Structured Prediction for Scene Understanding I

Raquel Urtasun
University of Toronto
June 20, 2014

Goal of this lecture

- Understand what structured prediction is
- Learn how to formulate a problem to be successful in practice

Contents

- Introduction to Structure prediction
- Inference
- Learning
- A practical example

What is structured prediction?

Structured Prediction

- In "typical" machine learning

$$
f: \mathcal{X} \rightarrow \Re
$$

the input \mathcal{X} can be anything, and the output is a real number (e.g., classification, regression)

- In Structured Prediction

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

the input \mathcal{X} can be anything, and the output is a complex object (e.g., image segmentation, parse tree)

Structured Prediction

- In "typical" machine learning

$$
f: \mathcal{X} \rightarrow \Re
$$

the input \mathcal{X} can be anything, and the output is a real number (e.g., classification, regression)

- In Structured Prediction

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

the input \mathcal{X} can be anything, and the output is a complex object (e.g., image segmentation, parse tree)

- In this lecture \mathcal{Y} is a discrete space, ask me later if you are interested in continuous variables.

Structured Prediction

- In "typical" machine learning

$$
f: \mathcal{X} \rightarrow \Re
$$

the input \mathcal{X} can be anything, and the output is a real number (e.g., classification, regression)

- In Structured Prediction

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

the input \mathcal{X} can be anything, and the output is a complex object (e.g., image segmentation, parse tree)

- In this lecture \mathcal{Y} is a discrete space, ask me later if you are interested in continuous variables.

Structured Prediction and its Applications

We want to predict multiple random variables which are related

- Computer Vision:
- Semantic Segmentation (output: pixel-wise labeling)
- Object detection (output: 2D or 3D bounding boxes)
- Stereo Reconstruction (output: 3D map)
- Scene Understanding (output: 3D bounding box reprinting the layout)

Structured Prediction and its Applications

We want to predict multiple random variables which are related

- Natural Language processing
- Machine Translation (output: sentence in another language)
- Parsing (output: parse tree)

- Computational Biology
- Protein Folding (output: 3D protein)

Why structured?

- Independent prediction is good but...

- Neighboring pixels should have same labels (if they look similar).

Why structured?

- Independent prediction is good but...

- Neighboring pixels should have same labels (if they look similar).

Graphical Model

A graphical model defines

- A family of probability distributions over a set of random variables
- This is expressed via a graph, which encodes the conditional independences of the distribution

- Two types of graphical models: Directed and undirected

Bayesian Networks

- The graph $G=(V, \mathcal{E})$ is acyclic and directed
- Factorization over distributions by conditioning on parent nodes

$$
p(\mathbf{y})=\prod_{i \in V} p\left(y_{i} \mid y_{p a}(i)\right)
$$

- Example

$$
p(\mathbf{y})=p\left(y_{l} \mid y_{k}\right) p\left(y_{k} \mid y_{i}, y_{j}\right) p\left(y_{i}\right) p\left(y_{j}\right)
$$

Undirected Graphical Model

- Also called Markov Random Field, or Markov Network
- Graph $G=(V, \mathcal{E})$ is undirected and has no self-edges
- Factorization over cliques

$$
p(\mathbf{y})=\frac{1}{Z} \prod_{r \in \mathbb{R}} \psi_{r}\left(\mathbf{y}_{r}\right)
$$

with $Z=\sum_{\mathbf{y} \in \mathcal{Y}} \prod_{r \in \mathbb{R}} \psi_{r}\left(\mathbf{y}_{r}\right)$ the partition function

- Example

$$
\begin{aligned}
& Y_{i}(\mathbf{y})=\frac{1}{Z} \psi\left(y_{i}, y_{j}\right) \psi\left(y_{j}, y_{k}\right) \psi\left(y_{i}\right) \psi\left(y_{j}\right) \psi\left(y_{k}\right)
\end{aligned}
$$

- Difficulty: Exponentially many configurations
- Undirected models will be the focus of this lecture

Factor Graph Representation

- Graph $G=(V, \mathcal{F}, \mathcal{E})$, with variable nodes \mathcal{V}, factor nodes \mathcal{F} and edges \mathcal{E}
- Scope of a factor $N(F)=\{i \in V:(i, F) \in \mathcal{E}\}$
- Factorization over factors

$$
p(\mathbf{y})=\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(\mathbf{y}_{N(F)}\right)
$$

Factor Graph vs Graphical Model

- Factor graphs are explicit about the factorization

Figure : from [Nowozin et al]

Capacity

- They define the family of distributions and thus the capacity

Figure: from [Nowozin et al]

Markov Random Fields vs Conditional Random Fields

- Markov Random Fields (MRFs) define

$$
p(\mathbf{y})=\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(\mathbf{y}_{N(F)}\right)
$$

- Conditional Random Fields (CRFs) define

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z(\mathbf{x})} \prod_{F \in \mathcal{F}} \psi_{F}\left(\mathbf{y}_{N(F)} ; \mathbf{x}\right)
$$

- \mathbf{x} is not a random variable (i.e., not part of the probability distribution)

Energy vs Probabilities

- The probability is completely determined by the energy

$$
\begin{aligned}
p(\mathbf{y}) & =\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(\mathbf{y}_{N(F)}\right) \\
& =\frac{1}{Z} \exp \left(\log \left(\psi_{F}\left(\mathbf{y}_{N(F)}\right)\right)\right) \\
& =\frac{1}{Z} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right)\right)
\end{aligned}
$$

where $E_{F}\left(y_{F}\right)=-\log \left(\psi_{F}\left(\mathbf{y}_{N(F)}\right)\right)$

Parameterization: log linear model

- Factor graphs define a family of distributions
- We are interestested in identifying individual members by parameters

$$
E_{F}\left(\mathbf{y}_{F}\right)=-\mathbf{w}^{T} \phi_{F}\left(\mathbf{y}_{F}\right)
$$

Figure: from [Nowozin et al]

Learning Tasks

- Estimation of the parameters w

$$
E_{F}\left(\mathbf{y}_{F}\right)=-\mathbf{w}^{T} \phi_{F}\left(\mathbf{y}_{F}\right)
$$

- Learn the structure of the model
- Learn with hidden variables

Inference Tasks

Given an input $x \in \mathcal{X}$ we want to compute

- MAP estimate or minimum energy configuration

$$
\begin{aligned}
\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y} \mid \mathbf{x}) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(\mathbf{y}_{N(F)} ; \mathbf{x}, \mathbf{w}\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(\mathbf{y}_{F}, \mathbf{x}, \mathbf{w}\right)\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{F \in \mathcal{F}} E_{F}\left(\mathbf{y}_{F}, \mathbf{x}, \mathbf{w}\right)
\end{aligned}
$$

- Marginals $p\left(y_{i}\right)$ or max marginals $\max _{y_{i} \in \mathcal{Y}_{i}} p\left(y_{i}\right)$, which requires computing the partition function Z, i.e.,

$$
\begin{aligned}
\log (Z(\mathbf{x}, \mathbf{w})) & =\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp (-E(\mathbf{y} ; \mathbf{x}, \mathbf{w})) \\
\mu_{F}\left(\mathbf{y}_{F}\right) & =p\left(\mathbf{y}_{F} \mid \mathbf{x}, \mathbf{w}\right)
\end{aligned}
$$

Inference Tasks

Given an input $x \in \mathcal{X}$ we want to compute

- MAP estimate or minimum energy configuration

$$
\begin{aligned}
\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y} \mid \mathbf{x}) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(\mathbf{y}_{N(F)} ; \mathbf{x}, \mathbf{w}\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}(\mathbf{y} F, \mathbf{x}, \mathbf{w})\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{F \in \mathcal{F}} E_{F}\left(\mathbf{y}_{F}, \mathbf{x}, \mathbf{w}\right)
\end{aligned}
$$

- Marginals $p\left(y_{i}\right)$ or max marginals $\max _{y_{i} \in \mathcal{Y}_{i}} p\left(y_{i}\right)$, which requires computing the partition function Z, i.e.,

$$
\begin{aligned}
\log (Z(\mathbf{x}, \mathbf{w})) & =\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp (-E(\mathbf{y} ; \mathbf{x}, \mathbf{w})) \\
\mu_{F}\left(\mathbf{y}_{F}\right) & =p\left(\mathbf{y}_{F} \mid \mathbf{x}, \mathbf{w}\right)
\end{aligned}
$$

Inference in Markov Random Fields

MAP Inference

Compute the MAP estimate is typically NP-hard

$$
\max _{y \in \mathcal{Y}} p(\mathbf{y} \mid x)=\max _{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{\top} \phi_{r}\left(\mathbf{y}_{r}\right)
$$

Notable exceptions are:

- Belief propagation for tree-structure models

MAP Inference

Compute the MAP estimate is typically NP-hard

$$
\max _{y \in \mathcal{Y}} p(\mathbf{y} \mid x)=\max _{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{\top} \phi_{r}\left(\mathbf{y}_{r}\right)
$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials

MAP Inference

Compute the MAP estimate is typically NP-hard

$$
\max _{y \in \mathcal{Y}} p(\mathbf{y} \mid x)=\max _{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{\top} \phi_{r}\left(\mathbf{y}_{r}\right)
$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

MAP Inference

Compute the MAP estimate is typically NP-hard

$$
\max _{y \in \mathcal{Y}} p(\mathbf{y} \mid x)=\max _{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{\top} \phi_{r}\left(\mathbf{y}_{r}\right)
$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

Difficulties

- Deal with the exponentially many states in \mathbf{y}

MAP Inference

Compute the MAP estimate is typically NP-hard

$$
\max _{y \in \mathcal{Y}} p(\mathbf{y} \mid x)=\max _{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{\top} \phi_{r}\left(\mathbf{y}_{r}\right)
$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

Difficulties

- Deal with the exponentially many states in \mathbf{y}

We are going to see examples of the three techniques

MAP Inference

Compute the MAP estimate is typically NP-hard

$$
\max _{y \in \mathcal{Y}} p(\mathbf{y} \mid x)=\max _{y \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \mathbf{w}^{\top} \phi_{r}\left(\mathbf{y}_{r}\right)
$$

Notable exceptions are:

- Belief propagation for tree-structure models
- Graph cuts for binary energies with sub modular potentials
- Branch and bound: exponential in worst case, but works much faster in practice

Difficulties

- Deal with the exponentially many states in y

We are going to see examples of the three techniques

Belief Propagation

- Compact notation

$$
\theta_{r}\left(\mathbf{y}_{r}\right)=\mathbf{w}^{\top} \phi_{r}\left(\mathbf{y}_{r}\right)
$$

- Inference can be written as

$$
\max _{\mathbf{y} \in \mathcal{Y}} \sum_{r \in \mathcal{R}} \theta_{r}\left(\mathbf{y}_{r}\right)
$$

- For the example

$$
\max _{y_{i}, y_{j}, y_{k}, y_{l}}\left\{\theta_{F}\left(y_{i}, y_{j}\right)+\theta_{G}\left(y_{j}, y_{k}\right)+\theta_{G}\left(y_{k}, y_{l}\right)\right\}
$$

Belief Propagation

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{j}, y_{k}, y_{l}}\left\{\theta_{F}\left(y_{i}, y_{j}\right)+\theta_{G}\left(y_{j}, y_{k}\right)+\theta_{H}\left(y_{k}, y_{l}\right)\right\} \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+\max _{y_{l}} \theta_{H}\left(y_{k}, y_{l}\right)
\end{aligned}
$$

Belief Propagation

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+\underbrace{\max _{y_{l}} \theta_{H}\left(y_{k}, y_{l}\right)}_{r_{H \rightarrow y_{k}}\left(y_{k}\right)} \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+r_{H \rightarrow y_{k}}\left(y_{k}\right)
\end{aligned}
$$

Belief Propagation

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+\underbrace{\max _{y_{l}} \theta_{H}\left(y_{k}, y_{l}\right)}_{r_{H \rightarrow y_{k}}\left(y_{k}\right)} \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+r_{H \rightarrow y_{k}}\left(y_{k}\right)
\end{aligned}
$$

Belief Propagation

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\underbrace{\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+r_{H \rightarrow y_{k}}\left(y_{k}\right)}_{r_{G \rightarrow y_{j}}\left(y_{j}\right)} \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+r_{G}\left(y_{j}\right)
\end{aligned}
$$

Belief Propagation

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\underbrace{\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+r_{H \rightarrow y_{k}}\left(y_{k}\right)}_{r_{G \rightarrow y_{j}}\left(y_{j}\right)} \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+r_{G \rightarrow y_{j}}\left(y_{j}\right)
\end{aligned}
$$

Tree Generalization

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{k}, y_{k}, y_{l}, y_{m}} \theta_{F}\left(y_{i}, y_{j}\right)+\theta_{G}\left(y_{j}, y_{k}\right)+\theta_{l}\left(y_{m}, y_{k}\right)+\theta_{H}\left(y_{l}, y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+\max _{y_{m}} \theta_{l}\left(y_{m}, y_{k}\right)+\max _{y_{l}} \theta_{H}\left(y_{l}, y_{k}\right)
\end{aligned}
$$

Tree Generalization

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{k}, y_{k}, y_{l}, y_{m}} \theta_{F}\left(y_{i}, y_{j}\right)+\theta_{G}\left(y_{j}, y_{k}\right)+\theta_{l}\left(y_{m}, y_{k}\right)+\theta_{H}\left(y_{l}, y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+\max _{y_{m}} \theta_{l}\left(y_{m}, y_{k}\right)+\max _{y_{l}} \theta_{H}\left(y_{l}, y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+r_{H \rightarrow y_{k}}\left(y_{k}\right)+
\end{aligned}
$$

Tree Generalization

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{k}, y_{k}, y_{l}, y_{m}} \theta_{F}\left(y_{i}, y_{j}\right)+\theta_{G}\left(y_{j}, y_{k}\right)+\theta_{l}\left(y_{m}, y_{k}\right)+\theta_{H}\left(y_{l}, y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+\max _{y_{m}} \theta_{l}\left(y_{m}, y_{k}\right)+\max _{y_{l}} \theta_{H}\left(y_{l}, y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+r_{H \rightarrow y_{k}}\left(y_{k}\right)+r_{l \rightarrow y_{k}}\left(y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+q_{y_{k} \rightarrow G}\left(y_{k}\right)
\end{aligned}
$$

Tree Generalization

$$
\begin{aligned}
\theta^{*}(\mathbf{y}) & =\max _{y_{i}, y_{k}, y_{k}, y_{l}, y_{m}} \theta_{F}\left(y_{i}, y_{j}\right)+\theta_{G}\left(y_{j}, y_{k}\right)+\theta_{l}\left(y_{m}, y_{k}\right)+\theta_{H}\left(y_{l}, y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+\max _{y_{m}} \theta_{l}\left(y_{m}, y_{k}\right)+\max _{y_{l}} \theta_{H}\left(y_{l}, y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+r_{H \rightarrow y_{k}}\left(y_{k}\right)+r_{l \rightarrow y_{k}}\left(y_{k}\right) \\
& =\max _{y_{i}, y_{j}} \theta_{F}\left(y_{i}, y_{j}\right)+\max _{y_{k}} \theta_{G}\left(y_{j}, y_{k}\right)+q_{y_{k} \rightarrow G}\left(y_{k}\right)
\end{aligned}
$$

Factor Graph Max Product

Iteratively updates and passes messages:

- $r_{F \rightarrow y_{i}} \in \Re^{\mathcal{Y}_{i}}$: factor to variable message
- $q_{y_{i} \rightarrow F} \in \Re^{\mathcal{Y}_{i}}$: variable to factor message

Figure: from [Nowozin et al]

Variable to factor

- Let $M(i)$ be the factors adjacent to variable i, $M(i)=\{F \in \mathcal{F}:(i, F) \in \mathcal{E}\}$
- Variable-to-factor message

$$
q_{y_{i} \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow y_{i}}\left(y_{i}\right)
$$

Figure: from [Nowozin et al]

Factor to variable

- Factor-to-variable message

$$
r_{F \rightarrow y_{i}}\left(y_{i}\right)=\max _{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}}\left(\theta\left(y_{F}^{\prime}\right)+\sum_{j \in N(F) \backslash\{i\}} q_{y_{j} \rightarrow F}\left(y_{j}^{\prime}\right)\right)
$$

Figure: from [Nowozin et al]

Message Scheduling

(1) Select one variable as tree root
(2) Compute leaf-to-root messages
(3) Compute root-to-leaf messages

Figure : from [Nowozin et al]

Max Product v Sum Product

Max sum version of max-product
(1) Compute leaf-to-root messages

$$
q_{y_{i} \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow y_{i}}\left(y_{i}\right)
$$

(2) Compute root-to-leaf messages

$$
r_{F \rightarrow y_{i}}\left(y_{i}\right)=\max _{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}}\left(\theta\left(y_{F}^{\prime}\right)+\sum_{j \in N(F) \backslash\{i\}} q_{y_{j} \rightarrow F\left(y_{j}^{\prime}\right)}\right)
$$

Sum-product

(1) Compute leaf-to-root messages

$$
q_{y_{i} \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow y_{i}}\left(y_{i}\right)
$$

(2) Compute root-to-leaf messages

$$
r_{F \rightarrow y_{i}}\left(y_{i}\right)=\log \sum_{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}} \exp \left(\theta\left(y_{F}^{\prime}\right)+\sum_{j \in N(F) \backslash\{i\}} q_{y_{j}^{\prime} \rightarrow F}\left(y_{j}^{\prime}\right)\right)
$$

Max Product v Sum Product

Max sum version of max-product
(1) Compute leaf-to-root messages

$$
q_{y_{i} \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow y_{i}}\left(y_{i}\right)
$$

(2) Compute root-to-leaf messages

$$
r_{F \rightarrow y_{i}}\left(y_{i}\right)=\max _{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}}\left(\theta\left(y_{F}^{\prime}\right)+\sum_{j \in N(F) \backslash\{i\}} q_{y_{j} \rightarrow F\left(y_{j}^{\prime}\right)}\right)
$$

Sum-product
(1) Compute leaf-to-root messages

$$
q_{y_{i} \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow y_{i}}\left(y_{i}\right)
$$

(2) Compute root-to-leaf messages

$$
r_{F \rightarrow y_{i}}\left(y_{i}\right)=\log \sum_{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}} \exp \left(\theta\left(y_{F}^{\prime}\right)+\sum_{j \in N(F) \backslash\{i\}} q_{y_{j}^{\prime} \rightarrow F}\left(y_{j}^{\prime}\right)\right)
$$

Computing marginals

- Partition function can be evaluated at the root

$$
\log Z=\log \sum_{y_{r}} \exp \left(\sum_{F \in M(r)} r_{F \rightarrow y_{r}}\left(y_{r}\right)\right)
$$

- Marginal distributions, for each factor

$$
\mu_{F}\left(y_{F}\right)=p\left(y_{F}\right)=\frac{1}{Z} \exp \left(\theta_{F}\left(y_{F}\right)+\sum_{i \in N(F)} q_{y_{i} \rightarrow F}\left(y_{i}\right)\right)
$$

Computing marginals

- Partition function can be evaluated at the root

$$
\log Z=\log \sum_{y_{r}} \exp \left(\sum_{F \in M(r)} r_{F \rightarrow y_{r}}\left(y_{r}\right)\right)
$$

- Marginal distributions, for each factor

$$
\mu_{F}\left(y_{F}\right)=p\left(y_{F}\right)=\frac{1}{Z} \exp \left(\theta_{F}\left(y_{F}\right)+\sum_{i \in N(F)} q_{y_{i} \rightarrow F}\left(y_{i}\right)\right)
$$

- Marginals at every node

$$
\mu_{y_{i}}\left(y_{i}\right)=p\left(y_{i}\right)=\frac{1}{Z} \exp \left(\sum_{F \in M(i)} r_{F \rightarrow y_{i}}\left(y_{i}\right)\right)
$$

Generalizations to loops

- It is call loopy belief propagation (Perl, 1988)
- no schedule that removes dependencies
- Different messaging schedules (synchronous/asynchronous, static/dynamic)
- Slight changes in the algorithm

MAP LP Relaxation Task

Integer Linear Program (LP) equivalence [Werner 2007]:

- Inference task:

$$
\hat{\mathbf{y}}=\arg \max _{\mathbf{y}} \sum_{r} \theta_{r}\left(\mathbf{y}_{r}\right)
$$

- Variables $b_{r}\left(\mathbf{y}_{r}\right)$:
$\max _{b_{1}, b_{2}, b_{12}}\left[\begin{array}{c}b_{1}(0) \\ b_{1}(1) \\ b_{2}(0) \\ b_{2}(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(1,1)\end{array}\right]^{\top}\left[\begin{array}{c}\theta_{1}(0) \\ \theta_{1}(1) \\ \theta_{2}(0) \\ \theta_{2}(1) \\ \theta_{12}(0,0) \\ \theta_{12}(1,0) \\ \theta_{12}(0,1) \\ \theta_{12}(1,1)\end{array}\right] \quad$ s.t. $\quad b_{r}\left(\mathrm{y}_{r}\right) \in\{0,1\}$

MAP LP Relaxation Task

Integer Linear Program (LP) equivalence [Werner 2007]:

- Inference task:

$$
\hat{\mathbf{y}}=\arg \max _{\mathbf{y}} \sum_{r} \theta_{r}\left(\mathbf{y}_{r}\right)
$$

- Variables $b_{r}\left(\mathbf{y}_{r}\right)$:

$\max _{b_{1}, b_{2}, b_{12}}\left[\begin{array}{c}b_{1}(0) \\ b_{1}(1) \\ b_{2}(0) \\ b_{2}(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(1,1)\end{array}\right]^{\top}\left[\begin{array}{c}\theta_{1}(0) \\ \theta_{1}(1) \\ \theta_{2}(0) \\ \theta_{2}(1) \\ \theta_{12}(0,0) \\ \theta_{12}(1,0) \\ \theta_{12}(0,1) \\ \theta_{12}(1,1)\end{array}\right] \quad$ s.t. $\left.\quad \sum_{y_{r}} b_{r}\left(y_{r}\right)=1\right\}$

MAP LP Relaxation Task

Integer Linear Program (LP) equivalence [Werner 2007]:

- Inference task:

$$
\hat{\mathbf{y}}=\arg \max _{\mathbf{y}} \sum_{r} \theta_{r}\left(\mathbf{y}_{r}\right)
$$

- Variables $b_{r}\left(\mathbf{y}_{r}\right)$:

$$
\max _{b_{1}, b_{2}, b_{12}}\left[\begin{array}{c}
b_{1}(0) \\
b_{1}(1) \\
b_{2}(0) \\
b_{2}(1) \\
b_{12}(0,0) \\
b_{12}(1,0) \\
b_{12}(0,1) \\
b_{12}(1,1)
\end{array}\right]^{\top}\left[\begin{array}{c}
\theta_{1}(0) \\
\theta_{1}(1) \\
\theta_{2}(0) \\
\theta_{2}(1) \\
\theta_{12}(0,0) \\
\theta_{12}(1,0) \\
\theta_{12}(0,1) \\
\theta_{12}(1,1)
\end{array}\right] \quad \begin{array}{ll}
& \\
\text { s.t. } & \sum_{r}\left(\mathbf{y}_{r}\right) \in\{0,1\} \\
y_{\mathbf{y}_{r}} b_{r}\left(\mathbf{y}_{r}\right)=1 \\
& \sum_{y_{p} \backslash y_{r}} b_{p}\left(y_{p}\right)=b_{r}\left(y_{r}\right) \\
&
\end{array}
$$

MAP LP Relaxation Task

Integer Linear Program (LP) equivalence [Werner 2007]:

- Inference task:

$$
\hat{\mathbf{y}}=\arg \max _{\mathrm{y}} \sum_{r} \theta_{r}\left(\mathbf{y}_{r}\right)
$$

- Variables $b_{r}\left(\mathbf{y}_{r}\right)$:

$$
\max _{b_{1}, b_{2}, b_{12}}\left[\begin{array}{c}
b_{1}(0) \\
b_{1}(1) \\
b_{2}(0) \\
b_{2}(1) \\
b_{12}(0,0) \\
b_{12}(1,0) \\
b_{12}(0,1) \\
b_{12}(1,1)
\end{array}\right]^{\top}\left[\begin{array}{c}
\theta_{1}(0) \\
\theta_{1}(1) \\
\theta_{2}(0) \\
\theta_{2}(1) \\
\theta_{12}(0,0) \\
\theta_{12}(1,0) \\
\theta_{12}(0,1) \\
\theta_{12}(1,1)
\end{array}\right] \quad \begin{array}{ll}
& \\
\text { s.t. } & \sum_{y_{r}\left(\mathbf{y}_{r}\right) \in\{0,1\}} b_{r}\left(\mathbf{y}_{r}\right)=1 \\
y_{p} \mid y_{r} r
\end{array} b_{p}\left(\mathbf{y}_{p}\right)=b_{r}\left(\mathbf{y}_{r}\right)
$$

MAP LP Relaxation Task

$$
\max _{b_{1}, b_{2}, b_{12}}\left[\begin{array}{c}
b_{1}(1) \\
b_{1}(2) \\
b_{2}(1) \\
b_{2}(2) \\
b_{12}(1,1) \\
b_{12}(2,1) \\
b_{12}(1,2) \\
b_{12}(2,2)
\end{array}\right]^{\top}\left[\begin{array}{c}
\theta_{1}(1) \\
\theta_{1}(2) \\
\theta_{2}(1) \\
\theta_{2}(2) \\
\theta_{12}(1,1) \\
\theta_{12}(2,1) \\
\theta_{12}(1,2) \\
\theta_{12}(2,2)
\end{array}\right] \quad \text { s.t. } \begin{array}{ll}
& \sum_{y_{r}}\left(\mathbf{y}_{r}\right) \in\{0,1\} \\
b_{r}\left(\mathbf{y}_{r}\right)=1 \\
& \\
\sum_{\mathbf{y}_{\rho} \backslash \mathbf{y}_{r}} b_{p}\left(\mathbf{y}_{p}\right)=b_{r}\left(\mathbf{y}_{r}\right)
\end{array}
$$

MAP LP Relaxation Task

MAP LP Relaxation Task

$$
\begin{aligned}
& b_{r}\left(\mathbf{y}_{r}\right) \in\{0,1\} \\
& \sum_{y_{r}} b_{r}\left(\mathbf{y}_{r}\right)=1 \\
& \text { Marginalization }
\end{aligned}
$$

MAP LP Relaxation Task

LP relaxation:

		$b_{r}\left(\mathbf{y}_{r}\right) \in\{0,1\}$		
$\max _{b_{r}}$	$\sum_{r, \mathbf{y}_{r}} b_{r}\left(\mathbf{y}_{r}\right) \theta_{r}\left(\mathbf{y}_{r}\right)$	s.t.		Local probability b_{r}
:---				
	Marginalization			

MAP LP Relaxation Task

LP relaxation:

> Can be solved by any standard LP solver but slow because of typically many variables and constraints. Can we do better?

MAP LP Relaxation Task

LP relaxation:

Can be solved by any standard LP solver but slow because of typically many variables and constraints. Can we do better?

MAP LP Relaxation Task

Observation: Graph structure in marginalization constraints.

Use dual to take advantage of structure in constraint set

- Set of parents of region $r: P(r)$
- Set of children of region r : $C(r)$

$$
\forall r, \mathbf{y}_{r}, p \in P(r) \quad \sum_{\mathbf{y}_{p} \backslash \mathbf{y}_{r}} b_{p}\left(\mathbf{y}_{p}\right)=b_{r}\left(\mathbf{y}_{r}\right)
$$

- Lagrange multipliers for every constraint:

$$
\forall r, \mathbf{y}_{r}, p \in P(r) \quad \lambda_{r \rightarrow p}\left(\mathbf{y}_{r}\right)
$$

MAP LP Relaxation Task

Re-parameterization of score $\theta_{r}\left(\mathbf{y}_{r}\right)$:

$$
\hat{\theta}_{r}\left(\mathbf{y}_{r}\right)=\theta_{r}\left(\mathbf{y}_{r}\right)+\sum_{p \in P(r)} \lambda_{r \rightarrow p}\left(\mathbf{y}_{r}\right)-\sum_{c \in C(r)} \lambda_{c \rightarrow r}\left(\mathbf{y}_{c}\right)
$$

Properties of dual program:

$$
\min _{\lambda} q(\lambda)=\min _{\lambda} \sum_{r} \max _{\mathbf{y}_{r}} \hat{\theta}_{r}\left(\mathbf{y}_{r}\right)
$$

- Dual upper-bounds primal $\forall \lambda$
- Convex problem
- Unconstrained task
- Doing block coordinate descent in the dual results on message passing (Lagrange multipliers are your messages)

MAP LP Relaxation Task

Block-coordinate descent solvers iterate the following steps:

- Take a block of Lagrange multipliers
- Optimize sub-problem of dual function w.r.t. this block while keeping all other variables fixed
Advantage: fast due to analytically computable sub-problems

Same type of algorithms also exist to compute approximate marginals

Graph-Cuts for MRF Inference

Theorem [Kolmogorov and Zabih, 2004]: If the energy function is a function of binary variables containing only unary and pairwise factors, the discrete energy minimization problem

$$
\min _{\mathbf{y}} \sum_{r \in \mathcal{R}} E\left(\mathbf{y}_{r}, x\right)
$$

can be formulated as a graph cut problem if an only off all pairwise energies are sub modular

$$
E_{i, j}(0,0)+E_{i, j}(1,1) \leq E_{i, j}(0,1)+E_{i, j}(1,0)
$$

The ST-mincut problem

- The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]

Back to our energy minimization

Construct a graph such that
1 Any st-cut corresponds to an assignment of x
2 The cost of the cut is equal to the energy of x : $E(x)$

[Source: P. Kohli]

St-mincut and Energy Minimization

$$
\begin{gathered}
\qquad E(x)=\sum_{i} \theta_{i}\left(x_{i}\right)+\sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}\right) \\
\text { For all ij } \theta_{i j}(0,1)+\theta_{i j}(1,0) \geq \theta_{i j}(0,0)+\theta_{i j}(1,1)
\end{gathered}
$$

Equivalent (transformable)

$$
\begin{equation*}
E(x)=\sum_{i} c_{i} x_{i}+\sum_{i, j} c_{i j} x_{i}\left(1-x_{j}\right) \tag{ij}
\end{equation*}
$$

[Source: P. Kohli]

How are they equivalent?

$$
\begin{equation*}
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \tag{ij}
\end{equation*}
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(x_{i}, x_{\mathrm{j}}\right) & =\theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-x_{\mathrm{i}}\right) x_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$
[Source: P. Kohli]

Graph Construction

$E\left(a_{1}, a_{2}\right)$

Source (0)

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}
$$

Sink (1)
[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

st-mincut cost = 8

$$
a_{1}=1 \quad a_{2}=0
$$

$$
E(1,0)=8
$$

[Source: P. Kohli]

How to compute the St-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

> Edges: Flow < Capacity
> Nodes: Flow in = Flow out

Min-cut \backslash Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity
[Source: P. Kohli]

How does the code look like

Graph *g;

For all pixels p
/* Add a node to the graph */ \square
nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end
g->compute_maxflow();
Sink (1)
label_p = g->is_connected_to_source(nodelD(p)); // is the label of pixel p (0 or 1)

How does the code look like

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */ set_weights(nodelD(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p, q
add_weights(nodeID(p), nodelD(q), cost(p,q));
end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)
[Source: P. Kohli]

How does the code look like

Graph *g;

For all pixels \mathbf{p}
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q)); end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p, q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)

$$
a_{1}=b g \quad a_{2}=f g
$$

[Source: P. Kohli]

Example: Figure-Ground Segmentation

Binary labeling problem

(Original)

(Color model)

(Indep. Prediction)

Figure : from [Nowozin et al]

Example: Figure-Ground Segmentation

- Markov Random Field

$$
E(\mathbf{y}, \mathbf{x}, \mathbf{w})=\sum_{i} \log p\left(y_{i} \mid x_{i}\right)+w \sum_{(i, j) \in \mathcal{E}} C\left(x_{i}, x_{j}\right) /\left(y_{i} \neq y_{j}\right)
$$

with $C\left(x_{i}, x_{j}\right)=\exp \left(\gamma\left\|x_{i}-x_{j}\right\|^{2}\right)$, and $w \geq 0$.

Figure : from [Nowozin et al]

- Why do we need the condition $w \geq 0$?

Generalization to Multi-label Problems

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

Figure: from [Nowozin et al]

Generalization to Multi-label Problems

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

Figure: from [Nowozin et al]

Generalization to Multi-label Problems

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

Figure: from [Nowozin et al]

Generalization to Multi-label Problems

- Optimal solution is not possible anymore
- Solve to optimality subproblems that include current iterate
- This guarantees decrease in the objective

Figure: from [Nowozin et al]

Metric vs Semimetric

Two general classes of pairwise interactions

- Metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
$$

- Semi-metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
$$

Metric vs Semimetric

Two general classes of pairwise interactions

- Metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
$$

- Semi-metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
$$

Examples for 1D label set

- Truncated quadratic is a semi-metric

$$
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
$$

with K a constant.

- Truncated absolute distance is a metric

$$
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
$$

with K a constant.

Examples for 1D label set

- Truncated quadratic is a semi-metric

$$
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
$$

with K a constant.

- Truncated absolute distance is a metric

$$
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
$$

with K a constant.

- Potts model is a metric

$$
V(\alpha, \beta)=K \cdot T(\alpha \neq \beta)
$$

with $T(\cdot)=1$ if the argument is true and 0 otherwise.

Examples for 1D label set

- Truncated quadratic is a semi-metric

$$
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
$$

with K a constant.

- Truncated absolute distance is a metric

$$
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
$$

with K a constant.

- Potts model is a metric

$$
V(\alpha, \beta)=K \cdot T(\alpha \neq \beta)
$$

with $T(\cdot)=1$ if the argument is true and 0 otherwise.

Move Making Algorithms

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha - Beta Swaps: Checks if a node with class α wants to switch to β.
- Binary problems that can be solve exactly for certain type of potentials

Figure: Alpha-beta Swaps. Figure from [Nowozin et al]

Move Making Algorithms

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha - Beta Swaps: Checks if a node with class α wants to switch to β.
- Binary problems that can be solve exactly for certain type of potentials

Figure: Alpha-beta Swaps. Figure from [Nowozin et al]

Move Making Algorithms

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha - Beta Swaps: Checks if a node with class α wants to switch to β.
- Binary problems that can be solve exactly for certain type of potentials

Figure: Alpha-beta Swaps. Figure from [Nowozin et al]

Move Making Algorithms

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha - Beta Swaps: Checks if a node with class α wants to switch to β.
- Binary problems that can be solve exactly for certain type of potentials

Figure: Alpha-beta Swaps. Figure from [Nowozin et al]

Move Making Algorithms

- Alpha Expansion: Checks if current nodes want to switch to label α
- Alpha - Beta Swaps: Checks if a node with class α wants to switch to β.
- Binary problems that can be solve exactly for certain type of potentials

Figure: Alpha-beta Swaps. Figure from [Nowozin et al]

Binary Moves

- $\alpha-\beta$ moves works for semi-metrics
- α expansion works for V being a metric

Minimize over move variables t

Figure : from P. Kohli tutorial on graph-cuts

- For certain x^{1} and x^{2}, the move energy is sub-modular

Graph Construction

- The set of vertices includes the two terminals α and β, as well as image pixels p in the sets \mathcal{P}_{α} and \mathcal{P}_{β} (i.e., $f_{p} \in\{\alpha, \beta\}$).
- Each pixel $p \in \mathcal{P}_{\alpha \beta}$ is connected to the terminals α and β, called t-links.
- Each set of pixels $p, q \in \mathcal{P}_{\alpha \beta}$ which are neighbors is connected by an edge $e_{p, q}$

edge	weight	for
t_{p}^{α}	$D_{p}(\alpha)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\alpha, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
t_{p}^{β}	$D_{p}(\beta)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\beta, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
$e_{\{p, q\}}$	$V(\alpha, \beta)$	$\{p, q\} \in \mathcal{N}$ $p, q \in \mathcal{P}_{\alpha \beta}$

Learning in graphical models

Learning Tasks

- Estimation of the parameters w

$$
E_{F}\left(\mathbf{y}_{F}\right)=-\mathbf{w}^{T} \phi_{F}\left(\mathbf{y}_{F}\right)
$$

- Learn the structure of the model
- Learn with hidden variables

Learning the parameters

- Log-loss learning
- Max margin learning
- One parameter extensions
- Pseudolikelihood
- Perturb and MAP approaches
- Contrastive Divergence
- ...

Supervised Learning

- We are given a dataset of $\mathcal{S}=\left\{\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right), \cdots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$
- We also have the task loss that we want to minimize $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$

Supervised Learning

- We are given a dataset of $\mathcal{S}=\left\{\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right), \cdots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$
- We also have the task loss that we want to minimize $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
- We want to find the weights by solving

$$
\min _{w} \mathbb{E}_{(x, y) \sim \mathcal{D}}\{\Delta(y, f(x))\}
$$

with $f(x)=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{\top} \phi(\mathbf{x}, \mathbf{y})$

Supervised Learning

- We are given a dataset of $\mathcal{S}=\left\{\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right), \cdots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$
- We also have the task loss that we want to minimize $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
- We want to find the weights by solving

$$
\min _{w} \mathbb{E}_{(x, y) \sim \mathcal{D}}\{\Delta(y, f(x))\}
$$

with $f(x)=\underset{\underset{\mathcal{T}}{ }}{\operatorname{argmax}} \mathbf{w}^{\top} \phi(\mathbf{x}, \mathbf{y})$

$$
y \in \mathcal{Y}
$$

- This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

Supervised Learning

- We are given a dataset of $\mathcal{S}=\left\{\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right), \cdots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$
- We also have the task loss that we want to minimize $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
- We want to find the weights by solving

$$
\min _{w} \mathbb{E}_{(x, y) \sim \mathcal{D}}\{\Delta(y, f(x))\}
$$

with $f(x)=\underset{\operatorname{argmax}}{ } \mathbf{w}^{\top} \phi(\mathbf{x}, \mathbf{y})$

$$
y \in \mathcal{Y}
$$

- This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{D}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- Typical supervised learning algorithms are convex.

Supervised Learning

- We are given a dataset of $\mathcal{S}=\left\{\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right), \cdots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$
- We also have the task loss that we want to minimize $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
- We want to find the weights by solving

$$
\min _{w} \mathbb{E}_{(x, y) \sim \mathcal{D}}\{\Delta(y, f(x))\}
$$

with $f(x)=\underset{\operatorname{argmax}}{ } \mathbf{w}^{\top} \phi(\mathbf{x}, \mathbf{y})$

$$
y \in \mathcal{Y}
$$

- This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{D}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- Typical supervised learning algorithms are convex.
- Why is this problem difficult?

Supervised Learning

- We are given a dataset of $\mathcal{S}=\left\{\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right), \cdots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$
- We also have the task loss that we want to minimize $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
- We want to find the weights by solving

$$
\min _{w} \mathbb{E}_{(x, y) \sim \mathcal{D}}\{\Delta(y, f(x))\}
$$

with $f(x)=\underset{\operatorname{argmax}}{ } \mathbf{w}^{\top} \phi(\mathbf{x}, \mathbf{y})$

$$
y \in \mathcal{Y}
$$

- This is difficult, so we can replace it by an empirical estimate, a surrogate loss and add regularizer to prevent overfitting

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{D}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- Typical supervised learning algorithms are convex.
- Why is this problem difficult?

Max-margin Learning

- Regularized Risk Minimization

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- In structured SVMs

$$
\ell_{\text {hinge }}(w, x, y)=\max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+w^{\top} \Phi(x, \hat{y})-w^{\top} \Phi(x, y)\right\}
$$

Max-margin Learning

- Regularized Risk Minimization

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- In structured SVMs

$$
\ell_{\text {hinge }}(\mathbf{w}, x, y)=\max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}
$$

- Optimize the unconstrained problem

$$
\min _{w} \sum_{(x, y) \in \mathcal{S}} \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+w^{\top} \Phi(x, \hat{y})-w^{\top} \Phi(x, y)\right\}+\frac{C}{p}\|w\|_{p}^{p},
$$

- Convex but non-smooth.
- Use sub gradient methods

Max-margin Learning

- Regularized Risk Minimization

$$
\min _{w} \sum_{(x, y) \in \mathcal{S}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- In structured SVMs

$$
\ell_{\text {hinge }}(\mathbf{w}, x, y)=\max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}
$$

- Optimize the unconstrained problem

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- Convex but non-smooth.
- Use sub gradient methods

Equivalent Formulation

- Optimize the unconstrained problem

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- Write as constraints

$$
\text { s.t. } \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\} \leq \xi_{n}
$$

Equivalent Formulation

- Optimize the unconstrained problem

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- Write as constraints

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \xi_{n}^{2}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

$$
\text { s.t. } \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\} \leq \xi_{n}
$$

- Or equivalently

$$
\begin{array}{r}
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \xi_{n}^{2}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}, \\
\text { s.t. } \forall \hat{y} \ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y) \leq \xi_{n}
\end{array}
$$

- Use cutting plane methods as exp. many constraints

Equivalent Formulation

- Optimize the unconstrained problem

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- Write as constraints

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \xi_{n}^{2}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

$$
\text { s.t. } \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\} \leq \xi_{n}
$$

- Or equivalently

$$
\begin{array}{r}
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \xi_{n}^{2}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}, \\
\text { s.t. } \forall \hat{y} \ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y) \leq \xi_{n}
\end{array}
$$

- Use cutting plane methods as exp. many constraints

Log-loss Learning

- Regularized Risk Minimization

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- CRF loss: The conditional distribution is

$$
\begin{aligned}
p_{x, y}(\hat{y} ; w) & =\frac{1}{Z(x, y)} \exp \left(\Delta(y, \hat{y})+w^{\top} \phi(x, \hat{y})\right) \\
Z(x, y) & =\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\Delta(y, \hat{y})+w^{\top} \phi(x, \hat{y})\right)
\end{aligned}
$$

where $\Delta(y, \hat{y})$ is a prior distribution and $Z(x, y)$ the partition function, and

$$
\ell_{\log }(w, x, y)=\ln \frac{1}{p_{x, y}(y ; w)} .
$$

Log-loss Learning

- Regularized Risk Minimization

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- CRF loss: The conditional distribution is

$$
\begin{aligned}
p_{x, y}(\hat{y} ; \mathbf{w}) & =\frac{1}{Z(x, y)} \exp \left(\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right) \\
Z(x, y) & =\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
\end{aligned}
$$

where $\Delta(y, \hat{y})$ is a prior distribution and $Z(x, y)$ the partition function, and

$$
\ell_{\log }(\mathbf{w}, x, y)=\ln \frac{1}{p_{x, y}(y ; \mathbf{w})}
$$

- Convex problem
- Problem: to do gradient descent I need to compute Z

Log-loss Learning

- Regularized Risk Minimization

$$
\min _{\mathbf{w}} \sum_{(x, y) \in \mathcal{S}} \ell(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- CRF loss: The conditional distribution is

$$
\begin{aligned}
p_{x, y}(\hat{y} ; \mathbf{w}) & =\frac{1}{Z(x, y)} \exp \left(\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right) \\
Z(x, y) & =\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
\end{aligned}
$$

where $\Delta(y, \hat{y})$ is a prior distribution and $Z(x, y)$ the partition function, and

$$
\ell_{\log }(\mathbf{w}, x, y)=\ln \frac{1}{p_{x, y}(y ; \mathbf{w})} .
$$

- Convex problem
- Problem: to do gradient descent I need to compute Z

Relation between loss functions

- The CRF program is

$$
\text { (CRF) } \quad \min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

where $(x, y) \in \mathcal{S}$ ranges over training pairs and $\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)$ is the vector of empirical means, and

$$
Z(x, y)=\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
$$

- In structured SVMs
(structured SVM)

Relation between loss functions

- The CRF program is

$$
\text { (CRF) } \quad \min _{w}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

where $(x, y) \in \mathcal{S}$ ranges over training pairs and $\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)$ is the vector of empirical means, and

$$
Z(x, y)=\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
$$

- In structured SVMs
(structured SVM)

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \max _{\hat{y} \in \mathcal{Y}}\left\{\Delta(y, \hat{y})+\mathbf{w}^{\top} \boldsymbol{\Phi}(x, \hat{y})\right\}-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

A family of structure prediction problems

- One parameter extension of CRFs and structured SVMs [Hazan \& Urtasun, NIPS 2010]

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z_{\epsilon}(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

d is the empirical means, and

$$
\ln Z_{\epsilon}(x, y)=\epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\frac{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})}{\epsilon}\right)
$$

- CRF if $\epsilon=1$, Structured SVM if $\epsilon=0$ respectively.
- One can devise a single algorithm to solve both problems

A family of structure prediction problems

- One parameter extension of CRFs and structured SVMs [Hazan \& Urtasun, NIPS 2010]

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z_{\epsilon}(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

d is the empirical means, and

$$
\ln Z_{\epsilon}(x, y)=\epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\frac{\Delta(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})}{\epsilon}\right)
$$

- CRF if $\epsilon=1$, Structured SVM if $\epsilon=0$ respectively.
- One can devise a single algorithm to solve both problems

Structure Prediction for Scene Understanding II

Raquel Urtasun
University of Toronto
June 20, 2014

Structured Prediction in Practice

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{\top} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{T} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{y}, \mathbf{x}))
$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{\top} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{y}, \mathbf{x}))
$$

- How can I do inference? Why is this complicated?

$$
\min _{y_{1}, \cdots, y_{n}} E\left(y_{1}, \cdots, y_{n}\right)
$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{T} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{y}, \mathbf{x}))
$$

- How can I do inference? Why is this complicated?

$$
\min _{y_{1}, \cdots, y_{n}} E\left(y_{1}, \cdots, y_{n}\right)
$$

- If you know how to do inference you will know how to do learning! Where does the complication come from?

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!
- Good learning algorithms exist as well

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!
- Good learning algorithms exist as well

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?
- Can I learn everything from unlabeled data? How deep are you?

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?
- Can I learn everything from unlabeled data? How deep are you?

First task: 3D indoor scene understanding

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)
- What prior knowledge would you like to encode?

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)
- What prior knowledge would you like to encode?

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$
y_{i} \in\{1, \cdots, 5\}
$$

the label the super pixel is associated with

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$
y_{i} \in\{1, \cdots, 5\}
$$

the label the super pixel is associated with

- Define the energy as

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{T} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- What are the $\phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)$?

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$
y_{i} \in\{1, \cdots, 5\}
$$

the label the super pixel is associated with

- Define the energy as

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{\top} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- What are the $\phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)$?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathrm{x}, y_{i}, y_{j}\right)$?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathbf{x}, y_{i}, y_{j}\right)$?
- What's the problem with smoothness potentials?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathbf{x}, y_{i}, y_{j}\right)$?
- What's the problem with smoothness potentials?
- Are we missing something? What extra knowledge do we have?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathbf{x}, y_{i}, y_{j}\right)$?
- What's the problem with smoothness potentials?
- Are we missing something? What extra knowledge do we have?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?
- Which algorithm will you use? would it take a long time? would it be optimal?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?
- Which algorithm will you use? would it take a long time? would it be optimal?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]

- What have I lost with respect to before?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]

- What have I lost with respect to before?
- What have I won?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]

- What have I lost with respect to before?
- What have I won?

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- Let's start with the geometric features

original image

orientation map

geometric context
- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- Let's start with the geometric features

original image

orientation map

geometric context
- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc
- We will also like to minimize the other colors in those walls, e.g., all but yellow in left wall

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- Let's start with the geometric features

original image

orientation map

geometric context
- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc
- We will also like to minimize the other colors in those walls, e.g., all but yellow in left wall

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i}^{\prime} 's do I need to define them?

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i} 's do I need to define them?
- Do I need other potentials?

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i} 's do I need to define them?
- Do I need other potentials?
- Why did I need more potentials than just geometric features before?

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i} 's do I need to define them?
- Do I need other potentials?
- Why did I need more potentials than just geometric features before?

Inference

- Is inference easy in this model? Why?
- What can we do?

Inference

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option

Inference

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !

Inference

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something

Inference

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces

Inference

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces
- Let's first take a detour

Inference

- Is inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces
- Let's first take a detour

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

3	5	12	14	17
4	11	19	24	31
9	$\mathbf{1 7}$	28	38	46
13	24	37	48	62
15	30	44	59	81

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

- Then compute the sum on the rectangle by accessing 4 numbers

$$
S\left(\left[i_{0}, i_{1}\right] \times\left[j_{0}, j_{1}\right]\right)=s\left(i_{1}, j_{1}\right)-s\left(i_{1}, j_{0}-1\right)-s\left(i_{0}-1, j_{1}\right)+s\left(i_{0}-1, j_{0}-1\right)
$$

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

$\mathbf{3}$	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

- Then compute the sum on the rectangle by accessing 4 numbers

$$
S\left(\left[i_{0}, i_{1}\right] \times\left[j_{0}, j_{1}\right]\right)=s\left(i_{1}, j_{1}\right)-s\left(i_{1}, j_{0}-1\right)-s\left(i_{0}-1, j_{1}\right)+s\left(i_{0}-1, j_{0}-1\right)
$$

- Can we do something similar in our case?

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

$\mathbf{3}$	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

- Then compute the sum on the rectangle by accessing 4 numbers

$$
S\left(\left[i_{0}, i_{1}\right] \times\left[j_{0}, j_{1}\right]\right)=s\left(i_{1}, j_{1}\right)-s\left(i_{1}, j_{0}-1\right)-s\left(i_{0}-1, j_{1}\right)+s\left(i_{0}-1, j_{0}-1\right)
$$

- Can we do something similar in our case?

Generalization to 3D

- Faces are generalizations of rectangles
- We need to extend the concept of integral images to 3D
- This is called integral geometry [Schwing et al. 12a]
- How does this work?

$$
\phi_{\{\text {left_w }\}}\left(y_{i}, y_{j}, y_{k}, \mathbf{x}\right)=H_{1}\left(y_{i}, y_{j}, \mathbf{x}\right)-H_{2}\left(y_{j}, y_{k}, \mathbf{x}\right)
$$

Generalization to 3D

- Faces are generalizations of rectangles
- We need to extend the concept of integral images to 3D
- This is called integral geometry [Schwing et al. 12a]
- How does this work?

$$
\phi_{\{f l o o r\}}\left(y_{i}, y_{j}, y_{k}, \mathbf{x}\right)=H_{1}\left(y_{i}, y_{j}, \mathbf{x}\right)-H_{2}\left(y_{j}, y_{k}, \mathbf{x}\right)
$$

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem
- This speed ups the message passing inference by a few orders of magnitude

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem
- This speed ups the message passing inference by a few orders of magnitude

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem loops

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?
- Let's look at branch and bound

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem loops
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?
- Let's look at branch and bound

Branch and Bound

```
Algorithm 1 branch and bound (BB) inference
    put pair \((\bar{f}(\mathcal{Y}), \mathcal{Y})\) into queue and set \(\hat{\mathcal{Y}}=\mathcal{Y}\)
    repeat
        split \(\hat{\mathcal{Y}}=\hat{\mathcal{Y}}_{1} \times \hat{\mathcal{Y}}_{2}\) with \(\hat{\mathcal{Y}}_{1} \cap \hat{\mathcal{Y}}_{2}=\emptyset\)
        put pair \(\left(\bar{f}\left(\hat{\mathcal{Y}}_{1}\right), \hat{\mathcal{Y}}_{1}\right)\) into queue
        put pair \(\left(\bar{f}\left(\hat{\mathcal{Y}}_{2}\right), \hat{\mathcal{Y}}_{2}\right)\) into queue
        retrieve \(\hat{\mathcal{Y}}\) having highest score
    until \(|\hat{\mathcal{Y}}|=1\)
```

We have to define:
(1) A parameterization that defines sets of hypothesis.
(2) A scoring function f
(3) Tight bounds on the scoring function that can be computed very efficiently

Parameterization of the Problem

- Layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]
- How do we define \mathcal{Y} ?
- Is this problem continuous or discrete?

- We parameterize the sets by intervals of minimum and maximum angles

$$
\left\{\left[y_{1}^{\min }, y_{1}^{\max }\right], \cdots,\left[y_{4}^{\min }, y_{4}^{\max }\right]\right\}
$$

- Why intervals?
- We have defined already the scoring function. What about the bounds?

Properties of the Bounds

Derive bounds \bar{f} for the original scoring function $\mathbf{w}^{\top} \phi(\mathbf{y}, \mathbf{x})$ that satisfy:
(1) The bound of the interval $\hat{\mathcal{Y}}$ has to upper-bound the true cost of each hypothesis $y \in \hat{\mathcal{Y}}$,

$$
\forall y \in \hat{\mathcal{Y}}, \quad \bar{f}(\hat{\mathcal{Y}}) \geq \mathbf{w}^{\top} \phi(\mathbf{y}, \mathbf{x})
$$

(2) The bound has to be exact for every single hypothesis,

$$
\forall y \in \mathcal{Y}, \quad \bar{f}(y)=\mathbf{w}^{\top} \phi(\mathbf{y}, \mathbf{x})
$$

Can we define this for our problem?

Intuitions from 2D

Let's look at the 2D case again

- We want to compute the bounding box that maximizes a scoring function
- Let's try to do this with branch and bound
- We define an interval as the max and min of the x and y axis of the rectangle

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in B B o x(\mathbf{y})} f_{i}(\mathbf{x})
$$

Intuitions from 2D

Let's look at the 2D case again

- We want to compute the bounding box that maximizes a scoring function
- Let's try to do this with branch and bound
- We define an interval as the max and min of the x and y axis of the rectangle

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}(\mathbf{x})
$$

Branch and Bound for BBox prediction

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}(\mathbf{x})
$$

- Some features are positive and some are negative

Branch and Bound for BBox prediction

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in B B o x(\mathbf{y})} f_{i}(\mathbf{x})
$$

- Some features are positive and some are negative
- Trick: Divide the space into negative and positive features

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(y)} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

Branch and Bound for BBox prediction

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}(\mathbf{x})
$$

- Some features are positive and some are negative
- Trick: Divide the space into negative and positive features

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B \circ x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\text { bound }(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, x)+\bar{f}^{-}(\overline{\mathcal{Y}}, x)
$$

Branch and Bound for BBox prediction

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in B B o x(\mathbf{y})} f_{i}(\mathbf{x})
$$

- Some features are positive and some are negative
- Trick: Divide the space into negative and positive features

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?
- How many integral images do we need?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?
- How many integral images do we need?

Algorithm for 2D BBox [Lampert et al. 06]

```
Algorithm 1 Efficient Subwindow Search
Require: image \(x\)
Require: quality bounding function \(\hat{f}\) (see Sect.III)
Ensure: \(\left(t_{\text {opt }}, b_{\text {opt }}, l_{\text {opt }}, r_{\text {opt }}\right)=\operatorname{argmax}_{y \in \mathcal{Y}} f(y)\)
    initialize \(P\) as empty priority queue
    set \([T, B, L, R]=[1, n] \times[1, n] \times[1, m] \times[1, m]\)
    repeat
        split \([T, B, L, R] \rightarrow\left[T_{1}, B_{1}, L_{1}, R_{1}\right] \dot{\cup}\left[T_{2}, B_{2}, L_{2}, R_{2}\right]\)
        push \(\left(\left[T_{1}, B_{1}, L_{1}, R_{1}\right] ; \hat{f}\left(\left[T_{1}, B_{1}, L_{1}, R_{1}\right]\right)\right.\) onto \(P\)
        push ( \(\left[T_{2}, B_{2}, L_{2}, R_{2}\right] ; \hat{f}\left(\left[T_{2}, B_{2}, L_{2}, R_{2}\right]\right)\) onto \(P\)
        retrieve top state \([T, B, L, R]\) from \(P\)
    until \([T, B, L, R]\) consists of only one rectangle
    set \(\left(t_{\mathrm{opt}}, b_{\mathrm{opt}}, l_{\mathrm{opt}}, r_{\mathrm{opt}}\right)=[T, B, L, R]\)
```

- How do we split?

- When do we terminate?

3D layout estimation

- Let's go back to our problem

- We parameterize the sets by intervals of minimum and maximum angles

$$
\left\{\left[y_{1}^{\min }, y_{1}^{\max }\right], \cdots,\left[y_{4}^{\min }, y_{4}^{\max }\right]\right\}
$$

- The scoring function sums features over the faces

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, \mathbf{x}\right)=\sum_{\alpha} f_{\alpha}(\mathbf{y}, \mathbf{x})
$$

with $\alpha=\{$ floor, left_w, right_w, ceiling, front_w $\}$

- What about the bounds?

Bounds for 3D layout

- The scoring function sums features over the faces

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, \mathbf{x}\right)=\sum_{\alpha} f_{\alpha}(\mathbf{y}, \mathbf{x})
$$

with $\alpha=\{$ floor, left_w, right_w, ceiling, front_w $\}$

- Let's bound each "face" α separately
- Recall where the features come from

original image

orientation map

geometric context
- Some features are positive, some are negative. Why? How do I know which ones are positive/negative?

Deriving bounds

- Inference can be then done by

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{\alpha} f_{\alpha}^{+}(x, y)+f_{\alpha}^{-}(x, y)
$$

- We can bound each of this terms separately

$$
\operatorname{bound}(E(\hat{\mathcal{Y}}, \mathbf{x}))=\sum_{\alpha \in \mathcal{F}} \bar{f}_{\alpha}^{+}(\hat{\mathcal{Y}}, \mathbf{x})+\bar{f}_{\alpha}^{-}(\hat{\mathcal{Y}}, \mathbf{x})
$$

- We construct bounds by computing the max positive and min negative contribution of the score within the set $\hat{\mathcal{Y}}$ for each face $\alpha \in \mathcal{F}$.

$$
\bar{f}_{\text {front-wall }}(\hat{\mathcal{Y}})=f_{\text {front-wall }}^{+}\left(x, y_{\text {up }}\right)+f_{\text {front-wall }}^{-}\left(x, y_{\text {low }}\right),
$$

Efficient bounds

- How can we compute the bounds efficiently?

Efficient bounds

- How can we compute the bounds efficiently?

- What's the complexity?

Efficient bounds

- How can we compute the bounds efficiently?

- What's the complexity?
- How many evaluations?

Efficient bounds

- How can we compute the bounds efficiently?

- What's the complexity?
- How many evaluations?

Results

> [A. Schwing and R. Urtasun, ECCV12]

Table : Pixel classification error in the layout dataset of [Hedau et al. 09].

	OM	GC	OM + GC	Other	Time
[Hoiem07]	-	28.9	-	-	-
Hedau09] (a)	-	26.5	-	-	-
[Hedau09] (b)	-	21.2	-	-	$10-30 \mathrm{~min}$
[Wang10]	22.2	-	-	-	
[Lee10]	24.7	22.7	18.6	-	-
[delPero11]	-	-	-	16.3	12 min
Ours	$\mathbf{1 8 . 6}$	$\mathbf{1 5 . 4}$	$\mathbf{1 3 . 6}$	-	0.007 s

Table : Pixel classification error in the bedroom data set [Hedau et al. 10].

	[delPero11]	[Hoiem07]	[Hedau09](a)	Ours
w/o box	29.59	23.04	22.94	$\mathbf{1 6 . 4 6}$

- Takes on average 0.007 s for exact solution over 50^{4} possibilities !
- It's 6 orders of magnitude faster than the state-of-the-art!

Qualitative Results

Conclusion

Conclusion:

- We have studied structured prediction including learning and inference
- We have investigated how to think to solve a real-world problem

Relations to previous two talks:

- RBMs are graphical models
- Your potentials $\phi_{r}\left(y_{r}\right)$ can be "deep"

Open questions:

- Latent variable models: non-convex learning
- Learn the structure of the graph
- Go beyond log-linear models
- MAP inference: high order potentials
- Continuos Markov random fields

If you are interested in doing research at University of Toronto, talk to me!

