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?? Images 

Videos Compression 

De-noising 

Super-resolution 

Recognition… 

Streaming 

Tracking 

Stabilization… 

User data 

Clustering 

Classification 

Collaborative filtering… 

How to extract low-dim structures from such high-dim data?  

 1M pixels 

 1B voxels 

U.S. COMMERCE'S ORTNER SAYS YEN UNDERVALUED

Commerce Dept . undersecretary of economic a®airs Robert Ortner said that

he believed the dollar at current levels was fairly priced against most European

currencies.

In a wide ranging address sponsored by the Export -Import Bank, Ortner,

the bank's senior economist also said he believed that the yen was undervalued

and could go up by 10 or 15 pct .

" I do not regard the dollar as undervalued at this point against the yen,"

he said.

On the other hand, Ortner said that he thought that " the yen is st ill a

lit t le bit undervalued," and " could go up another 10 or 15 pct ."

In addit ion, Ortner, who said he was speaking personally, said he thought

that the dollar against most European currencies was " fairly priced."

Ortner said his analysis of the various exchange rate values was based on

such economic part iculars as wage rate di®erent iat ions.

Ortner said there had been lit t le impact on U.S. t rade dē cit by the decline

of the dollar because at the t ime of the Plaza Accord, the dollar was ext remely

overvalued and that the ¯rst 15 pct decline had lit t le impact .

He said there were indicat ions now that the t rade dē cit was beginning to

level o®.

Turning to Brazil and Mexico, Ortner made it clear that it would be

almost impossible for those count ries to earn enough foreign exchange to pay

the service on their debts. He said the best way to deal with this was to use

the policies out lined in Treasury Secretary James Baker's debt init iat ive.

Web data 

Indexing  

Ranking  

Search… 

 1B users 

CONTEXT: Data increasingly massive, high-dimensional… 



CONTEXT: Data increasingly massive, high-dimensional… 



Visual data exhibit low-dimensional structures due to rich 

local regularities, global symmetries, repetitive patterns, or 

redundant sampling. 

CONTEXT: Low dimensional structures in visual data 



CONTEXT: But life is not so easy…  

In their place: Sparse representations, robust PCA, and many others 



Two Low-Dimensional Representations 

Low-rank Structures Sparse Structures Corrupted Observations 

Sparse Representation 

Robust PCA 

sp
ar

se
 

Vast number of candidate applications 



 Part I:  Motivation, Theory, Applications 

 

 Part II:  Efficient Convex Algorithms 

 

 Part III:  Non-Convex Alternatives 

Overview 



Part I:  Motivation, Theory, Applications 



 Linear generative model: 

 

 

 

 

 
 

 

 Objective:  Estimate the sparse x assuming n >> m 
 

 

Sparse Representations 

        y x ε
 m-dimensional 

observations 

matrix of n 

basis vectors 

or features 
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Sparse representations reflect low-dimensional structure 



A = [ DFT basis ] 

Sinusoid and Spikes Example 
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A = [ DFT basis + identity] 

Sinusoid and Spikes Example 
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Signal Acquisition 



Signal Acquisition 



Signal Acquisition 

mostly zero 



Compression - JPEG 



Compression – Learned Dictionary 



Representing Faces under Different Lighting 



Face Recognition 

Generative model for faces, given a database 

of images from k subjects 



Face Recognition 

[Wright et al., PAMI 2009] 

Sparse Representation:  

• Given a sparse feasible solution 

• Location of large nonzeros in  x  should reveal identity 

xy       



Prevalence of Sparse Representations 



Optimization 

 Ideal (noiseless) case: 

 

 

 

 

 

 

 Approximate case: 
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Uniqueness 



Difficulties 

 

Forward model is linear, the inverse problem is difficult: 

 

1. Combinatorial number of local minima (NP-hard) 

 

2. Objective is discontinuous 

Computationally tractable approximate methods are 

needed … 



 Ideal (noiseless) case: 

 

 

 

 

 

 Approximate case: 

 

 

 

 

Replace ℓ0 Norm with Convex ℓ1 Norm 
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Why might this work? 



Advantages of ℓ1 Substitution  

 Many fast efficient algorithms (more on this later …) 

 

 

 Many performance guarantees: 
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[Candès et al., 2006; Donoho, 2006] 

[Bertsekas, 2003; Yang et al., 2012] 



Dictionary Correlation Structure 

Examples: 

Low Correlation: Easy 

Example: 

High Correlation: Hard 

arbitrary block 
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Example 

Sparse Generative Solution Minimum ℓ1 Norm Solution 

Require conditions to disallow correlated basis 

vectors in a restricted space 
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Mutual Coherence 

 Let                           

 

 Mutual coherence: 

 

 

 Measures maximum (off-diagonal) correlation among 

dictionary columns. 
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Assume 

 

 

 

Then         is the unique solution to 

 

 

  

Noiseless Analysis of ℓ1 

[Donoho and Elad, 2003] 
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Assume                                 with 
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Noisy Analysis of ℓ1 

[Donoho et al., 2006] 

Theorem 
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Many stronger results are possible with added assumptions 
[Candes and Tao, 2005; Candes, 2008] 



Motivating Example: Face Recognition with 

Occlusions 



Motivating Example: Face Recognition with 

Occlusions 



Robust PCA 

Low-rank Structures Sparse Component Observation Matrix 



Basic Observation Model 
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Classical PCA  

 

 

 

 

 Simple closed-form solution via SVD. 

 

 Limitation: Assumes E = 0, i.e., no significant outliers, 

otherwise the estimate will be poor. 
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Robust PCA  

 

 

 

 

 

 Note:  1/n factor ensures both penalty terms scale between 0 and m 
(i.e., balanced). 

 

 Problems:  
 

1. Non-convex, NP-hard optimization 
 

2. Solution may be non-unique 
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Convex Relaxation 
[Candes et al. 2011] 

 

 

 

 

 

 

 

 Solve: 

 
 Problem:  Provable recovery guarantees exist, but must still 

resolve non-uniqueness issues. 
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Non-Uniqueness Issues 



Non-Uniqueness Issues 



Non-Uniqueness Issues 



Resolving Ambiguity with Incoherence Conditions 



Main Result – Correct Recovery 

If                                             has rank 

 

 

and E0 has Bernoulli support with error probability            

then with very high probability 
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[Candes, Li, Ma, Wright; 2009] 



A Suite of Models and Theoretical Guarantees 



Applications – Low rank structures in visual data 

Visual data exhibit low-dimensional structures 

due to rich local regularities, global symmetries, 

repetitive patterns, or redundant sampling. 



Sensing or Imaging of Low-Rank and Sparse Structures 

corrupted data Low-rank Structures Sparse Structures 

Basic Decomposition: 

Generalization to visual data:  add nonlinear deformation    ? 



*48 images collected from internet 

Real Face Images from the Internet: Low-Rank Structures? 



Robust Alignment of Multiple (Face) Images 

Problem: Given                                  recover    ,       and      . 

Low-rank component Sparse component 

… … 

   – corrupted & misaligned  

observation 

   – aligned low-rank 

images  

   – sparse errors 

… 

Parametric deformations 

(rigid, affine, projective…) 

o 

Objective: Robust Alignment via Low-rank and Sparse (RASL) Decomposition 

Solution: Iteratively solving the linearized convex program:: 



RASL: Detected Faces 

Input: faces from a face detector (    ) 

Average 

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11 



RASL: Faces Aligned 

Output: aligned faces (           ) 

Average 

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11 



RASL: Faces Cleaned as the Low-Rank Component 

Output: clean low-rank faces (    ) 

Average 

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11 



RASL: Sparse Errors of the Face Images 

Output: sparse error images (    ) 

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11 



RASL: Video Stabilization and Enhancement 

Original video (      ) Low-rank part (     ) Sparse part (    ) 

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11 

 Aligned video (          ) 



Reconstructing 3D Geometry and Structures 

Problem: Given                                  recover    ,       and      simultaneously. 

Low-rank component 

(regular patterns…) 
Sparse component 

(occlusion, corruption, foreground…) 

   – deformed observation    – low-rank structures     – sparse errors 

Parametric deformations 

(affine, projective, radial distortion, 3D shape…) 

o 



Solution: Iteratively solving the linearized convex program:: 

Objective: Transformed Robust PCA:: 

   – deformed observation    – low-rank structures     – sparse errors 

o 

Transform Invariant Low-rank Textures (TILT) 

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12 



TILT: Shape from texture 

Input (red window     ) 

Output (rectified green window     ) 

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12 



TILT: Virtual reality 

Zhang, Liang, and Ma, in ICCV 2011 



Virtual Reality in Urban Scenes 



Structured Texture Completion and Repairing 



Structured Texture Completion and Repairing 

TILT Photoshop 

Input 

Output 



                          Regularity of Texts at All Scales 

Input (red window       ) 

Output (rectified green window       ) 

Zhang, Liang, Ganesh, Ma, ACCV’10 and IJCV’12 

Rectification can lead to more robust recognition 



Other Data/Applications: Lyrics and Music Separation 

Songs (STFT) 

Po-Sen Huang, Scott Chen, Paris Smaragdis, Mark Hasegawa-Johnson, ICASSP 2012. 

Low-rank (music) Sparse (voices) 



Other Data/Applications: Protein-Gene Correlation 

Microarray data 

Wang, Machiraju, and Huang, submitted to Bioinformatics 2012. 



Take-home Messages for Visual Data Processing: 

1. (Transformed) low-rank and sparse structures are central to visual data 

modeling, processing, and analyzing;  

 

2. Such structures can now be extracted correctly, robustly, and efficiently, 

from raw image pixels (or high-dim features); 

 

3. These new algorithms unleash tremendous local or global information from 

multiple or single images, emulating or surpassing human perception;  

 

4. These algorithms start to exert significant impact on image/video processing, 

3D reconstruction, and object recognition.  
 

… …  

But try not to abuse or misuse them… 



Core References:  

• RASL: Robust Alignment by Sparse and Low-rank  Decomposition? Peng, Ganesh, Wright, 

Xu, and Ma, Trans. PAMI, 2012. 

• TILT: Transform Invariant Low-rank Textures, Zhang, Liang, Ganesh, and Ma, IJCV 2012. 

• Compressive Principal Component Pursuit, Wright, Ganesh, Min, and Ma, ISIT 2012. 

More references, codes, and applications on the website: 
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Part II:  Optimization for Low-
Dimensional Structures 
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Two convex optimization problems 

      minimization seeks a sparse solution to an underdetermined linear 
          system of equations: 
 
 
 
 
 
 
 
Robust PCA expresses an input data matrix as a sum of a  
      low-rank matrix      and a sparse matrix     . 
 



? 

 

? 

 

 

 

 

 

 

? 

 

? 

Two noise-aware variants 

Basis pursuit denoising seeks a sparse near-solution to an 
underdetermined linear system: 
 
 
 
 
 
 
 
Noise-aware Robust PCA approximates an input data matrix as a sum of a  
      low-rank matrix      and a sparse matrix     . 
 



CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the

form of a 50 pct stock dividend and raised the quarterly dividend by

seven pct .

The company said the dividend was raised to 37.5 cts a share from

35 cts on a pre-split basis, equal to a 25 ct dividend on a post -split

basis.

Chrysler said the stock dividend is payable April 13 to holders of

record March 23 while the cash dividend is payable April 15 to holders

of record March 23. It said cash will be paid in lieu of fract ional shares.

With the split , Chrysler said 13.2 mln shares remain to be purchased

in its stock repurchase program that began in late 1984. That program

now has a target of 56.3 mln shares with the latest stock split .

Chrysler said in a statement the act ions " re° ect not only our out -

standing performance over the past few years but also our opt imism

about the company's future."

Many possible applications … 

… if we can solve these core optimization problems  
accurately, efficiently, and scalably.  

 



Key challenges: nonsmoothness and scale 

Nonsmoothness: structure-inducing regularizers  
    such as                     are not differentiable: 
 

   Great for structure recovery … 
        … challenging for optimization. 
 
 
 
Scale … typical problems involve                       unknowns, or more.  
 
 
Classical interior point methods (e.g., SeDuMi, SDPT3): great convergence  
  rate (linear or better), but                              cost per iteration. High accuracy for  
  small problems. 
 
First-order (gradient-like) algorithms: slower (sublinear) convergence rate, but  
  very cheap iterations.  Moderate accuracy even for large problems.  



Key challenges: nonsmoothness and scale 

Nonsmoothness: structure-inducing regularizers  
    such as                     are not differentiable: 
 

   Great for structure recovery … 
        … challenging for optimization. 
 
 
 

Scale … typical problems involve                       unknowns, or more.  
 
 
 

Classical interior point methods (e.g., SeDuMi, SDPT3): great convergence  
  rate (linear or better), but                              cost per iteration. High accuracy for  
  small problems. 
 
First-order (gradient-like) algorithms: slower (sublinear) convergence rate, but  
  very cheap iterations.  Moderate accuracy even for large problems.  



Why care? Practical impact of algorithm choice 

Time required to solve a 1,000 x 1,000 matrix recovery problem: 

Algorithm Accuracy Rank # iterations time (sec) 

IT  5.99e-006 50 101,268 8,550 119,370.3 

DUAL  8.65e-006 50 100,024 822 1,855.4 

APG 5.85e-006 50 100,347 134 1,468.9 

APGP  5.91e-006 50 100,347 134 82.7 

EALMP  2.07e-007 50 100,014 34 37.5 

IALMP  3.83e-007 50 99,996 23 11.8 

Four orders of magnitude improvement, just by choosing the right 
algorithm to solve the convex program.  
 

This is the difference between theory that will have impact “someday” 
and practical computational techniques that can be applied right now… 



This lecture: Three key techniques 

Proximal gradient methods: coping with nonsmoothness 
 

Optimal first-order methods: accelerating convergence 
 

Augmented Lagrangian methods: handling constraints 

In this hour lecture, we will focus on three recurring ideas that allow  
  us to address the challenges of nonsmoothness and scale: 



Why worry about nonsmoothness? 

The best uniform rate of convergence for first-order methods*  for  
    minimizing              depends very strongly on smoothness: 
 
 
 
  Function class    
   

  smooth            convex, differentiable 

  nonsmooth         convex 

* Such as gradient descent. See e.g., Nesterov, “Introductory Lectures on Convex Optimization” 



 

Can we exploit special structure of                     to get accuracy 
comparable to gradient descent (for smooth functions) ? 

Why worry about nonsmoothness? 

The best uniform rate of convergence for first-order methods*  for  
    minimizing              depends very strongly on smoothness: 
 
 
 
  Function class    
   

  smooth            convex, differentiable 

  nonsmooth         convex 

For                                    , need                        iter. for worst nonsmooth                                                           



What does gradient descent do anyway? 

Consider                      ,  with    convex, differentiable, and            -Lipschitz. 
 
 

        Gradient descent:  
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Quadratic approximation to      around       : 
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What does gradient descent do anyway? 

Consider                      ,  with    convex, differentiable, and            -Lipschitz. 
 
 

        Gradient descent:  
 
 
 

Quadratic approximation to      around       : 
 
 
 
 
 
 

Doesn’t depend on  



What does gradient descent do anyway? 

Consider                      ,  with    convex, differentiable, and            -Lipschitz. 
 
 

        Gradient descent:  
 
 
 

Quadratic approximation to      around       : 
 
 
 
 
Key observation: 
 

   At each iteration, the gradient descent minimizes a (separable) quadratic  
    approximation to the objective function, formed at       .  
 
 



What does gradient descent do anyway? 

Consider                      ,  with    convex, differentiable, and            -Lipschitz. 
 
 

        Gradient descent:  
 
 
 

Quadratic approximation to      around       : 
 
 
 
 
Key observation: 
 

   At each iteration, the gradient descent minimizes a (separable) quadratic  
    approximation to the objective function, formed at       .  
 
Rate for gradient descent: 



Borrowing the approximation idea… 
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nonsmooth smooth 
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nonsmooth smooth 

 
 
 



Borrowing the approximation idea… 

 
 
 
 

nonsmooth smooth 

 
 
 
 
Just approximate the smooth part:  
 
 
 
 



Borrowing the approximation idea… 

 
 
 
 

nonsmooth smooth 

 
 
 
 
Just approximate the smooth part:  
 
 
 
 



Borrowing the approximation idea… 

 
 
 
 

nonsmooth smooth 

 
 
 
 
Just approximate the smooth part:  
 
 
 
 
 
 

… and then minimize to get the next iterate: 
 
 
 
 
 
This is called a proximal gradient algorithm. 



Proximal gradient algorithm 

                                    ,   with     convex differentiable,            -Lipschitz. 
 
 
 
 
 
 
 
Converges at the same rate as gradient descent: 
 
 
 

Efficient whenever we can easily solve the proximal problem 
 
 
 

   i.e., minimize      plus a separable quadratic.  

 
 

        Proximal Gradient: 
 
 



Prox. operators for structure-inducing norms 

For                          ,                       is given by soft thresholding 
 

  the elements of    : 
 
 
This operator shrinks all of the elements of     towards zero: 
 
 
 
 
 
 
 
It can be computed in linear time  (very efficient).  



Prox. operators for structure-inducing norms 

For                          ,                       is given by soft thresholding 
 

  the elements of    : 
 
 
For                             ,                       is given by soft thresholding 
 

  the singular values of      :  for                        ,  
 
 
 
Again efficient (same cost as a singular value decomposition).  
 
Similar expressions exist for other structure inducing norms. 
 



Summing up: proximal gradient 

                                    ,   with     convex differentiable,            -Lipschitz. 
 
 
 
 
 
 
 
Converges at the same rate as gradient descent: 
 
 
 
 

Efficient whenever we can easily solve the proximal problem 
 
 
 

This is the case for many structure-inducing norms.  

 
 

        Proximal Gradient: 
 
 



What have we accomplished so far? 

  Function class        
   

  smooth            convex, differentiable 

  

   smooth + structured nonsmooth: 
  

                       +                                                     convex, 

  nonsmooth         convex 

 

Still a gap between convergence rate of proximal gradient, 
    and the optimal                rate for smooth    .   

 

Can we close this gap?   



Why is the gradient method suboptimal? 

For smooth     , gradient descent is also suboptimal…  
   intuitively, for badly conditioned functions it may “chatter”: 
 
 
         Gradient descent  
 
 
 



Why is the gradient method suboptimal? 

For smooth     , gradient descent is also suboptimal…  
   intuitively, for badly conditioned functions it may “chatter”: 
 
 
         Gradient descent  
 
 
 
The heavy ball method treats the iterate as a point mass with momentum,  
   and hence, a tendency to continue moving in direction                       : 
 
 
         Heavy ball 



Nesterov’s optimal method 

Shares some intuition with heavy ball, but not identical. 
 
Heavy ball :                                                      
 
Nesterov :  
 
 
  

     with a very special choice of        to ensure the optimal rate: 



 
 
 
 

Again form a separable quadratic upper bound, but now at       : 
 
 
 
Again,  replace the gradient step with minimization of the upper bound: 
 
 
 
 
 
 
 

 
Making the same special choice                                                   , we obtain 
  

   an accelerated proximal gradient algorithm. 
 
 
 
 
 

What about smooth + nonsmooth? 

nonsmooth smooth 



 
 
 
 

Again form a separable quadratic upper bound, but now at       : 
 
 
 
Again,  replace the gradient step with minimization of the upper bound: 
 
 
 
 
 
 
 

 
Making the same special choice                                                   , we obtain 
  

   an accelerated proximal gradient algorithm. 
 
 
 
 
 

What about smooth + nonsmooth? 

nonsmooth smooth 



 
 
 
 

Again form a separable quadratic upper bound, but now at       : 
 
 
 
Again,  replace the gradient step with minimization of the upper bound: 
 
 
 
 
 
 
 

 
Making the same special choice                                                   , we obtain 
  

   an accelerated proximal gradient algorithm. 
 
 
 
 
 

What about smooth + nonsmooth? 

nonsmooth smooth 



 
 
 
 

Again form a separable quadratic upper bound, but now at       : 
 
 
 
Again,  replace the gradient step with minimization of the upper bound: 
 
 
 
 
 
 
 

 
Making the same special choice                                                   , we obtain 
  

   an accelerated proximal gradient algorithm. 
 
 
 
 
 

What about smooth + nonsmooth? 

nonsmooth smooth 



 
 
 
 

Again form a separable quadratic upper bound, but now at       : 
 
 
 
Again,  replace the gradient step with minimization of the upper bound: 
 
 
 
 
 
 
 

 
Making the same special choice                                                   , we obtain 
  

   an accelerated proximal gradient algorithm. 
 
 
 
 
 

What about smooth + nonsmooth? 

nonsmooth smooth 



Accelerated proximal gradient algorithm 

                                    ,   with     convex, differentiable,            -Lipschitz. 
 
 
 
 
 
 
 
 
 
 
Converges at the same rate as Nesterov’s optimal gradient method: 
 
 
 

Again, efficient whenever we can easily solve the proximal problem 
 
 

 
 

      Accelerated Proximal Gradient: 
 
 

                Repeat 
 

 
 

                                  with                      and                              . 



What have we accomplished so far? 

  Function class        
   

  smooth            convex, differentiable 

  

   smooth + structured nonsmooth: 
  

                       +                                                     convex, 

  nonsmooth         convex 

 

For composite functions                  , with     smooth,  
if      has an efficient proximal operator, we achieve  

the same (optimal) rate as if       was smooth.   



Consider the equality constrained problem  
 
 
 
Continuation: solve a sequence of unconstrained problems of form 
 
 
 

    with                 . Solutions converge to the solution to       . 
 
 

Big downside: conditioning.  For                                         , the gradient is 
  

        -Lipschitz, with                             As                 , the unconstrained  
 

    problems get harder and harder to solve. 
 
 
Is there a better-structured way to enforce equality constraints? 
 
 

What about constraints? 



 
 
The Lagrangian is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 
Convergent as long as          convex, lower semicontinuous (ess. always). 
 

The method of multipliers 



 
 
The augmented Lagrangian is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 
Convergent as long as          convex, lower semicontinuous (ess. always). 
 

The method of multipliers 

Extra penalty term 



 
 
The augmented Lagrangian is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 

Classical method [Hestenes ‘69, Powell ‘69], see also [Bertsekas ‘82]. 
 
Solves a sequence of unconstrained problems: 
 
Penalty parameter      can be constant (better conditioning)  
   increasing for (faster convergence).  

The method of multipliers 



 
 
The augmented Lagrangian is  
 
 
 
 

The method of multipliers solves        by seeking a saddle point of       :  
 
 
 
 
 
Solves a sequence of unconstrained problems: 
 
 

Penalty parameter              can be constant (avoids  ill-conditioning) ,  
   or increasing for (faster convergence).  
 

The method of multipliers 



Solves, e.g.,                                                 ,   with      convex, lsc.  
 
 
 
 
 
 
 
 

Classical method [Hestenes ‘69, Powell ‘69], see also [Bertsekas ‘82].  
 
Avoids conditioning problems with the continuation / penalty method. 
 
Under very general conditions        converges to a dual optimal point,   
 

                                            ,  and                                                           .  
 

       [Rockafellar ‘73, Eckstein ‘12] . 

Summing up: Method of multipliers 

 
 

      Method of multipliers (augmented Lagrangian) 
 



What have we accomplished so far? 

Consider the robust PCA problem 
 
 
 
Augmented Lagrangian 
 
 
 
The method of multipliers is 
 
 
 
 

Each iteration is a large nonsmooth optimization problem… 
 
 

Is there special structure we can exploit to simplify the iterations?  



Special structure: Separable objectives 

 
 
Aug. Lagrangian: 
 
Minimizing        with respect to      is easy:  
 
 
 
 
 
Minimizing         with respect to      is also easy: 
 
 
 
 
 
Why not just solve for one at a time? 
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Special structure: Separable objectives 

 
 
Aug. Lagrangian: 
 
Minimizing        with respect to      is easy:  
 
 
 

Minimizing        with respect to      is also easy: 
 
 
 
 
 
Why not just solve for one at a time? 



Special structure: Separable objectives 

 
 
Aug. Lagrangian: 
 
Minimizing        with respect to      is easy:  
 
 
 

Minimizing        with respect to      is also easy: 
 
 
 

Why not just alternate? 
 
 
 
 



More generally: Alternating Directions MoM 

Aug. Lagrangian: 

Alternating Directions Method of Multipliers (ADMM) 



Alternating Directions MoM 

Aug. Lagrangian: 

Alternating Directions Method of Multipliers (ADMM) 

Convergence:  if          closed, proper, convex functions, and      has a  
    saddle point, then …       converges to a dual optimal point,  
                                                         

                                  and                                                                                       .                                                                                                      
 
Convergence rate                , in a certain sense [He+Yuan ‘11].  



Linearized Alternating Directions MoM 

Aug. Lagrangian: 
 
ADMM:  
 
 
 
 
 

Linearized ADMM:   just take a proximal gradient step… 
 
 
 
 
 
Much more efficient if      has a simple proximal operator.  

Complicated if 



Linearized Alternating Directions MoM 

Aug. Lagrangian: 
 
 
 
 
 
 
 
 
 

See, e.g., [S. Ma 2012]. Convergent if                                          . 
 

Handles problems with more than two terms, e.g.,                    . 
 

Now can take advantage of two types of special structure  …  
    separability of the objective and prox capability of        .  
 

Linearized ADMM 



Finally, what have we accomplished? 

Time required to solve a 1,000 x 1,000 robust PCA problem: 

Algorithm Accuracy Rank # iterations time (sec) 

IT  5.99e-006 50 101,268 8,550 119,370.3 

DUAL  8.65e-006 50 100,024 822 1,855.4 

APG 5.85e-006 50 100,347 134 1,468.9 

APGP  5.91e-006 50 100,347 134 82.7 

EALMP  2.07e-007 50 100,014 34 37.5 

IALMP  3.83e-007 50 99,996 23 11.8 

Four orders of magnitude improvement, just by choosing the right 
algorithm to solve the convex program: 
 

 Proximal gradient       Accelerated proximal gradient        ALM        ADMoM 

THIS  
LECTURE 



Recap and Conclusions 

Key challenges of nonsmoothness and scale can be mitigated by using 
special structure in sparse and low-rank optimization problems: 
 

       Efficient proximity operators        proximal gradient methods 
 

       Separable objectives       alternating directions methods 
 
 

Efficient moderate-accuracy solutions for very large problems.  
 

       Special tricks can further improve specific cases (factorization for low-rank) 
 
 

Techniques in this literature apply quite broadly. 
 

       Extremely useful tools for creative problem formulation / solution. 
 
 

Fundamental theory guiding engineering practice: 
 

       What are the basic principles and limitations? 
       What specific structure in my problem can allow me to do better? 



To read more… 
Problem complexity and lower bounds: 
   Nesterov – Introductory Lectures on Convex Optimization: A Basic Course 2004 
   Nemirovsky – Problem Complexity and Method Efficiency in Convex Optimization 
 
Proximal gradient methods: 
 
Accelerated gradient methods: 
   Nesterov – A method of solving a convex programming problem with convergence rate O(1/k^2), 1983 
   Tseng – On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, 2008 
   Beck+Teboulle – A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, 2009 
 
Augmented Lagrangian: 
   Hestenes – Multiplier and gradient methods, 1969 
   Powell – A method for nonlinear constraints in minimization problems, 1969 
   Rockafellar – Augmented Lagrangians and the Proximal Point Algorithm in Convex Programming, 1973 
   Bertsekas – Constrained Optimization and Lagrange Multiplier Methods, 1982 
 
Alternating directions: 
   Glowinski+Marocco – Sur l’approximation, par elements finis d’ordre un, et la resolution, par … 1975 
   Gabay+Mercier –  A dual algorithm for the solution of nonlinear variational problems … 1976 
   Eckstein+Bertsekas – On the Douglas-Rachford splitting method and the proximal point … 1992 
   Boyd et. al. – Distributed optimization and statistical learning via the alternating directions …  2010 
   Eckstein – Augmented Lagrangian and Alternating Directions Methods for Convex Optimization 2012 
 



Part III:  Non-Convex 
Alternatives 



Ideal (noiseless) case: 

 

 

 

 

 

Relaxed case: 

 

Replace ℓ0 Norm with Convex ℓ1 Norm 
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Previous Strategy for Sparse Estimation 



Non-Convexity via Iterative Reweighted ℓ1 
 

Non-convex penalty 

 

 

 

 

Updates: 
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Example  

Penalty function: 

 

 

Updates: 
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[Fazel et al., 2003; Candès et al., 2008] 
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Variational Bayes (VB) can provide even more robust 

alternative penalties with provable guarantees 

[Bishop 2006; Wipf et al., 2011] 

A



Why bother with non-convexity? 

Three important (interrelated) cases: 
 

1. Scaling/Shrinkage Problem:  The ℓ1 norm may over-shrink 

large magnitude coefficients. 

 

2. Correlation Problem:  The dictionary A has some correlated 

columns which disrupt ℓ0-ℓ1 equivalence. 

 

3. Extra Parameters:  There are additional parameters to 

estimate, potentially embedded in A. 

 

 

Similar principles hold regarding robust PCA 



Case 1: Scaling and Shrinkage Issues 

 

 • The ℓ1 penalty favors both sparse and low-variance 

solutions:   

 

 

 

 

• Scale-sensitive ℓ1 solutions may over-shrink large 

coefficients, possibly at the expense of sparsity. 

                                   
210

xxx

sparse low 
variance 

[Fan and Li, 2001; Levin et al., 2011] 



 

 If the magnitudes of the non-zero elements in x0 are highly 

scaled, then the sparse recovery problem should be easier. 

 

 

 

 

 

 

 
 

 The ℓ1 solution may overly shrink large coefficients to 

achieve lower variance, and hence may not exploit the 

simpler scenario. 

Scaling Issues 

uniform coefficients (hard) 

x0 

scaled coefficients (easy) 

x0 



Extreme Case:  Jeffreys Distribution 
1

Density:   ( )
| |

p x
x
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Even a simple greedy estimation strategy should work well here 



Simulation Example 

 For each test case: 
 

1. Generate a random dictionary A with 50 rows and 100 columns. 

 

2. Generate a sparse coefficient vector x0.  

 

3. Compute signal via   y = A x0. 

 

4. Run ℓ1 and OMP (a very simple greedy strategy) to try and correctly 

estimate x0. 

 

5. Average over 1000 trials to compute empirical probability of failure. 

 
 Repeat with different sparsity values, i.e.,        . 
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Results 

Unit Coefficients 
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      Scaled Coefficients 

0 0
x

ℓ1      

OMP is significantly better! 



If 

 

for some                                        , then ℓ1 

fails for all elements in this set.     
 

Underlying Problem 

  00 A   ,, xyx  vu
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[Malioutov et al., 2004] 
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Example: 

(u,v)  = set of sparse vectors x0 with support 

  pattern u and sign pattern v 

Theorem 



Always Room for Improvement 

 

 In noiseless case, under mild conditions VB will: 
 

1. Never do worse than the regular convex ℓ1-norm solution. 
 

2. For any A and  (u,v), there will always be cases where it 

performs better (… helps with scaling/shrinkage issues). 
 

 

Theorem  

[Wipf, 2011] 

g
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convex upper bound 

x

With large coefficients, convex 

bound becomes flat               small 

penalty in next iteration 



Simulation Example Revisited 

 For each test case: 
 

1. Generate a random dictionary  with 50 rows and 100 columns. 

 

2. Generate a sparse coefficient vector x0.  

 

3. Compute signal via   y = A x0. 

 

4. Run VB, ℓ1 and OMP (simple greedy strategy) to try and correctly 

estimate x0. 

 

5. Average over 1000 trials to compute empirical probability of failure. 

 
 Repeat with different sparsity values, i.e.,        . 
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Practical Example: Outlier Detection 



 Linear generative model: 

 

 

 

 

 
 

 

 Objective:  Estimate x while rejecting outliers  
 

 

Outlier Problem Cont. 

 m-dimensional 

observations 

predictor 

variables 

unknown 

coefficients, 

non-sparse 

sparse noise  εxy     A      



Convert to Sparse Estimation Problem 

        εεxy TTT NullNullNull AAA
Proj          AProj      Proj 

y~

εyε
ε

~  s.t.   min
0



Once outliers are known, can estimate x via: 

      AAA    ˆ
-1

εyx  TT

[Candès and Tao, 2004] 



Practical Solutions 

 But unknown outliers are likely unconstrained (different 

scales), and convex substitution may be suboptimal: 

 

 

 

 

 Can instead use non-convex VB … 

 

εyε
ε

~  s.t.   min
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Practical Example:  
Surface Normal Estimation via Photometric Stereo 

… 

𝑌 = 𝜌𝑁 𝐿 
Known  

Lighting 

𝜌𝑁 = 𝑌𝐿† 

Surface Normal Map 

[Woodham, 1980] 

Observations Normal 

For basic 

Lambertian 

surface 



Robust Surface Normal Estimation 

 Basic Lambertian model ignores specular reflections, 

shadows, and other artifacts. 

 

 Alternative per-pixel model:   

 

 

 

 

 

 

 Can also include a diffuse error term, and apply VB. 

[Ikehata et al., 2012] 

observations under 

different lightings 

lighting 

matrix 

raw unknown 

surface normal 

sparse errors εny     L      



Results 
[8.4% specular corruptions, 24% shadows]  

VB Error Map ℓ1 Error Map 

Bunny Image Ground Truth 

0.0 

1.0 

[Ikehata et al., 2012] 



Aggregate Results 
[# of images varying] 

VB ℓ1 
Mean Error (deg.) 

[Ikehata et al., 2012] 



Case 2: Correlated Dictionaries 

 Most theory applies to uncorrelated case, but many 

(most?) practical dictionaries have significant structure. 

 

 Examples: 

 



Dictionary Correlation Structure 

Examples: 

Low Correlation: Easy 

Example: 

High Correlation: Hard 

arbitrary block 

diagonal 

( )     iid (0,1) entries unstr N

( )     random rows of DFT unstr

~ 
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AAT
AAT

 )()( A    A uncorcor
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How do we compensate for 

dictionary structure? 
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Let vector  denote the column norms of A and define 
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Then the problem                                   

 

 

is invariant to column norms. 

Simple Example: 

So what about some function g that depends on 

the correlation structure AAT



VB and Dictionary Correlations 

VB is equivalent to solving the penalized regression problem 

 

 

 

for some function  gVB  that  favors a sparse  x. 

 AA;     A  min
2

2

T

VBg xxy
x



[Palmer et al., 2006; Wipf et al., 2011] 

Variables are penalized jointly based on the 

correlation structure of A. 

This allows VB to compensate for strong 

dictionary correlations. 

Notes on gVB : 

AAT



any            dictionary such that 

ℓ1 minimization succeeds for 

all 

 

 

Clustered Dictionary Model 
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with a “cluster” of ni basis 

vectors within a radius  

(cluster support)  set of cluster 
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Simple Clustered Example 

 

 

 

 

 

 

 

 

 The ℓ1 solution typically selects either zero or one basis 

vector from each cluster of correlated columns. 

 While the ‘cluster support’ may be partially correct, the 

chosen basis vectors likely will not be. 

 

 

 

Problem: 

),(),( AA kcor

T

kcor



VB and the Correlation Problem 

 

 Let x0 be a sparse signal. 
 

 Under mild conditions, a minor variant of VB will recover x0 

given any                        provided 

 

 

 

   for some  sufficiently small. 
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Theorem  

[Wipf and Wu, 2012] 
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Key Message: Non-convex algorithms can succeed 

even when strong correlations cause failure with ℓ1  



MEG/EEG Example 

? 

A 

source space (x0) sensor space (y) 

 Forward model dictionary A can be computed using 

Maxwell’s equations [Sarvas,1987]. 

 Will be dependent on location of sensors, but always highly 

correlated by physical constraints. 

  

 

 

 

 



Noisy Localization Results 

VB 

[Owen et al., 2013] 

True 

ℓ1 



Real Data 

[Owen et al., 2013] 



Remarks 

 Non-convex VB algorithms implicitly employ a penalty 
that helps compensate for correlated dictionaries. 

 

 MEG/EEG experiments show advantages of non-
convexity when A is: 

 
1. Highly underdetermined, e.g., 

 

 

 

2. Very ill-conditioned and structured, i.e., columns/rows are 
highly correlated. 
 

 

 
 

510    and    275  nm



Case 3: Dictionary Has 

Embedded Parameters 

 Ideal (noiseless) : 

 

 

 

 Approximate version: 

 

 

 

 

 Applications:  Bilinear models, blind deconvolution, 

blind image deblurring, etc. 
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[Fergus et al., 2006; Levin et al., 2011] 



Example: Blind Deconvolution 

 Observation model: 

 

 

 

 

 Would like to estimate the unknown x blindly since k 

is also unknown. 

 

 In many situations (e.g., image deblurring) unknown x 

is sparse. 

 

 

 

  εxkεxky  A            
convolution 

operator 

toeplitz 

matrix 



Efficient Convex Substitution? 

Solve: 

 

 

 

 

Problem:   

 

 

 

 

 A degenerate solution is favored: 
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We can’t use ℓ1 



Practical Example: Blind Image Deblurring 

 Basic convolution model  (can be generalized): 

 

 

blurry 

image 
blur  

kernel 

sharp 

image 

Unknown quantities we 

need to estimate 

εxky     



Gradients of Natural Images are Sparse 

Can solve a modified sparse coding problem in gradient domain 

:  vectorized derivatives of the sharp image 

:  vectorized derivatives of the blurry image 



Practical Blind Deblurring Algorithm 

 A nearly ideal cost function for blind deblurring is 

 

 

 
 

 But local minima are a huge problem, and convex 

relaxation provably fails … 

 

 However, can leverage a principled non-convex VB 

substitution: 
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[Zhang and Wipf, 2013] 
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Blind Deblurring Evaluation Dataset 

Levin et al. dataset [CVPR, 2009] 

 4 images of size 255 × 255 and 8 different empirically measured 

ground-truth blur kernels, giving 32 total blurry images 
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Estimation Results 

Shan 

Cho 

Fergus 

Levin 

Xu 

VB 

Note:  All of these competing methods require 

considerable heuristics and tuning parameters 



Extensions 

Can easily adapt our model to more general scenarios: 
 

1. Non-uniform convolution models 

 

 

 

 

 

 

2. Multiple images for simultaneous denoising and deblurring 

 

Blurry image is 

a superposition 

of translated 

and rotated 

sharp images 

Blurry Noisy 

[Yuan, et al., SIGGRAPH, 2007] 



Non-Uniform Real-World Deblurring 

Blurry Whyte et al. VB 

O. Whyte et al. , Non-uniform deblurring for shaken images, CVPR, 2010. 



Non-Uniform Real-World Deblurring 

Blurry Gupta et al. VB 

S. Hirsch et al. , Single image deblurring using motion density functions, ECCV, 2010. 



Non-Uniform Real-World Deblurring 

Blurry Joshi et al. VB 

N. Joshi et al. , Image deblurring using inertial measurement sensors, SIGGRAPH, 2010. 



Non-Uniform Real-World Deblurring 

Blurry Hirsch et al. VB 

S. Hirsch et al. , Fast removal of non-uniform camera shake, ICCV, 2011. 



Dual Motion Real-World Deblurring 

Blurry I 

Blurry II 

Zhu et al. 

VB 

X. Zhu et al. , Deconvolving PSFs for better motion deblurring using multiple images, ECCV, 2012. 



recovered image 

Personal Photos 

two blurry photos taken at a conference 



Recap 

 Three (interrelated) issues with the convex ℓ1 norm: 
 

1. Over-shrinkage at the expense of sparsity 

 

2. Correlated dictionaries disrupt performance 

 

3. Extra dictionary parameters may be hard to estimate 

 

 In all three, non-convex substitutes can potentially 

enhance performance dramatically. 

 

 



Similar Principles Apply to other Low-

Dimensional Models 

+ = 

Robust PCA 

low rank sparse observation 

[Candès et al., 2011; Wipf, 2012] 
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