. Figure from [Nowozin et al]

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha Beta Swaps: Checks if a node with class α wants to switch to β .
- Binary problems that can be solve exactly for certain type of potentials

Figure : Alpha-beta Swaps. Figure from [Nowozin et al]

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha Beta Swaps: Checks if a node with class α wants to switch to β .
- Binary problems that can be solve exactly for certain type of potentials

Figure : Alpha-beta Swaps. Figure from [Nowozin et al]

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha Beta Swaps: Checks if a node with class α wants to switch to β .
- Binary problems that can be solve exactly for certain type of potentials

Figure : Alpha-beta Swaps. Figure from [Nowozin et al]

Binary Moves

- $\alpha \beta$ moves works for semi-metrics
- α expansion works for V being a metric

Figure : from P. Kohli tutorial on graph-cuts

• For certain x^1 and x^2 , the move energy is sub-modular

Graph Construction

- The set of vertices includes the two terminals α and β, as well as image pixels p in the sets P_α and P_β (i.e., f_p ∈ {α, β}).
- Each pixel $p \in \mathcal{P}_{\alpha\beta}$ is connected to the terminals α and β , called *t*-links.
- Each set of pixels $p,q\in \mathcal{P}_{lphaeta}$ which are neighbors is connected by an edge $e_{p,q}$

Learning in graphical models

• Estimation of the parameters w

$$E_F(\mathbf{y}_F) = -\mathbf{w}^T \phi_F(\mathbf{y}_F)$$

- Learn the structure of the model
- Learn with hidden variables

- Log-loss learning
- Max margin learning
- One parameter extensions
- Pseudolikelihood
- Perturb and MAP approaches
- Contrastive Divergence
- • •

• We are given a dataset of $\mathcal{S} = \{(\mathbf{x}^i, \mathbf{y}^i), \cdots, (\mathbf{x}^N, \mathbf{y}^N)\}$

 \bullet We also have the task loss that we want to minimize $\Delta:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$

- We are given a dataset of $\mathcal{S} = \{(\mathbf{x}^i, \mathbf{y}^i), \cdots, (\mathbf{x}^N, \mathbf{y}^N)\}$
- \bullet We also have the task loss that we want to minimize $\Delta:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$

• We want to find the weights by solving

 $\min_{\mathbf{w}} \mathbb{E}_{(x,y)\sim \mathcal{D}} \{ \Delta(y, f(x)) \}$

with $f(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$

- We are given a dataset of $\mathcal{S} = \{(\mathbf{x}^i, \mathbf{y}^i), \cdots, (\mathbf{x}^N, \mathbf{y}^N)\}$
- \bullet We also have the task loss that we want to minimize $\Delta:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$
- We want to find the weights by solving

$$\min_{\mathbf{w}} \mathbb{E}_{(x,y)\sim \mathcal{D}} \{ \Delta(y, f(x)) \}$$

with $f(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^T \phi(\mathbf{x}, \mathbf{y})$

• This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{D}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

- We are given a dataset of $\mathcal{S} = \{(\mathbf{x}^i, \mathbf{y}^i), \cdots, (\mathbf{x}^N, \mathbf{y}^N)\}$
- \bullet We also have the task loss that we want to minimize $\Delta:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$
- We want to find the weights by solving

$$\min_{\mathbf{w}} \mathbb{E}_{(x,y)\sim \mathcal{D}} \{ \Delta(y, f(x)) \}$$

with $f(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$

• This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{D}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

• Typical supervised learning algorithms are convex.

- We are given a dataset of $\mathcal{S} = \{(\mathbf{x}^i, \mathbf{y}^i), \cdots, (\mathbf{x}^N, \mathbf{y}^N)\}$
- $\bullet\,$ We also have the task loss that we want to minimize $\Delta:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$
- We want to find the weights by solving

$$\min_{\mathbf{w}} \mathbb{E}_{(x,y)\sim \mathcal{D}} \{ \Delta(y, f(x)) \}$$

with $f(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$

• This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{D}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

- Typical supervised learning algorithms are convex.
- Why is this problem difficult?

- We are given a dataset of $\mathcal{S} = \{(\mathbf{x}^i, \mathbf{y}^i), \cdots, (\mathbf{x}^N, \mathbf{y}^N)\}$
- \bullet We also have the task loss that we want to minimize $\Delta:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$
- We want to find the weights by solving

$$\min_{\mathbf{w}} \mathbb{E}_{(x,y)\sim \mathcal{D}} \{ \Delta(y, f(x)) \}$$

with $f(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$

• This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{D}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

- Typical supervised learning algorithms are convex.
- Why is this problem difficult?
Max-margin Learning

• Regularized Risk Minimization

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_p^p,$$

• In structured SVMs

$$\ell_{hinge}(\mathbf{w}, x, y) = \max_{\hat{y} \in \mathcal{Y}} \left\{ \Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) - \mathbf{w}^{\top} \Phi(x, y) \right\}$$

Max-margin Learning

• Regularized Risk Minimization

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

In structured SVMs

$$\ell_{hinge}(\mathbf{w}, x, y) = \max_{\hat{y} \in \mathcal{Y}} \left\{ \Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) - \mathbf{w}^{\top} \Phi(x, y) \right\}$$

• Optimize the unconstrained problem

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y}) - \mathbf{w}^{\top} \Phi(x,y) \right\} + \frac{c}{p} \|\mathbf{w}\|_{p}^{p},$$

- Convex but non-smooth.
- Use sub gradient methods

Max-margin Learning

• Regularized Risk Minimization

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

In structured SVMs

$$\ell_{hinge}(\mathbf{w}, x, y) = \max_{\hat{y} \in \mathcal{Y}} \left\{ \Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) - \mathbf{w}^{\top} \Phi(x, y) \right\}$$

• Optimize the unconstrained problem

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y}) - \mathbf{w}^{\top} \Phi(x,y) \right\} + \frac{c}{p} \|\mathbf{w}\|_{p}^{p},$$

- Convex but non-smooth.
- Use sub gradient methods

~

Equivalent Formulation

• Optimize the unconstrained problem

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y}) - \mathbf{w}^{\top} \Phi(x,y) \right\} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

• Write as constraints

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \xi_n^2 + \frac{C}{p} \|\mathbf{w}\|_p^p,$$

s.t.
$$\max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y, \hat{y}) + \mathbf{w}^\top \Phi(x, \hat{y}) - \mathbf{w}^\top \Phi(x, y) \right\} \le \xi_n$$

Equivalent Formulation

• Optimize the unconstrained problem

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y}) - \mathbf{w}^{\top} \Phi(x,y) \right\} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

• Write as constraints

$$\min_{\mathbf{w}} \sum_{\substack{(x,y)\in\mathcal{S}\\\hat{y}\in\mathcal{Y}}} \xi_n^2 + \frac{C}{p} \|\mathbf{w}\|_p^p,$$

s.t.
$$\max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^\top \Phi(x,\hat{y}) - \mathbf{w}^\top \Phi(x,y) \right\} \le \xi_n$$

• Or equivalently

 $\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \xi_n^2 + \frac{C}{p} \|\mathbf{w}\|_p^p,$ s.t. $\forall \hat{y} \ \ell(y, \hat{y}) + \mathbf{w}^\top \Phi(x, \hat{y}) - \mathbf{w}^\top \Phi(x, y) \le \xi_n$

Use cutting plane methods as exp. many constraints

R. Urtasun (UofT)

Structured Prediction

Equivalent Formulation

• Optimize the unconstrained problem

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y}) - \mathbf{w}^{\top} \Phi(x,y) \right\} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

• Write as constraints

$$\min_{\mathbf{w}} \sum_{\substack{(x,y)\in\mathcal{S}\\\hat{y}\in\mathcal{Y}}} \xi_n^2 + \frac{C}{p} \|\mathbf{w}\|_p^p,$$

s.t.
$$\max_{\hat{y}\in\mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^\top \Phi(x,\hat{y}) - \mathbf{w}^\top \Phi(x,y) \right\} \le \xi_n$$

• Or equivalently

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \xi_n^2 + \frac{C}{p} \|\mathbf{w}\|_p^p,$$

s.t. $\forall \hat{y} \ \ell(y, \hat{y}) + \mathbf{w}^\top \Phi(x, \hat{y}) - \mathbf{w}^\top \Phi(x, y) \leq \xi_n$

• Use cutting plane methods as exp. many constraints

R. Urtasun (UofT)

Structured Prediction

Log-loss Learning

• Regularized Risk Minimization

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

• CRF loss: The conditional distribution is

$$p_{x,y}(\hat{y}; \mathbf{w}) = \frac{1}{Z(x, y)} \exp\left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y})\right)$$
$$Z(x, y) = \sum_{\hat{y} \in \mathcal{Y}} \exp\left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y})\right)$$

where $\Delta(y, \hat{y})$ is a prior distribution and Z(x, y) the partition function, and

$$\ell_{log}(\mathbf{w}, x, y) = \ln \frac{1}{p_{x,y}(y; \mathbf{w})}.$$

Log-loss Learning

• Regularized Risk Minimization

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \ell(\mathbf{w}, x, y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

• CRF loss: The conditional distribution is

$$p_{x,y}(\hat{y}; \mathbf{w}) = \frac{1}{Z(x, y)} \exp \left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) \right)$$
$$Z(x, y) = \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) \right)$$

where $\Delta(y, \hat{y})$ is a prior distribution and Z(x, y) the partition function, and

$$\ell_{log}(\mathbf{w}, x, y) = \ln \frac{1}{p_{x,y}(y; \mathbf{w})}.$$

- Convex problem
- Problem: to do gradient descent I need to compute Z

Log-loss Learning

• Regularized Risk Minimization

$$\min_{\mathbf{w}} \sum_{(x,y)\in\mathcal{S}} \ell(\mathbf{w},x,y) + \frac{C}{p} \|\mathbf{w}\|_{p}^{p},$$

• CRF loss: The conditional distribution is

$$p_{x,y}(\hat{y}; \mathbf{w}) = \frac{1}{Z(x, y)} \exp \left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) \right)$$
$$Z(x, y) = \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) \right)$$

where $\Delta(y, \hat{y})$ is a prior distribution and Z(x, y) the partition function, and

$$\ell_{log}(\mathbf{w}, x, y) = \ln \frac{1}{p_{x,y}(y; \mathbf{w})}$$

- Convex problem
- Problem: to do gradient descent I need to compute Z

R. Urtasun (UofT)

• The CRF program is

(CRF)
$$\min_{\mathbf{w}} \left\{ \sum_{(x,y)\in S} \ln Z(x,y) - \mathbf{d}^{\top}\mathbf{w} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p} \right\},$$

where $(x, y) \in S$ ranges over training pairs and $\mathbf{d} = \sum_{(x,y)\in S} \Phi(x, y)$ is the vector of empirical means, and

$$Z(x,y) = \sum_{\hat{y} \in \mathcal{Y}} \exp\left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y})\right)$$

In structured SVMs

(structured SVM)
$$\min_{\mathbf{w}} \left\{ \sum_{(x,y)\in \mathcal{S}} \max_{\hat{y}\in \mathcal{Y}} \left\{ \Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y}) \right\} - \mathbf{d}^{\top} \mathbf{w} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p} \right\},$$

• The CRF program is

(CRF)
$$\min_{\mathbf{w}} \left\{ \sum_{(x,y)\in S} \ln Z(x,y) - \mathbf{d}^{\top}\mathbf{w} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p} \right\},$$

where $(x, y) \in S$ ranges over training pairs and $\mathbf{d} = \sum_{(x,y)\in S} \Phi(x, y)$ is the vector of empirical means, and

$$Z(x,y) = \sum_{\hat{y} \in \mathcal{Y}} \exp\left(\Delta(y, \hat{y}) + \mathbf{w}^{\top} \Phi(x, \hat{y})\right)$$

In structured SVMs

(structured SVM)
$$\min_{\mathbf{w}} \left\{ \sum_{(x,y)\in \mathcal{S}} \max_{\hat{y}\in \mathcal{Y}} \left\{ \Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y}) \right\} - \mathbf{d}^{\top} \mathbf{w} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p} \right\},$$

A family of structure prediction problems

• One parameter extension of CRFs and structured SVMs [Hazan & Urtasun, NIPS 2010]

$$\min_{\mathbf{w}} \left\{ \sum_{(x,y)\in\mathcal{S}} \ln Z_{\epsilon}(x,y) - \mathbf{d}^{\top}\mathbf{w} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p} \right\},\$$

 \boldsymbol{d} is the empirical means, and

$$\ln Z_{\epsilon}(x,y) = \epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp\left(\frac{\Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y})}{\epsilon}\right)$$

• CRF if $\epsilon = 1$, Structured SVM if $\epsilon = 0$ respectively.

• One can devise a single algorithm to solve both problems

A family of structure prediction problems

• One parameter extension of CRFs and structured SVMs [Hazan & Urtasun, NIPS 2010]

$$\min_{\mathbf{w}} \left\{ \sum_{(x,y)\in\mathcal{S}} \ln Z_{\epsilon}(x,y) - \mathbf{d}^{\top}\mathbf{w} + \frac{C}{p} \|\mathbf{w}\|_{p}^{p} \right\},\$$

 \boldsymbol{d} is the empirical means, and

$$\ln Z_{\epsilon}(x,y) = \epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp\left(\frac{\Delta(y,\hat{y}) + \mathbf{w}^{\top} \Phi(x,\hat{y})}{\epsilon}\right)$$

- CRF if $\epsilon = 1$, Structured SVM if $\epsilon = 0$ respectively.
- One can devise a single algorithm to solve both problems

Structure Prediction for Scene Understanding II

Raquel Urtasun

University of Toronto

June 20, 2014

Structured Prediction in Practice

• What are my random variables?

• How are they related? i.e., graph

- What are my random variables?
- How are they related? i.e., graph

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$E(y_1,\cdots,y_n,\mathbf{x})=\sum_{r\in\mathcal{R}}\mathbf{w}_r^{\mathsf{T}}\phi_r(\mathbf{y}_r,\mathbf{x})$$

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$E(y_1,\cdots,y_n,\mathbf{x}) = \sum_{r\in\mathcal{R}} \mathbf{w}_r^T \phi_r(\mathbf{y}_r,\mathbf{x})$$

• Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{y}, \mathbf{x}))$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$E(y_1,\cdots,y_n,\mathbf{x}) = \sum_{r\in\mathcal{R}} \mathbf{w}_r^T \phi_r(\mathbf{y}_r,\mathbf{x})$$

• Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{y}, \mathbf{x}))$$

• How can I do inference? Why is this complicated?

$$\min_{y_1,\cdots,y_n} E(y_1,\cdots,y_n)$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$E(y_1, \cdots, y_n, \mathbf{x}) = \sum_{r \in \mathcal{R}} \mathbf{w}_r^T \phi_r(\mathbf{y}_r, \mathbf{x})$$

• Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{y}, \mathbf{x}))$$

• How can I do inference? Why is this complicated?

$$\min_{y_1,\cdots,y_n} E(y_1,\cdots,y_n)$$

• If you know how to do inference you will know how to do learning! Where does the complication come from?

R. Urtasun (UofT)

- $\bullet\,$ Why to worry about math if I can hack up something quickly? $\to\,$ there is still room for hackers!
- It allows you to abstract and encode models to solve your problems

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!
- Good learning algorithms exist as well

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!
- Good learning algorithms exist as well

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?
- Can I learn everything from unlabeled data? How deep are you?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?
- Can I learn everything from unlabeled data? How deep are you?

First task: 3D indoor scene understanding
3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)
- What prior knowledge would you like to encode?

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)
- What prior knowledge would you like to encode?

• Isn't this a segmentation task where each pixel can be labeled as a wall?

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$y_i \in \{1, \cdots, 5\}$$

the label the super pixel is associated with

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$y_i \in \{1, \cdots, 5\}$$

the label the super pixel is associated with

Define the energy as

$$E(y_1,\cdots,y_n,\mathbf{x})=\sum_{r\in\mathcal{R}}\mathbf{w}_r^T\phi_r(\mathbf{y}_r,\mathbf{x})$$

• What are the $\phi_r(\mathbf{y}_r, \mathbf{x})$?

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$y_i \in \{1, \cdots, 5\}$$

the label the super pixel is associated with

Define the energy as

$$E(y_1,\cdots,y_n,\mathbf{x})=\sum_{r\in\mathcal{R}}\mathbf{w}_r^T\phi_r(\mathbf{y}_r,\mathbf{x})$$

• What are the $\phi_r(\mathbf{y}_r, \mathbf{x})$?

• Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_i(\mathbf{x}, y_i)$?

What are my pairwise potentials \(\phi_{ij}(\mathbf{x}, y_i, y_j)\)?

• Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_i(\mathbf{x}, y_i)$?

- What are my pairwise potentials $\phi_{ij}(\mathbf{x}, y_i, y_j)$?
- What's the problem with smoothness potentials?

• Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_i(\mathbf{x}, y_i)$?

- What are my pairwise potentials $\phi_{ij}(\mathbf{x}, y_i, y_j)$?
- What's the problem with smoothness potentials?
- Are we missing something? What extra knowledge do we have?

• Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_i(\mathbf{x}, y_i)$?

- What are my pairwise potentials $\phi_{ij}(\mathbf{x}, y_i, y_j)$?
- What's the problem with smoothness potentials?
- Are we missing something? What extra knowledge do we have?

• Labels are not appearing at random in the image

• We can encode that the world is Manhattan by expressing **ordering** constraints

- We can encode that the world is Manhattan by expressing **ordering** constraints
- What would that be?

- We can encode that the world is Manhattan by expressing **ordering** constraints
- What would that be?
- What's the order of the potentials?

- We can encode that the world is Manhattan by expressing **ordering** constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?

- We can encode that the world is Manhattan by expressing **ordering** constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?
- Which algorithm will you use? would it take a long time? would it be optimal?

- We can encode that the world is Manhattan by expressing **ordering** constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?
- Which algorithm will you use? would it take a long time? would it be optimal?

• Let's assume that I can compute vanishing points

• How should I express the problem? how many degrees of freedom do I have?

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables y_i ∈ 𝔅, i ∈ {1, ..., 4} [Lee et al. 09]

• What have I lost with respect to before?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables y_i ∈ 𝔅, i ∈ {1, ..., 4} [Lee et al. 09]

- What have I lost with respect to before?
- What have I won?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables y_i ∈ 𝔅, i ∈ {1, ..., 4} [Lee et al. 09]

- What have I lost with respect to before?
- What have I won?

• Let's define the energy. Which potentials will you use?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

Energy of the problem

• Let's define the energy. Which potentials will you use?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

Let's start with the geometric features

original image

orientation map

geometric context

• We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc

Energy of the problem

• Let's define the energy. Which potentials will you use?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

• Let's start with the geometric features

original image

orientation map

geometric context

- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc
- We will also like to minimize the other colors in those walls, e.g., all but yellow in left wall

R. Urtasun (UofT)

Energy of the problem

• Let's define the energy. Which potentials will you use?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

Let's start with the geometric features

original image

orientation map

geometric context

- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc
- We will also like to minimize the other colors in those walls, e.g., all but yellow in left wall

R. Urtasun (UofT)

original image

orientation map

geometric context

• How do I express this in my potentials?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

• How many y_i's do I need to define them?

original image

orientation map

geometric context

• How do I express this in my potentials?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

- How many y_i's do I need to define them?
- Do I need other potentials?

original image

orientation map

geometric context

• How do I express this in my potentials?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

- How many y_i's do I need to define them?
- Do I need other potentials?

• Why did I need more potentials than just geometric features before?

original image

orientation map

geometric context

• How do I express this in my potentials?

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,x)$$

- How many y_i's do I need to define them?
- Do I need other potentials?
- Why did I need more potentials than just geometric features before?

• Is inference easy in this model? Why?

• What can we do?

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces
- Let's first take a detour
- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces
- Let's first take a detour

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3	3	5	12	14	17
1	5	1	3	4	4	11	19	24	31
5	1	3	5	1	9	17	28	38	46
4	3	2	1	6	13	24	37	48	62
2	4	1	4	8	15	30	44	59	81

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

• Then compute the sum on the rectangle by accessing 4 numbers $S([i_0, i_1] \times [j_0, j_1]) = s(i_1, j_1) - s(i_1, j_0 - 1) - s(i_0 - 1, j_1) + s(i_0 - 1, j_0 - 1)$

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3	3	5	12	14	17
1	5	1	3	4	4	11	19	24	31
5	1	3	5	1	9	17	28	38	46
4	3	2	1	6	13	24	37	48	62
2	4	1	4	8	15	30	44	59	81

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

- Then compute the sum on the rectangle by accessing 4 numbers $S([i_0, i_1] \times [j_0, j_1]) = s(i_1, j_1) - s(i_1, j_0 - 1) - s(i_0 - 1, j_1) + s(i_0 - 1, j_0 - 1)$
- Can we do something similar in our case?

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3	3	5	12	14	17
1	5	1	3	4	4	11	19	24	31
5	1	3	5	1	9	17	28	38	46
4	3	2	1	6	13	24	37	48	62
2	4	1	4	8	15	30	44	59	81

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

- Then compute the sum on the rectangle by accessing 4 numbers $S([i_0, i_1] \times [j_0, j_1]) = s(i_1, j_1) - s(i_1, j_0 - 1) - s(i_0 - 1, j_1) + s(i_0 - 1, j_0 - 1)$
- Can we do something similar in our case?

R. Urtasun (UofT)

Generalization to 3D

- Faces are generalizations of rectangles
- We need to extend the concept of integral images to 3D
- This is called integral geometry [Schwing et al. 12a]
- How does this work?

$$\phi_{\{\textit{left}_w\}}(y_i, y_j, y_k, \mathbf{x}) = H_1(y_i, y_j, \mathbf{x}) - H_2(y_j, y_k, \mathbf{x})$$

Generalization to 3D

- Faces are generalizations of rectangles
- We need to extend the concept of integral images to 3D
- This is called integral geometry [Schwing et al. 12a]
- How does this work?

 $\phi_{\{\text{floor}\}}(y_i, y_j, y_k, \mathbf{x}) = H_1(y_i, y_j, \mathbf{x}) - H_2(y_j, y_k, \mathbf{x})$

What are the implications?

• We can now write the problem in terms of potentials of order at most 2

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T(\mathbf{y}_r,\mathbf{x})$$

and r only contains sets of 2 random variables

• Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T(\mathbf{y}_r,\mathbf{x})$$

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T(\mathbf{y}_r,\mathbf{x})$$

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this *r* share the same weights, as they come from the integral geometry.

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T(\mathbf{y}_r,\mathbf{x})$$

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this *r* share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T(\mathbf{y}_r,\mathbf{x})$$

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this *r* share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem
- This speed ups the message passing inference by a few orders of magnitude

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T(\mathbf{y}_r,\mathbf{x})$$

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this *r* share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem
- This speed ups the message passing inference by a few orders of magnitude

• Can we compute the optimal solution?

• The graph of the previous problem loops

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?
- Let's look at branch and bound

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?
- Let's look at branch and bound

Algorithm 1 branch and bound (BB) inference put pair $(\bar{f}(\mathcal{Y}), \mathcal{Y})$ into queue and set $\hat{\mathcal{Y}} = \mathcal{Y}$ repeat split $\hat{\mathcal{Y}} = \hat{\mathcal{Y}}_1 \times \hat{\mathcal{Y}}_2$ with $\hat{\mathcal{Y}}_1 \cap \hat{\mathcal{Y}}_2 = \emptyset$ put pair $(\bar{f}(\hat{\mathcal{Y}}_1), \hat{\mathcal{Y}}_1)$ into queue put pair $(\bar{f}(\hat{\mathcal{Y}}_2), \hat{\mathcal{Y}}_2)$ into queue retrieve $\hat{\mathcal{Y}}$ having highest score until $|\hat{\mathcal{Y}}| = 1$

We have to define:

- A parameterization that defines sets of hypothesis.
- **2** A scoring function *f*
- **③** Tight bounds on the scoring function that can be computed very efficiently

Parameterization of the Problem

- Layout with 4 variables $y_i \in \mathcal{Y}$, $i \in \{1, ..., 4\}$ [Lee et al. 09]
- How do we define \mathcal{Y} ?
- Is this problem continuous or discrete?

• We parameterize the sets by intervals of minimum and maximum angles

 $\{[y_1^{min}, y_1^{max}], \cdots, [y_4^{min}, y_4^{max}]\}$

- Why intervals?
- We have defined already the scoring function. What about the bounds?

Derive bounds \bar{f} for the original scoring function $\mathbf{w}^T \phi(\mathbf{y}, \mathbf{x})$ that satisfy:

• The bound of the interval $\hat{\mathcal{Y}}$ has to upper-bound the true cost of each hypothesis $y \in \hat{\mathcal{Y}}$,

$$\forall y \in \hat{\mathcal{Y}}, \ \overline{f}(\hat{\mathcal{Y}}) \geq \mathbf{w}^T \phi(\mathbf{y}, \mathbf{x}).$$

In the bound has to be exact for every single hypothesis,

$$\forall y \in \mathcal{Y}, \ \overline{f}(y) = \mathbf{w}^T \phi(\mathbf{y}, \mathbf{x}).$$

Can we define this for our problem?

Intuitions from 2D

Let's look at the 2D case again

- We want to compute the bounding box that maximizes a scoring function
- Let's try to do this with branch and bound
- We define an interval as the max and min of the x and y axis of the rectangle

• The scoring function sums features in the rectangle defined by the BBox

$$E(y_1,\cdots,y_4)=\sum_{i\in BBox(\mathbf{y})}f_i(\mathbf{x})$$

Intuitions from 2D

Let's look at the 2D case again

- We want to compute the bounding box that maximizes a scoring function
- Let's try to do this with branch and bound
- We define an interval as the max and min of the x and y axis of the rectangle

• The scoring function sums features in the rectangle defined by the BBox

$$E(y_1, \cdots, y_4) = \sum_{i \in BBox(\mathbf{y})} f_i(\mathbf{x})$$

• The scoring function sums features in the rectangle defined by the BBox

$$E(y_1, \cdots, y_4) = \sum_{i \in BBox(\mathbf{y})} f_i(\mathbf{x})$$

• Some features are positive and some are negative

• The scoring function sums features in the rectangle defined by the BBox

$$E(y_1, \cdots, y_4) = \sum_{i \in BBox(\mathbf{y})} f_i(\mathbf{x})$$

- Some features are positive and some are negative
- Trick: Divide the space into negative and positive features

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

• The scoring function sums features in the rectangle defined by the BBox

$$E(y_1, \cdots, y_4) = \sum_{i \in BBox(\mathbf{y})} f_i(\mathbf{x})$$

- Some features are positive and some are negative
- Trick: Divide the space into negative and positive features

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

$$bound(E(\bar{\mathcal{Y}})) = \bar{f}^+(\bar{\mathcal{Y}}, \mathbf{x}) + \bar{f}^-(\bar{\mathcal{Y}}, \mathbf{x})$$

• The scoring function sums features in the rectangle defined by the BBox

$$E(y_1, \cdots, y_4) = \sum_{i \in BBox(\mathbf{y})} f_i(\mathbf{x})$$

- Some features are positive and some are negative
- Trick: Divide the space into negative and positive features

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

$$bound(E(\bar{\mathcal{Y}})) = \bar{f}^+(\bar{\mathcal{Y}}, \mathbf{x}) + \bar{f}^-(\bar{\mathcal{Y}}, \mathbf{x})$$

Bounding the functions

• Energy was defined as

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

• Bound the positive and negative independently

$$bound(E(\bar{\mathcal{Y}})) = \bar{f}^+(\bar{\mathcal{Y}}, \mathbf{x}) + \bar{f}^-(\bar{\mathcal{Y}}, \mathbf{x})$$

• These bounds are very simple? What are they?

Bounding the functions

• Energy was defined as

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

$$bound(E(\bar{\mathcal{Y}})) = \bar{f}^+(\bar{\mathcal{Y}}, \mathbf{x}) + \bar{f}^-(\bar{\mathcal{Y}}, \mathbf{x})$$

- These bounds are very simple? What are they?
- How can we compute them very fast?

• Energy was defined as

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

$$bound(E(\bar{\mathcal{Y}})) = \bar{f}^+(\bar{\mathcal{Y}}, \mathbf{x}) + \bar{f}^-(\bar{\mathcal{Y}}, \mathbf{x})$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?

• Energy was defined as

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

$$bound(E(\bar{\mathcal{Y}})) = \bar{f}^+(\bar{\mathcal{Y}}, \mathbf{x}) + \bar{f}^-(\bar{\mathcal{Y}}, \mathbf{x})$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?
- How many integral images do we need?

• Energy was defined as

$$E(y_1, \cdots, y_4) = \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^+(\mathbf{x})}_{f^+(\mathbf{y}, \mathbf{x})} + \underbrace{\sum_{i \in BBox(\mathbf{y})} f_i^-(\mathbf{x})}_{f^-(\mathbf{y}, \mathbf{x})}$$

$$bound(E(\bar{\mathcal{Y}})) = \bar{f}^+(\bar{\mathcal{Y}}, \mathbf{x}) + \bar{f}^-(\bar{\mathcal{Y}}, \mathbf{x})$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?
- How many integral images do we need?

Algorithm for 2D BBox [Lampert et al. 06]

• How do we split?

• When do we terminate?

3D layout estimation

• Let's go back to our problem

- We parameterize the sets by **intervals** of minimum and maximum angles $\{[y_1^{min}, y_1^{max}], \cdots, [y_4^{min}, y_4^{max}]\}$
- The scoring function sums features over the faces

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,\mathbf{x})=\sum_\alpha f_\alpha(\mathbf{y},\mathbf{x})$$

with $\alpha = \{ \textit{floor}, \textit{left_w}, \textit{right_w}, \textit{ceiling}, \textit{front_w} \}$

What about the bounds?

R. Urtasun (UofT)

Bounds for 3D layout

• The scoring function sums features over the faces

$$E(y_1,\cdots,y_4)=\sum_r \mathbf{w}_r^T \phi(\mathbf{y}_r,\mathbf{x})=\sum_\alpha f_\alpha(\mathbf{y},\mathbf{x})$$

with $\alpha = \{ floor, left_w, right_w, ceiling, front_w \}$

- Let's bound each "face" α separately
- Recall where the features come from

original image

orientation map

geometric context

 Some features are positive, some are negative. Why? How do I know which ones are positive/negative?

Deriving bounds

• Inference can be then done by

$$E(y_1,\cdots,y_4)=\sum_{\alpha}f_{\alpha}^+(x,y)+f_{\alpha}^-(x,y),$$

• We can bound each of this terms separately

$$bound(E(\hat{\mathcal{Y}}, \mathbf{x})) = \sum_{\alpha \in \mathcal{F}} \bar{f}_{\alpha}^{+}(\hat{\mathcal{Y}}, \mathbf{x}) + \bar{f}_{\alpha}^{-}(\hat{\mathcal{Y}}, \mathbf{x})$$

 We construct bounds by computing the max positive and min negative contribution of the score within the set ŷ for each face α ∈ F.

$$\bar{f}_{front-wall}(\hat{\mathcal{Y}}) = f^+_{front-wall}(x, y_{up}) + f^-_{front-wall}(x, y_{low}),$$

• What's the complexity?

- What's the complexity?
- How many evaluations?

- What's the complexity?
- How many evaluations?

Results

[A. Schwing and R. Urtasun, ECCV12]

	OM	GC	OM + GC	Other	Time
[Hoiem07]	-	28.9	-	-	-
[Hedau09] (a)	-	26.5	-	-	-
[Hedau09] (b)	-	21.2	-	-	10-30 min
[Wang10]	22.2	-	-	-	
[Lee10]	24.7	22.7	18.6	-	-
[delPero11]	-	-	-	16.3	12 min
Ours	18.6	15.4	13.6	-	0.007s

Table : Pixel classification error in the layout dataset of [Hedau et al. 09].

Table : Pixel classification error in the bedroom data set [Hedau et al. 10].

	[delPero11]	[Hoiem07]	[Hedau09](a)	Ours
w/o box	29.59	23.04	22.94	16.46

- Takes on average 0.007s for exact solution over 50⁴ possibilities !
- It's 6 orders of magnitude faster than the state-of-the-art!

Qualitative Results

Conclusion

Conclusion:

- We have studied structured prediction including learning and inference
- We have investigated how to think to solve a real-world problem

Relations to previous two talks:

- RBMs are graphical models
- Your potentials $\phi_r(y_r)$ can be "deep"

Open questions:

- Latent variable models: non-convex learning
- Learn the structure of the graph
- Go beyond log-linear models
- MAP inference: high order potentials
- Continuos Markov random fields

If you are interested in doing research at University of Toronto, talk to me!