Sparse and Low-Rank Representations for Computer Vision

Slides courtesy of:

Presenter:
David Wipf
Microsoft Research

Yi Ma

Shanghai Tech

John Wright

Columbia University

CONTEXT: Data increasingly massive, high-dimensional...

How to extract low-dim structures from such high-dim data?

CONTEXT: Data increasingly massive, high-dimensional...

Recognition

Surveillance

Search and Ranking

Bioinformatics

The curse of dimensionality:
...increasingly demand inference with limited samples for very highdimensional data.

The blessing of dimensionality:
... real data highly concentrate on low-dimensional, sparse, or degenerate structures in the high-dimensional space.

CONTEXT: Low dimensional structures in visual data

Visual data exhibit low-dimensional structures due to rich local regularities, global symmetries, repetitive patterns, or redundant sampling.

CONTEXT: But life is not so easy...

Real application data often contain missing observations, corruptions, or subject to unknown deformation or misalignment.

Classical methods (e.g., PCA, least square regression) break down...

In their place: Sparse representations, robust PCA, and many others

Two Low-Dimensional Representations

Underdetermined system

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

Robust PCA

Corrupted Observations

Low-rank Structures

Sparse Structures

Overview

- Part I: Motivation, Theory, Applications
- Part II: Efficient Convex Algorithms
- Part III: Non-Convex Alternatives

Part I: Motivation, Theory, Applications

Sparse Representations

- Linear generative model:

- Objective: Estimate the sparse \mathbf{x} assuming $n \gg m$

Example

$$
\mathbf{y}=\left[\begin{array}{r}
-4 \\
-5 \\
3
\end{array}\right], \quad \mathrm{A}=\left[\begin{array}{rrrrr}
1 & 4 & 1 & 1 & 6 \\
-2 & 1 & -4 & 2 & -3 \\
3 & 3 & 2 & -2 & 1
\end{array}\right]
$$

Want to find an \mathbf{x} that solves
 $$
\mathbf{y}=\mathrm{A} \mathbf{x}
$$

$$
\mathbf{x}=\left[\begin{array}{r}
4 \\
-1 \\
3 \\
5 \\
-2
\end{array}\right]
$$

$$
\mathbf{x}_{0}=\left[\begin{array}{r}
0 \\
0 \\
2 \\
0 \\
-1
\end{array}\right]
$$

Sparse representations reflect low-dimensional structure

Sinusoid and Spikes Example

$\mathrm{A}=[$ DFT basis $]$

Sinusoid and Spikes Example

$\mathrm{A}=[$ DFT basis + identity $]$

Observed Signal (y)

Sparse Decomposition (x)

Signal Acquisition

$$
y_{i}=\int_{\boldsymbol{u}} \boldsymbol{z}(u) \exp \left(-2 \pi j \boldsymbol{k}\left(t_{i}\right)^{*} \boldsymbol{u}\right) d \boldsymbol{u}
$$

Observations are Fourier coefficients!

Image to be sensed

Signal Acquisition

Wavelet coefficients: $\boldsymbol{z}=\boldsymbol{\Psi} \boldsymbol{x}$
[Lustig, Donoho + Pauly '10] ... brain image - Lustig '12

Signal Acquisition

Compression - JPEG

[Wallace '91]

Compression - Learned Dictionary

See [Elad+Bryt '08], [Horev et. A1., '12] ... Image: [Aharon+Elad ‘05]

Representing Faces under Different Lighting

Face Recognition

Generative model for faces, given a database of images from k subjects

[W., Yang, Ganesh, Sastry, Ma '09]

Face Recognition

One large underdetermined system: $\boldsymbol{y}=\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime}$

Sparse Representation:

- Given a sparse feasible solution $\mathbf{y} \approx \Phi^{\prime} \mathbf{x}^{\prime}$
- Location of large nonzeros in \mathbf{X} should reveal identity

Prevalence of Sparse Representations

Underdetermined system

$$
y=A x
$$

Optimization

- Ideal (noiseless) case:

$$
\begin{gathered}
\min _{\mathbf{x}}\|\mathbf{x}\|_{0} \text { s.t. } \mathbf{y}=\mathrm{A} \mathbf{x} \\
\|\mathbf{x}\|_{0}=\lim _{p \rightarrow 0} \sum_{\mathrm{i}}\left|x_{i}\right|^{p}=\# \text { of nonzero elements in } \mathbf{x} \\
\hline
\end{gathered}
$$

- Approximate case:

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathrm{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{0}
$$

Uniqueness

Theorem (Gorodnitsky+Rao '97).

Suppose $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}$, and let $k=\left\|\boldsymbol{x}_{0}\right\|_{0}$. If $\operatorname{null}(\boldsymbol{A})$ contains no $2 k$-sparse vectors, \boldsymbol{x}_{0} is the unique optimal solution to

$$
\text { minimize }\|\boldsymbol{x}\|_{0} \quad \text { subject to } \quad \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} .
$$

Difficulties

Forward model is linear, the inverse problem is difficult:

1. Combinatorial number of local minima (NP-hard)
2. Objective is discontinuous

Computationally tractable approximate methods are needed ...

Replace ℓ_{0} Norm with Convex ℓ_{1} Norm

- Ideal (noiseless) case:

$$
\begin{aligned}
& \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \text { s.t. } \mathbf{y}=\Phi \mathbf{x} \\
& \text { บ } \\
& \|\mathbf{x}\|_{1}=\sum_{\mathrm{i}}\left|x_{i}\right|
\end{aligned}
$$

- Approximate case:

$$
\min _{\mathbf{x}}\|\mathbf{y}-\Phi \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

Tightest convex relaxation over unit ball

Why might this work?

minimize $\quad\|\boldsymbol{x}\|_{1} \quad$ subject to $\quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$.
\mathbb{R}^{n}

Advantages of ℓ_{1} Substitution

- Many fast efficient algorithms (more on this later ...)
[Bertsekas, 2003; Yang et al., 2012]
- Many performance guarantees:

$$
\begin{aligned}
\mathbf{x}_{0} & =\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathrm{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{0} \\
& \approx \arg \min _{\mathbf{x}}\|\mathbf{y}-\mathrm{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
\end{aligned}
$$

[Candès et al., 2006; Donoho, 2006]

Dictionary Correlation Structure

Low Correlation: Easy

Examples:
$\mathrm{A}_{\text {(uncor) }} \sim \operatorname{iid} N(0,1)$ entries
$\mathrm{A}_{\text {(uncor) }} \sim$ random rows of DFT

High Correlation: Hard

Example:

$$
\mathrm{A}_{(\text {cor })}=\underbrace{\Psi \mathrm{A}_{(\text {uncor })} \Phi}_{\text {arbitrary }} \underbrace{\Phi}_{\text {block }}
$$

Example

$$
\mathrm{A}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}, \mathbf{a}_{4}\right] \quad \mathbf{x}_{0}=[0,0,1,1]^{T}
$$

Require conditions to disallow correlated basis vectors in a restricted space

Mutual Coherence

- Let $\mathrm{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$
- Mutual coherence: $\mu(\mathrm{A})=\max _{i \neq j} \frac{\left|\mathbf{a}_{i}^{T} \mathbf{a}_{j}\right|}{\left\|\mathbf{a}_{i}\right\|_{2}\left\|\mathbf{a}_{j}\right\|_{2}}$
- Measures maximum (off-diagonal) correlation among dictionary columns.

Noiseless Analysis of ℓ_{1}

Theorem

Assume

$$
\left\|\mathbf{x}_{0}\right\|_{0}<\frac{1}{2}\left[1+\frac{1}{\mu(\mathrm{~A})}\right]
$$

Then \mathbf{x}_{0} is the unique solution to

$$
\min _{\mathbf{x}}\|\mathbf{x}\|_{1} \quad \text { s.t. } \mathbf{y}=\mathrm{A} \mathbf{x}_{0}=\mathrm{A} \mathbf{x}
$$

[Donoho and Elad, 2003]

Noisy Analysis of ℓ_{1}

Theorem

Assume $\quad \mathbf{y}=\mathrm{A} \mathbf{x}_{0}+\boldsymbol{\varepsilon}$ with

$$
\|\boldsymbol{\varepsilon}\|_{2} \leq \beta \quad\left\|\mathbf{x}_{0}\right\|_{0}<\frac{1}{4}\left[1+\frac{1}{\mu(\mathrm{~A})}\right]
$$

Then $\quad \hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \quad$ s.t. $\|\mathbf{y}-\mathrm{A} \mathbf{x}\|_{2} \leq \beta$
satisfies $\quad\left\|\hat{\mathbf{x}}-\mathbf{x}_{0}\right\|_{2}^{2} \leq \frac{4 \beta^{2}}{1-\mu(\mathrm{A})\left[4\left\|\mathbf{x}_{0}\right\|_{0}-1\right]}$
[Donoho et al., 2006]
Many stronger results are possible with added assumptions
[Candes and Tao, 2005; Candes, 2008]

Motivating Example: Face Recognition with Occlusions

Motivating Example: Face Recognition with Occlusions

Robust PCA

Observation Matrix

Low-rank Structures

Sparse Component

Basic Observation Model

$$
Y=X+E+\eta
$$

Y	$:$	$m \times n$ observation matrix, $m \leq n$
X	$:$	low rank approximation $A B^{T}$
E	$:$	large sparse errors
η	$:$	Gaussian errors

Classical PCA

$$
\min _{X} \frac{1}{\lambda}\|Y-X\|_{F}^{2}+\operatorname{rank}[X]
$$

- Simple closed-form solution via SVD.
- Limitation: Assumes $E=0$, i.e., no significant outliers, otherwise the estimate will be poor.

Robust PCA

$$
\min _{X, E} \frac{1}{\lambda}\|Y-X-E\|_{F}^{2}+\operatorname{rank}[X]+\frac{1}{n}\|E\|_{0}
$$

- Note: $1 / n$ factor ensures both penalty terms scale between 0 and m (i.e., balanced).
- Problems:

1. Non-convex, NP-hard optimization
2. Solution may be non-unique

Convex Relaxation

[Candes et al. 2011]

$$
\begin{array}{cc}
\operatorname{rank}(\boldsymbol{X})=\#\left\{\sigma_{i}(\boldsymbol{X}) \neq 0\right\} . & \|\boldsymbol{E}\|_{0}=\#\left\{\boldsymbol{E}_{i j} \neq 0\right\} . \\
\downarrow \downarrow & \downarrow \downarrow \\
\|\boldsymbol{X}\|_{*}=\sum_{i} \sigma_{i}(\boldsymbol{X}) . & \|\boldsymbol{E}\|_{1}=\sum_{i j}\left|\boldsymbol{E}_{i j}\right| .
\end{array}
$$

- Solve: $\min _{X, E} \frac{1}{\lambda}\|Y-X-E\|_{F}^{2}+\|X\|_{*}+\frac{1}{\sqrt{n}}\|E\|_{1}$
- Problem: Provable recovery guarantees exist, but must still resolve non-uniqueness issues.

Non-Uniqueness Issues

Some very sparse matrices are also low-rank:

Can we recover \boldsymbol{X} that are incoherent with the standard basis?

Certain sparse error patterns \boldsymbol{E} make recovering \boldsymbol{X} impossible:

Can we correct \boldsymbol{E} whose support is not adversarial?

Non-Uniqueness Issues

Some very sparse matrices are also low-rank:

Can we recover \boldsymbol{X} that are incoherent with the standard basis?

Certain sparse error patterns \boldsymbol{E} make recovering \boldsymbol{X} impossible:

Can we correct \boldsymbol{E} whose support is not adversarial?

Non-Uniqueness Issues

Some very sparse matrices are also low-rank:

Can we recover \boldsymbol{X} that are incoherent with the standard basis?

Certain sparse error patterns \boldsymbol{E} make recovering \boldsymbol{X} impossible:

Can we correct \boldsymbol{E} whose support is not adversarial?

Resolving Ambiguity with Incoherence Conditions

Can we recover \boldsymbol{X} that are incoherent with the standard basis from almost all errors \boldsymbol{E} ?

Incoherence condition on singular vectors, singular values arbitrary:

$$
\begin{aligned}
\text { Singular vectors of } \boldsymbol{X} \text { not too spiky: } & \left\{\begin{array}{l}
\max _{i}\left\|\boldsymbol{U}_{i}\right\|^{2} \leq \mu r / m \\
\max _{i}\left\|\boldsymbol{V}_{i}\right\|^{2} \leq \mu r / n .
\end{array}\right. \\
\text { not too cross-correlated: } & \left\|\boldsymbol{U} \boldsymbol{V}^{*}\right\|_{\infty} \leq \sqrt{\mu r / m n}
\end{aligned}
$$

Uniform model on error support, signs and magnitudes arbitrary:

$$
\operatorname{support}(\boldsymbol{E}) \sim \operatorname{uni}\binom{[m] \times[n]}{\rho m n}
$$

Main Result - Correct Recovery

Theorem

If $\quad X_{0} \in \mathfrak{R}^{m \times n}, \quad n \geq m \quad$ has rank

$$
r \leq \rho_{r} \frac{m}{\mu[\log (n)]^{2}}
$$

and E_{0} has Bernoulli support with error probability $\varepsilon \leq \rho_{s} n m$, then with very high probability

$$
\left\{X_{0}, E_{0}\right\}=\arg \min _{X, E}\|X\|_{: *}+\frac{1}{\sqrt{n}}\|E\|_{1} \quad \text { s.t. } Y=X+E
$$

and the minimizer is unique
"Convex optimization recovers matrices of rank $O\left(\frac{m}{\log ^{2}(n)}\right)$
from errors corrupting $O(m n)$ entries"
[Candes, Li, Ma, Wright; 2009]

A Suite of Models and Theoretical Guarantees

For robust recovery of a family of low-dimensional structures:

- [Zhou et. al. ‘09] Spatially contiguous sparse errors via MRF
- [Bach '10] - structured relaxations from submodular functions
- [Negahban+Yu+Wainwright '10] - geometric analysis of recovery
- [Becker+Candès+Grant '10] - algorithmic templates
- [Xu+Caramanis+Sanghavi '11] column sparse errors $\mathrm{L}_{2,1}$ norm
- [Recht+Parillo+Chandrasekaran+Wilsky '11] - compressive sensing of various structures
- [Candes+Recht '11] - compressive sensing of decomposable structures

$$
X^{0}=\arg \min \|X\|_{0} \quad \text { s.t. } \quad \mathcal{P}_{Q}(X)=\mathcal{P}_{Q}\left(X^{0}\right)
$$

- [McCoy+Tropp'11] - decomposition of sparse and low-rank structures

$$
\left(X_{1}^{0}, X_{2}^{0}\right)=\arg \min \left\|X_{1}\right\|_{(1)}+\lambda\left\|X_{2}\right\|_{(2)} \text { s.t. } X_{1}+X_{2}=X_{1}^{0}+X_{2}^{0}
$$

- [W.+Ganesh+Min+Ma, I\&I'13] - superposition of decomposable structures

$$
\left(X_{1}^{0}, \ldots, X_{k}^{0}\right)=\arg \min \sum \lambda_{i}\left\|X_{i}\right\|_{(i)} \text { s.t. } \mathcal{P}_{Q}\left(\sum_{i} X_{i}\right)=\mathcal{P}_{Q}\left(\sum_{i} X_{i}^{0}\right)
$$

Take home message: Let the data and application tell you the structure...

Applications - Low rank structures in visual data

Visual data exhibit low-dimensional structures due to rich local regularities, global symmetries, repetitive patterns, or redundant sampling.

Sensing or Imaging of Low-Rank and Sparse Structures

Basic Decomposition:

corrupted data

Low-rank Structures

Sparse Structures

Generalization to visual data: add nonlinear deformation τ ?

Real Face Images from the Internet: Low-Rank Structures?

*48 images collected from internet

Robust Alignment of Multiple (Face) Images

D - corrupted \& misaligned observation

A - aligned low-rank images

E - sparse errors

Problem: Given $D \circ \tau=A_{0}+E_{0}$, recover τ, A_{0} and E_{0}. Parametric deformations Low-rank component Sparse component (rigid, affine, projective...)

Objective: Robust Alignment via Low-rank and Sparse (RASL) Decomposition

$$
\min \|A\|_{*}+\lambda\|E\|_{1} \quad \operatorname{subj} \quad A+E=D \circ \tau
$$

Solution: Iteratively solving the linearized convex program:

$$
\min \|A\|_{*}+\lambda\|E\|_{1} \quad \operatorname{subj} \quad A+E=D \circ \tau_{k}+J \cdot \Delta \tau
$$

RASL: Detected Faces

Input: faces from a face detector (D)

Average

Peng, Ganesh, Wright, Ma, CVPR'10, TPAMI'11

RASL: Faces Aligned

Output: aligned faces ($D \circ \tau$)

Average

Peng, Ganesh, Wright, Ma, CVPR'10, TPAMI'11

RASL: Faces Cleaned as the Low-Rank Component

Output: clean low-rank faces (A)

Average

Peng, Ganesh, Wright, Ma, CVPR'10, TPAMI'11

RASL：Sparse Errors of the Face Images

Output：sparse error images (E)

	2		迤				年事，
2	－				\％		$\underline{0}$
令会	$m \cdot$	$=$					\％
1		\％				－	
		－－			x	级	－
	－			边		V8	208

Peng，Ganesh，Wright，Ma，CVPR＇10，TPAMI＇11

RASL: Video Stabilization and Enhancement

Original video (D) Aligned video ($D \circ \tau$) Low-rank part (A) \quad Sparse part (E)

Reconstructing 3D Geometry and Structures

D - deformed observation

$\circ \tau=$
A - low-rank structures

E - sparse errors

Problem: Given $D \circ \tau=A_{0}+E_{0}$, recover τ, A_{0} and E_{0} simultaneously.

Low-rank component (regular patterns...)

Sparse component (occlusion, corruption, foreground...)

Parametric deformations
(affine, projective, radial distortion, 3D shape...)

Transform Invariant Low-rank Textures (TILT)

D - deformed observation

A - low-rank structures

E - sparse errors

Objective: Transformed Robust PCA:

$$
\min \|A\|_{*}+\lambda\|E\|_{1} \quad \operatorname{subj} \quad A+E=D \circ \tau
$$

Solution: Iteratively solving the linearized convex program:

$$
\min \|A\|_{*}+\lambda\|E\|_{1} \quad \operatorname{subj} \quad A+E=D \circ \tau_{k}+J \cdot \Delta \tau
$$

Zhang, Liang, Ganesh, Ma, ACCV'10, IJCV'12

TILT: Shape from texture

Input (red window D)

Output (rectified green window A)

Zhang, Liang, Ganesh, Ma, ACCV'10, IJCV'12

TILT: Virtual reality

Zhang, Liang, and Ma, in ICCV 2011

Virtual Reality in Urban Scenes

Structured Texture Completion and Repairing

Structured Texture Completion and Repairing

TILT

Input

Photoshop

Regularity of Texts at All Scales

Input (red window D)

Output (rectified green window A)

Faith

Rectification can lead to more robust recognition
Zhang, Liang, Ganesh, Ma, ACCV'10 and IJCV'12

Other Data/Applications: Lyrics and Music Separation

Songs (STFT)

Low-rank (music)

Sparse (voices)

Po-Sen Huang, Scott Chen, Paris Smaragdis, Mark Hasegawa-Johnson, ICASSP 2012.

Other Data/Applications: Protein-Gene Correlation

Microarray data
(CANSocific Gens michorray)

Fig. 1. The diagram of the workflow of the method presented in this paper.

Endorthelial Epilheilal Fibvonlas' Macroportage

Take-home Messages for Visual Data Processing:

1. (Transformed) low-rank and sparse structures are central to visual data modeling, processing, and analyzing;
2. Such structures can now be extracted correctly, robustly, and efficiently, from raw image pixels (or high-dim features);
3. These new algorithms unleash tremendous local or global information from multiple or single images, emulating or surpassing human perception;
4. These algorithms start to exert significant impact on image/video processing, 3D reconstruction, and object recognition.

But try not to abuse or misuse them...

OTHER REFERENCES + ACKNOWLEDGEMENT

Core References:

- RASL: Robust Alignment by Sparse and Low-rank Decomposition? Peng, Ganesh, Wright, Xu, and Ma, Trans. PAMI, 2012.
- TILT: Transform Invariant Low-rank Textures, Zhang, Liang, Ganesh, and Ma, IJCV 2012.
- Compressive Principal Component Pursuit, Wright, Ganesh, Min, and Ma, ISIT 2012.

More references, codes, and applications on the website:

http://perception.csl.illinois.edu/matrix-rank/home.html

Colleagues:

- Prof. Emmanuel Candes (Stanford)
- Prof. John Wright (Columbia)
- Prof. Zhouchen Lin (Peking University)
- Dr. Yasuyuki Matsushita (MSRA)
- Dr. Allen Yang (Berkeley)
- Dr. Arvind Ganesh (IBM Research, India)
- Prof. Shuicheng Yan (Na. Univ. Singapore)
- Prof. Jian Zhang (Sydney Tech. Univ.)
- Prof. Lei Zhang (HK Polytech Univ.)
- Prof. Liangshen Zhuang (USTC)

Students:

- Zhengdong Zhang (MSRA, Tsinghua University)
- Xiao Liang (MSRA, Tsinghua University)
- Xin Zhang (MSRA, Tsinghua University)
- Kerui Min (UIUC)
- Dr. Zhihan Zhou (UIUC)
- Dr. Hossein Mobahi (UIUC)
- Dr. Guangcan Liu (UIUC)
- Dr. Xiaodong Li (Stanford)

Part II: Optimization for LowDimensional Structures

Two convex optimization problems

ℓ^{1} minimization seeks a sparse solution to an underdetermined linear system of equations:

$$
\min \|\boldsymbol{x}\|_{1} \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

Robust PCA expresses an input data matrix as a sum of a low-rank matrix L and a sparse matrix S.

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \text { s.t. } \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Two noise-aware variants

Basis pursuit denoising seeks a sparse near-solution to an underdetermined linear system:

$$
\min \|\boldsymbol{x}\|_{1}+\frac{\lambda}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}
$$

Noise-aware Robust PCA approximates an input data matrix as a sum of a low-rank matrix L and a sparse matrix \boldsymbol{S}.

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\frac{\gamma}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}
$$

Many possible applications ...

... if we can solve these core optimization problems accurately, efficiently, and scalably.

Key challenges: nonsmoothness and scale

Nonsmoothness: structure-inducing regularizers such as $\|\cdot\|_{1},\|\cdot\|_{*}$ are not differentiable:

Great for structure recovery ...
... challenging for optimization.

Key challenges: nonsmoothness and scale

Nonsmoothness: structure-inducing regularizers such as $\|\cdot\|_{1},\|\cdot\|_{*}$ are not differentiable:

Great for structure recovery ...
... challenging for optimization.

Scale ... typical problems involve $10^{4}-10^{6}$ unknowns, or more.

$$
\text { Time }=(\# \text { iterations for an } \varepsilon \text {-accurate soln. }) \times(\text { time per iteration })
$$

Classical interior point methods (e.g., SeDuMi, SDPT3): great convergence rate (linear or better), but Ω (\#unknowns ${ }^{3}$) cost per iteration. High accuracy for small problems.

First-order (gradient-like) algorithms: slower (sublinear) convergence rate, but very cheap iterations. Moderate accuracy even for large problems.

Why care? Practical impact of algorithm choice

Time required to solve a $1,000 \times 1,000$ matrix recovery problem:

Algorithm	Accuracy	Rank	$\\|E\\|_{0}$	\# iterations	time (sec)
IT	$5.99 \mathrm{e}-006$	50	101,268	8,550	$119,370.3$
DUAL	$8.65 \mathrm{e}-006$	50	100,024	822	$1,855.4$
APG	$5.85 \mathrm{e}-006$	50	100,347	134	$1,468.9$
APG $_{p}$	$5.91 \mathrm{e}-006$	50	100,347	134	82.7
EALM $_{p}$	$2.07 \mathrm{e}-007$	50	100,014	34	37.5
IALM $_{P}$	$3.83 \mathrm{e}-007$	50	99,996	23	11.8

Four orders of magnitude improvement, just by choosing the right algorithm to solve the convex program.

This is the difference between theory that will have impact "someday" and practical computational techniques that can be applied right now...

This lecture: Three key techniques

In this hour lecture, we will focus on three recurring ideas that allow us to address the challenges of nonsmoothness and scale:

Proximal gradient methods: coping with nonsmoothness
Optimal first-order methods: accelerating convergence
Augmented Lagrangian methods: handling constraints

Why worry about nonsmoothness?

The best uniform rate of convergence for first-order methods* for minimizing $f \in \mathcal{F}$ depends very strongly on smoothness:

Function class \mathcal{F}	$f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)$						
smooth f convex, differentiable $\left\\|\nabla f(\boldsymbol{x})-\nabla f\left(\boldsymbol{x}^{\prime}\right)\right\\| \leq L\left\\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\\|$	$\frac{C L\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|^{2}}{k^{2}}=\Theta\left(\frac{1}{k^{2}}\right)$						
nonsmooth f convex $\left\|f(\boldsymbol{x})-f\left(\boldsymbol{x}^{\prime}\right)\right\| \leq M\left\\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\\|$	$\frac{C M\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|}{\sqrt{k}}=\Theta\left(\frac{1}{\sqrt{k}}\right)$						

[^0]
Why worry about nonsmoothness?

The best uniform rate of convergence for first-order methods* for minimizing $f \in \mathcal{F}$ depends very strongly on smoothness:

Function class \mathcal{F}	$f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)$						
$\underbrace{\text { smooth }}$$f$ convex, differentiable $\left\\|\nabla f(\boldsymbol{x})-\nabla f\left(\boldsymbol{x}^{\prime}\right)\right\\| \leq L\left\\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\\|$	$\frac{C L\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|^{2}}{k^{2}}=\Theta\left(\frac{1}{k^{2}}\right)$						
nonsmoothf convex $\left\|f(\boldsymbol{x})-f\left(\boldsymbol{x}^{\prime}\right)\right\| \leq M\left\\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\\|$	$\frac{C M\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|}{\sqrt{k}}=\Theta\left(\frac{1}{\sqrt{k}}\right)$						

For $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \varepsilon$, need $k=O\left(\varepsilon^{-2}\right)$ iter. for worst nonsmooth f
Can we exploit special structure of $\|\cdot\|_{1},\|\cdot\|_{*}$ to get accuracy comparable to gradient descent (for smooth functions)?

What does gradient descent do anyway?

Consider $\min f(\boldsymbol{x})$, with f convex, differentiable, and $\nabla f L$-Lipschitz.

Gradient descent: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)$

What does gradient descent do anyway?

Consider $\min f(\boldsymbol{x})$, with f convex, differentiable, and $\nabla f L$-Lipschitz.

Gradient descent: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)$

Quadratic approximation to f around \boldsymbol{x}_{k} : $\hat{f}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2}$

What does gradient descent do anyway?

Consider $\min f(\boldsymbol{x})$, with f convex, differentiable, and $\nabla f L$-Lipschitz.

Gradient descent: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)$

Quadratic approximation to f around \boldsymbol{x}_{k} :

$$
\hat{f}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2}
$$

What does gradient descent do anyway?

Consider $\min f(\boldsymbol{x})$, with f convex, differentiable, and $\nabla f L$-Lipschitz.

Gradient descent: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)$

Quadratic approximation to f around \boldsymbol{x}_{k} :

$$
\begin{aligned}
\hat{f}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) & \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2} \\
& =\frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+\underline{\underline{\text { Doesn't depend on } \boldsymbol{x}}}^{\varphi\left(\boldsymbol{x}_{k}\right) .}
\end{aligned}
$$

What does gradient descent do anyway?

Consider $\min f(\boldsymbol{x})$, with f convex, differentiable, and $\nabla f L$-Lipschitz.

Gradient descent: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)$

Quadratic approximation to f around \boldsymbol{x}_{k} :

$$
\begin{aligned}
\hat{f}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) & \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2} \\
& =\frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+\varphi\left(\boldsymbol{x}_{k}\right) .
\end{aligned}
$$

Key observation: $\boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} f\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right)$.
At each iteration, the gradient descent minimizes a (separable) quadratic approximation to the objective function, formed at \boldsymbol{x}_{k}.

What does gradient descent do anyway?

Consider $\min f(\boldsymbol{x})$, with f convex, differentiable, and $\nabla f L$-Lipschitz.

Gradient descent: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)$

Quadratic approximation to f around \boldsymbol{x}_{k} :

$$
\begin{aligned}
\hat{f}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) & \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2} \\
& =\frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+\varphi\left(\boldsymbol{x}_{k}\right) .
\end{aligned}
$$

Key observation: $\boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} f\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right)$.
At each iteration, the gradient descent minimizes a (separable) quadratic approximation to the objective function, formed at \boldsymbol{x}_{k}.

Rate for gradient descent: $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{C L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}}{k}=O\left(\frac{1}{k}\right)$

Borrowing the approximation idea...

$$
\min \frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \quad+\quad \lambda\|\boldsymbol{x}\|_{1}
$$

Borrowing the approximation idea...

$$
\min _{\text {smooth }}^{\frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}+\underbrace{}_{\text {nonsmooth }}
$$

Borrowing the approximation idea...

$$
\min \frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1} \equiv \min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Borrowing the approximation idea...

$$
\min \frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1} \equiv \min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Just approximate the smooth part:

$$
\hat{F}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2}+g(\boldsymbol{x})
$$

Borrowing the approximation idea...

$$
\min \frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1} \equiv \quad \min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Just approximate the smooth part:

$$
\begin{aligned}
\hat{F}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) & \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2}+g(\boldsymbol{x}) \\
& =\frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+g(\boldsymbol{x})+\varphi\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Borrowing the approximation idea...

$$
\min \frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1} \equiv \min \quad f(\boldsymbol{x})+g(\boldsymbol{x})
$$

Just approximate the smooth part:

$$
\begin{aligned}
\hat{F}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) & \doteq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2}+g(\boldsymbol{x}) \\
& =\frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+g(\boldsymbol{x})+\varphi\left(\boldsymbol{x}_{k}\right) .
\end{aligned}
$$

... and then minimize to get the next iterate:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\arg \min _{\boldsymbol{x}} \hat{F}\left(\boldsymbol{x}, \boldsymbol{x}_{k}\right) \\
& =\arg \min _{\boldsymbol{x}} \frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+g(\boldsymbol{x})
\end{aligned}
$$

This is called a proximal gradient algorithm.

Proximal gradient algorithm

$\min f(\boldsymbol{x})+g(\boldsymbol{x})$, with f convex differentiable, $\nabla f L$-Lipschitz.

Proximal Gradient:

$$
\boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+g(\boldsymbol{x})
$$

Converges at the same rate as gradient descent:

$$
F\left(\boldsymbol{x}_{k}\right)-F\left(\boldsymbol{x}^{*}\right) \leq \frac{C L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}}{k}=O\left(\frac{1}{k}\right)
$$

Efficient whenever we can easily solve the proximal problem

$$
\operatorname{prox}_{\mu g}(\boldsymbol{z})=\arg \min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}+\mu g(\boldsymbol{x})
$$

i.e., minimize g plus a separable quadratic.

Prox. operators for structure-inducing norms

$$
\operatorname{prox}_{\mu g}(\boldsymbol{z})=\arg \min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}+\mu g(\boldsymbol{x})
$$

For $g(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}, \operatorname{prox}_{\mu g}(\boldsymbol{z})$ is given by soft thresholding the elements of $\boldsymbol{z}: \quad \mathcal{S}_{\mu}(z)=\operatorname{sign}(z) \max \{|z|-\mu, 0\}$.

This operator shrinks all of the elements of \boldsymbol{z} towards zero:

It can be computed in linear time (very efficient).

Prox. operators for structure-inducing norms

$$
\operatorname{prox}_{\mu g}(\boldsymbol{z})=\arg \min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}+\mu g(\boldsymbol{x})
$$

For $g(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}, \operatorname{prox}_{\mu g}(\boldsymbol{z})$ is given by soft thresholding the elements of $\boldsymbol{z}: \quad \mathcal{S}_{\mu}(z)=\operatorname{sign}(z) \max \{|z|-\mu, 0\}$.

For $g(\boldsymbol{X})=\|\boldsymbol{X}\|_{*}, \operatorname{prox}_{\mu g}(\boldsymbol{Z})$ is given by soft thresholding the singular values of \boldsymbol{Z} : for $\boldsymbol{Z}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$,

$$
\operatorname{prox}_{\mu g}(\boldsymbol{Z})=\boldsymbol{U} \mathcal{S}_{\mu}[\boldsymbol{\Sigma}] \boldsymbol{V}^{*}
$$

Again efficient (same cost as a singular value decomposition).
Similar expressions exist for other structure inducing norms.

Summing up: proximal gradient

$\min f(\boldsymbol{x})+g(\boldsymbol{x})$, with f convex differentiable, $\nabla f L$-Lipschitz.

Proximal Gradient:

$$
\boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \frac{L}{2}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)\right\|_{2}^{2}+g(\boldsymbol{x})
$$

Converges at the same rate as gradient descent:

$$
F\left(\boldsymbol{x}_{k}\right)-F\left(\boldsymbol{x}^{*}\right) \leq \frac{C L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}}{k}=O\left(\frac{1}{k}\right)
$$

Efficient whenever we can easily solve the proximal problem

$$
\operatorname{prox}_{\mu g}(\boldsymbol{z})=\arg \min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}+\mu g(\boldsymbol{x})
$$

This is the case for many structure-inducing norms.

What have we accomplished so far?

Function class \mathcal{F}	$f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)$						
$\underbrace{\text { smooth }} \begin{array}{r}f \text { convex, differentiable } \\ \left\\|\nabla f(\boldsymbol{x})-\nabla f\left(\boldsymbol{x}^{\prime}\right)\right\\| \leq L\left\\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\\|\end{array}$	$\frac{C L\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|^{2}}{k^{2}}=\Theta\left(\frac{1}{k^{2}}\right)$						
	$\frac{C L\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|^{2}}{k}=O\left(\frac{1}{k}\right)$						
nonsmooth f convex $\text { 接 } \boldsymbol{x})-f\left(\boldsymbol{x}^{\prime}\right) \mid \leq M\left\\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\\|$	$\frac{C M\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|}{\sqrt{k}}=\Theta\left(\frac{1}{\sqrt{k}}\right)$						

Still a gap between convergence rate of proximal gradient, $O(1 / k)$ and the optimal $O\left(1 / k^{2}\right)$ rate for smooth f.

Can we close this gap?

Why is the gradient method suboptimal?

For smooth f, gradient descent is also suboptimal... intuitively, for badly conditioned functions it may "chatter":

Gradient descent

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha \nabla f\left(\boldsymbol{x}_{k}\right)
$$

Why is the gradient method suboptimal?

For smooth f, gradient descent is also suboptimal... intuitively, for badly conditioned functions it may "chatter":

Gradient descent

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha \nabla f\left(\boldsymbol{x}_{k}\right)
$$

The heavy ball method treats the iterate as a point mass with momentum, and hence, a tendency to continue moving in direction $\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}$:

Heavy ball

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha \nabla f\left(\boldsymbol{x}_{k}\right)+\beta\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)
$$

Nesterov's optimal method

Shares some intuition with heavy ball, but not identical.
Heavy ball: $\quad \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha \nabla f\left(\boldsymbol{x}_{k}\right)+\beta\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)$
Nesterov :

$$
\begin{aligned}
\boldsymbol{y}_{k} & =\boldsymbol{x}_{k}+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right) \\
\boldsymbol{x}_{k+1} & =\boldsymbol{y}_{k}-\alpha \nabla f\left(\boldsymbol{y}_{k}\right)
\end{aligned}
$$

with a very special choice of β_{k} to ensure the optimal rate:

$$
\beta_{k}=\frac{t_{k}-1}{t_{k+1}} \quad t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2} \quad \alpha=1 / L
$$

Theorem 6 (Nesterov '83) Let f be a convex function with L-Lipschitz gradient. The accelerated gradient algorithm achieves

$$
\begin{equation*}
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{C L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}}{(k+1)^{2}} \tag{1}
\end{equation*}
$$

This is optimal up to constants.

What about smooth + nonsmooth?

$$
\min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Again form a separable quadratic upper bound, but now at \boldsymbol{y}_{k} :

$$
\hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \doteq f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}+g(\boldsymbol{x})
$$

What about smooth + nonsmooth?

$$
\min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Again form a separable quadratic upper bound, but now at \boldsymbol{y}_{k} :

$$
\hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \doteq f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}+g(\boldsymbol{x})
$$

Again, replace the gradient step with minimization of the upper bound:

$$
\boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right)
$$

What about smooth + nonsmooth?

$$
\min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Again form a separable quadratic upper bound, but now at \boldsymbol{y}_{k} :

$$
\hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \doteq f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}+g(\boldsymbol{x})
$$

Again, replace the gradient step with minimization of the upper bound:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\arg \min _{\boldsymbol{x}} \hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \\
& =\arg \min _{\boldsymbol{x}} \frac{1}{L}\left\|\boldsymbol{x}-\left(\boldsymbol{y}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{y}_{k}\right)\right)\right\|^{2}+g(\boldsymbol{x})
\end{aligned}
$$

What about smooth + nonsmooth?

$$
\min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Again form a separable quadratic upper bound, but now at \boldsymbol{y}_{k} :

$$
\hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \doteq f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}+g(\boldsymbol{x})
$$

Again, replace the gradient step with minimization of the upper bound:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\arg \min _{\boldsymbol{x}} \hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \\
& =\arg \min _{\boldsymbol{x}} \frac{1}{L}\left\|\boldsymbol{x}-\left(\boldsymbol{y}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{y}_{k}\right)\right)\right\|^{2}+g(\boldsymbol{x}) \\
& =\operatorname{prox}_{L^{-1} g}\left(\boldsymbol{y}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{y}_{k}\right)\right)
\end{aligned}
$$

What about smooth + nonsmooth?

$$
\min \quad \begin{gathered}
f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { smooth nonsmooth }
\end{gathered}
$$

Again form a separable quadratic upper bound, but now at \boldsymbol{y}_{k} :

$$
\hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \doteq f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}+g(\boldsymbol{x})
$$

Again, replace the gradient step with minimization of the upper bound:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\arg \min _{\boldsymbol{x}} \hat{F}\left(\boldsymbol{x}, \boldsymbol{y}_{k}\right) \\
& =\arg \min _{\boldsymbol{x}} \frac{1}{L}\left\|\boldsymbol{x}-\left(\boldsymbol{y}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{y}_{k}\right)\right)\right\|^{2}+g(\boldsymbol{x}) \\
& =\operatorname{prox}_{L^{-1} g}\left(\boldsymbol{y}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{y}_{k}\right)\right) .
\end{aligned}
$$

Making the same special choice $\boldsymbol{y}_{k}=\boldsymbol{x}_{k}+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)$, we obtain an accelerated proximal gradient algorithm.

Accelerated proximal gradient algorithm

$\min f(\boldsymbol{x})+g(\boldsymbol{x})$, with f convex, differentiable, $\nabla f L$-Lipschitz.

Accelerated Proximal Gradient:

$$
\begin{aligned}
& \text { Repeat }\left\{\begin{aligned}
\boldsymbol{y}_{k} & =\boldsymbol{x}_{k}+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right) \\
\boldsymbol{x}_{k+1} & =\operatorname{prox}_{L^{-1} g}\left(\boldsymbol{y}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{y}_{k}\right)\right)
\end{aligned}\right. \\
& \text { with } \beta_{k}=\frac{t_{k}-1}{t_{k+1}} \text { and } t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2} .
\end{aligned}
$$

Converges at the same rate as Nesterov's optimal gradient method:

$$
F\left(\boldsymbol{x}_{k}\right)-F\left(\boldsymbol{x}^{*}\right) \leq \frac{C L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}}{(k+1)^{2}}=O\left(\frac{1}{k^{2}}\right)
$$

Again, efficient whenever we can easily solve the proximal problem

$$
\operatorname{prox}_{\mu g}(\boldsymbol{z})=\arg \min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}+\mu g(\boldsymbol{x})
$$

What have we accomplished so far?

Function class \mathcal{F}	$f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)$						
$\underbrace{\text { smooth }} \begin{array}{r}f \text { convex, differentiable } \\ \left\\|\nabla f(\boldsymbol{x})-\nabla f\left(\boldsymbol{x}^{\prime}\right)\right\\| \leq L\left\\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\\|\end{array}$	$\frac{C L\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|^{2}}{k^{2}}=\Theta\left(\frac{1}{k^{2}}\right)$						
	$\frac{C L\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|^{2}}{k^{2}}=\Theta\left(\frac{1}{k^{2}}\right)$						
nonsmooth f convex	$\frac{C M\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|}{\sqrt{k}}=\Theta\left(\frac{1}{\sqrt{k}}\right)$						

For composite functions $F=f+g$, with f smooth, if g has an efficient proximal operator, we achieve the same (optimal) rate as if F was smooth.

What about constraints?

Consider the equality constrained problem

$$
\begin{equation*}
\min \|\boldsymbol{x}\|_{1} \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \tag{*}
\end{equation*}
$$

Continuation: solve a sequence of unconstrained problems of form

$$
\min \|\boldsymbol{x}\|_{1}+\frac{\mu}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}
$$

with $\mu \nearrow \infty$. Solutions converge to the solution to $(*)$.

Big downside: conditioning. For $f(\boldsymbol{x})=\frac{\mu}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$, the gradient is L-Lipschitz, with $L=\mu\left\|\boldsymbol{A}^{*} \boldsymbol{A}\right\|$. As $\mu \nearrow \infty$, the unconstrained problems get harder and harder to solve.

Is there a better-structured way to enforce equality constraints?

The method of multipliers

$$
\min F(\boldsymbol{x}) \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \quad(*)
$$

The Lagrangian is

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=F(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\rangle
$$

The method of multipliers

$$
\min F(\boldsymbol{x}) \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \quad(*)
$$

The augmented Lagrangian is

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{\lambda})=F(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\rangle+\underbrace{\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}_{\text {Extra penalty term }}
$$

The method of multipliers

$$
\begin{equation*}
\min F(\boldsymbol{x}) \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \tag{*}
\end{equation*}
$$

The augmented Lagrangian is

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{\lambda})=F(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\rangle+\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} .
$$

The method of multipliers solves $(*)$ by seeking a saddle point of \mathcal{L}_{ρ} :

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \mathcal{L}_{\rho}\left(\boldsymbol{x}, \boldsymbol{\lambda}_{k}\right) \\
& \boldsymbol{\lambda}_{k+1}=\boldsymbol{\lambda}_{k}+\rho\left(\boldsymbol{A} \boldsymbol{x}_{k+1}-\boldsymbol{y}\right) .
\end{aligned}
$$

The method of multipliers

$$
\begin{equation*}
\min F(\boldsymbol{x}) \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \tag{*}
\end{equation*}
$$

The augmented Lagrangian is

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{\lambda})=F(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\rangle+\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} .
$$

The method of multipliers solves $(*)$ by seeking a saddle point of \mathcal{L}_{ρ} :

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \mathcal{L}_{\rho}\left(\boldsymbol{x}, \boldsymbol{\lambda}_{k}\right) \\
& \boldsymbol{\lambda}_{k+1}=\boldsymbol{\lambda}_{k}+\rho\left(\boldsymbol{A} \boldsymbol{x}_{k+1}-\boldsymbol{y}\right) .
\end{aligned}
$$

Solves a sequence of unconstrained problems: $\min _{\boldsymbol{x}} \mathcal{L}_{\rho}\left(\boldsymbol{x}, \boldsymbol{\lambda}_{k}\right)$
Penalty parameter $\rho>0$ can be constant (avoids ill-conditioning), or increasing for (faster convergence).

Summing up: Method of multipliers

Solves, e.g., $\quad \min F(\boldsymbol{x})$ s.t. $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$, with F convex, lsc.

Method of multipliers (augmented Lagrangian)

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \mathcal{L}_{\rho}\left(\boldsymbol{x}, \boldsymbol{\lambda}_{k}\right) \\
& \boldsymbol{\lambda}_{k+1}=\boldsymbol{\lambda}_{k}+\rho\left(\boldsymbol{A} \boldsymbol{x}_{k+1}-\boldsymbol{y}\right) .
\end{aligned}
$$

Classical method [Hestenes ‘69, Powell ‘69], see also [Bertsekas ‘82].
Avoids conditioning problems with the continuation / penalty method.
Under very general conditions $\boldsymbol{\lambda}_{k}$ converges to a dual optimal point,

$$
\left\|\boldsymbol{A} \boldsymbol{x}_{k}-\boldsymbol{y}\right\| \rightarrow 0, \text { and } F\left(\boldsymbol{x}_{k}\right) \rightarrow \inf \{F(\boldsymbol{x}) \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}\} .
$$

[Rockafellar '73, Eckstein '12] .

What have we accomplished so far?

Consider the robust PCA problem

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Augmented Lagrangian

$$
\mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}
$$

The method of multipliers is

$$
\begin{aligned}
\left(\boldsymbol{L}_{k+1}, \boldsymbol{S}_{k+1}\right) & =\arg \min _{\boldsymbol{L}, \boldsymbol{S}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\left\langle\boldsymbol{\Lambda}_{k}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\right\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2} \\
\boldsymbol{\Lambda}_{k+1} & =\boldsymbol{\Lambda}_{k}+\rho\left(\boldsymbol{L}_{k}+\boldsymbol{S}_{k}-\boldsymbol{D}\right)
\end{aligned}
$$

Each iteration is a large nonsmooth optimization problem...

Is there special structure we can exploit to simplify the iterations?

Special structure: Separable objectives

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}$
Minimizing \mathcal{L}_{ρ} with respect to S is easy:

$$
\arg \min _{\boldsymbol{S}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\arg \min _{\boldsymbol{S}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}
$$

Special structure: Separable objectives

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}$
Minimizing \mathcal{L}_{ρ} with respect to S is easy:

$$
\begin{aligned}
\arg \min _{\boldsymbol{S}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda}) & =\arg \min _{\boldsymbol{S}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2} \\
& =\arg \min _{\boldsymbol{S}} \lambda\|\boldsymbol{S}\|_{1}+\frac{\rho}{2}\left\|\boldsymbol{S}-\left(\boldsymbol{D}-\boldsymbol{L}-\frac{1}{\rho} \boldsymbol{\Lambda}\right)\right\|_{F}^{2}+\varphi(\boldsymbol{L}, \boldsymbol{D}, \boldsymbol{\Lambda})
\end{aligned}
$$

Special structure: Separable objectives

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}$
Minimizing \mathcal{L}_{ρ} with respect to S is easy:

$$
\begin{aligned}
\arg \min _{\boldsymbol{S}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda}) & =\arg \min _{\boldsymbol{S}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2} \\
& =\arg \min _{\boldsymbol{S}} \lambda\|\boldsymbol{S}\|_{1}+\frac{\rho}{2}\left\|\boldsymbol{S}-\left(\boldsymbol{D}-\boldsymbol{L}-\frac{1}{\rho} \boldsymbol{\Lambda}\right)\right\|_{F}^{2}+\varphi(\boldsymbol{L}, \boldsymbol{D}, \boldsymbol{\Lambda}) \\
& =\operatorname{prox}_{\lambda \rho^{-1}\|\cdot\|_{1}}\left(\boldsymbol{D}-\boldsymbol{L}-\rho^{-1} \boldsymbol{\Lambda}\right) .
\end{aligned}
$$

Special structure: Separable objectives

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}$
Minimizing \mathcal{L}_{ρ} with respect to S is easy:

$$
\arg \min _{\boldsymbol{S}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\operatorname{prox}_{\lambda \rho^{-1}\|\cdot\|_{1}}\left(\boldsymbol{D}-\boldsymbol{L}-\rho^{-1} \boldsymbol{\Lambda}\right)
$$

Special structure: Separable objectives

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}$
Minimizing \mathcal{L}_{ρ} with respect to S is easy:

$$
\arg \min _{\boldsymbol{S}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\operatorname{prox}_{\lambda \rho^{-1}\|\cdot\|_{1}}\left(\boldsymbol{D}-\boldsymbol{L}-\rho^{-1} \boldsymbol{\Lambda}\right)
$$

Minimizing \mathcal{L}_{ρ} with respect to L is also easy:

$$
\arg \min _{\boldsymbol{L}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\operatorname{prox}_{\rho^{-1}\|\cdot\|_{*}}\left(\boldsymbol{D}-\boldsymbol{S}-\rho^{-1} \boldsymbol{\Lambda}\right)
$$

Special structure: Separable objectives

$$
\min \|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{D}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\langle\boldsymbol{\Lambda}, \boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\rangle+\frac{\rho}{2}\|\boldsymbol{L}+\boldsymbol{S}-\boldsymbol{D}\|_{F}^{2}$
Minimizing \mathcal{L}_{ρ} with respect to S is easy:

$$
\arg \min _{\boldsymbol{S}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\operatorname{prox}_{\lambda \rho^{-1}\|\cdot\|_{1}}\left(\boldsymbol{D}-\boldsymbol{L}-\rho^{-1} \boldsymbol{\Lambda}\right)
$$

Minimizing \mathcal{L}_{ρ} with respect to L is also easy:

$$
\arg \min _{\boldsymbol{L}} \mathcal{L}_{\rho}(\boldsymbol{L}, \boldsymbol{S}, \boldsymbol{\Lambda})=\operatorname{prox}_{\rho^{-1}\|\cdot\|_{*}}\left(\boldsymbol{D}-\boldsymbol{S}-\rho^{-1} \boldsymbol{\Lambda}\right)
$$

Why not just alternate?

$$
\begin{aligned}
& \boldsymbol{L}_{k+1}=\arg \min _{\boldsymbol{L}} \mathcal{L}_{\rho}\left(\boldsymbol{L}, \boldsymbol{S}_{k}, \boldsymbol{\Lambda}_{k}\right)=\operatorname{prox}_{\rho^{-1}\|\cdot\|_{*}}\left(\boldsymbol{D}-\boldsymbol{S}_{k}-\rho^{-1} \boldsymbol{\Lambda}_{k}\right) . \\
& \boldsymbol{S}_{k+1}=\arg \min _{\boldsymbol{S}} \mathcal{L}_{\rho}\left(\boldsymbol{L}_{k+1}, \boldsymbol{S}, \boldsymbol{\Lambda}_{k}\right)=\operatorname{prox}_{\lambda \rho^{-1}\|\cdot\|_{1}}\left(\boldsymbol{D}-\boldsymbol{L}_{k+1}-\rho^{-1} \boldsymbol{\Lambda}_{k}\right) . \\
& \boldsymbol{\Lambda}_{k+1}=\boldsymbol{\Lambda}_{k}+\rho\left(\boldsymbol{L}_{k+1}+\boldsymbol{S}_{k+1}-\boldsymbol{D}\right)
\end{aligned}
$$

More generally: Alternating Directions MoM

$$
\min f(\boldsymbol{x})+h(\boldsymbol{z}) \quad \text { s.t. } \quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}=\boldsymbol{y}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda})=f(\boldsymbol{x})+h(\boldsymbol{z})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\rangle+\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\|_{F}^{2}$

Alternating Directions Method of Multipliers (ADMM)

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\arg \min _{\boldsymbol{x}} \mathcal{L}_{\rho}\left(\boldsymbol{x}, \boldsymbol{z}_{k}, \boldsymbol{\lambda}_{k}\right) \\
\boldsymbol{z}_{k+1} & =\arg \min _{\boldsymbol{z}} \mathcal{L}_{\rho}\left(\boldsymbol{x}_{k+1}, \boldsymbol{z}, \boldsymbol{\lambda}_{k}\right) \\
\boldsymbol{\lambda}_{k+1} & =\boldsymbol{\lambda}_{k}+\rho\left(\boldsymbol{A} \boldsymbol{x}_{k+1}+\boldsymbol{B} \boldsymbol{z}_{k+1}-\boldsymbol{y}\right)
\end{aligned}
$$

Alternating Directions MoM

$$
\min f(\boldsymbol{x})+h(\boldsymbol{z}) \quad \text { s.t. } \quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}=\boldsymbol{y}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda})=f(\boldsymbol{x})+h(\boldsymbol{z})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\rangle+\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\|_{F}^{2}$

Alternating Directions Method of Multipliers (ADMM)

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \mathcal{L}_{\rho}\left(\boldsymbol{x}, \boldsymbol{z}_{k}, \boldsymbol{\lambda}_{k}\right) \\
& \boldsymbol{z}_{k+1}=\arg \min _{\boldsymbol{z}} \mathcal{L}_{\rho}\left(\boldsymbol{x}_{k+1}, \boldsymbol{z}, \boldsymbol{\lambda}_{k}\right) \\
& \boldsymbol{\lambda}_{k+1}=\boldsymbol{\lambda}_{k}+\rho\left(\boldsymbol{A} \boldsymbol{x}_{k+1}+\boldsymbol{B} \boldsymbol{z}_{k+1}-\boldsymbol{y}\right)
\end{aligned}
$$

Convergence: if f, h closed, proper, convex functions, and \mathcal{L} has a saddle point, then $\ldots \boldsymbol{\lambda}_{k}$ converges to a dual optimal point, $\boldsymbol{A} \boldsymbol{x}_{k}+\boldsymbol{B} \boldsymbol{z}_{k} \rightarrow \boldsymbol{y}$ and $f\left(\boldsymbol{x}_{k}\right)+h\left(\boldsymbol{z}_{k}\right) \rightarrow \inf \{f(\boldsymbol{x})+h(\boldsymbol{z}) \mid \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}=\boldsymbol{y}\}$.

Convergence rate $O(1 / k)$, in a certain sense [He + Yuan '11].

Linearized Alternating Directions MoM

$$
\min f(\boldsymbol{x})+h(\boldsymbol{z}) \quad \text { s.t. } \quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}=\boldsymbol{y}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda})=f(\boldsymbol{x})+h(\boldsymbol{z})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\rangle+\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\|_{F}^{2}$
ADMM: $\quad \boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{x}} \mathcal{L}_{\rho}\left(\boldsymbol{x}, \boldsymbol{z}_{k}, \boldsymbol{\lambda}_{k}\right)$

$$
=\arg \min _{\boldsymbol{x}} \xlongequal[\underline{\text { Complicated if } \boldsymbol{A}, \boldsymbol{B} \neq \boldsymbol{I}}]{f(\boldsymbol{x})+\frac{\rho}{2}\left\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}_{k}-\boldsymbol{y}+\frac{1}{\rho} \boldsymbol{\lambda}_{k}\right\|_{2}^{2}}
$$

Linearized ADMM: just take a proximal gradient step...

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\arg \min _{\boldsymbol{x}} f(\boldsymbol{x})+\frac{\rho}{2 \tau}\left\|\boldsymbol{x}-\left(\boldsymbol{x}_{k}-\tau \boldsymbol{A}^{*}\left(\boldsymbol{A} \boldsymbol{x}_{k}+\boldsymbol{B} \boldsymbol{z}_{k}-\boldsymbol{y}+\frac{1}{\rho} \boldsymbol{\lambda}_{k}\right)\right)\right\|_{2}^{2} \\
& =\operatorname{prox}_{\frac{\tau}{\rho}}\left(\boldsymbol{x}_{k}-\tau \boldsymbol{A}^{*}\left(\boldsymbol{A} \boldsymbol{x}_{k}+\boldsymbol{B} \boldsymbol{z}_{k}-\boldsymbol{y}-\frac{1}{\rho} \boldsymbol{\lambda}_{k}\right)\right)
\end{aligned}
$$

Much more efficient if f has a simple proximal operator.

Linearized Alternating Directions MoM

$$
\min f(\boldsymbol{x})+h(\boldsymbol{z}) \quad \text { s.t. } \quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}=\boldsymbol{y}
$$

Aug. Lagrangian: $\quad \mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda})=f(\boldsymbol{x})+h(\boldsymbol{z})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\rangle+\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}-\boldsymbol{y}\|_{F}^{2}$

Linearized ADMM

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\operatorname{prox}_{\frac{\tau}{\rho} f}\left(\boldsymbol{x}_{k}-\tau \boldsymbol{A}^{*}\left(\boldsymbol{A} \boldsymbol{x}_{k}+\boldsymbol{B} \boldsymbol{z}_{k}-\boldsymbol{y}+\frac{1}{\rho} \boldsymbol{\lambda}_{k}\right)\right) \\
\boldsymbol{z}_{k+1} & =\operatorname{prox}_{\frac{\boldsymbol{\tau}}{} h}\left(\boldsymbol{z}_{k}-\tau \boldsymbol{B}^{*}\left(\boldsymbol{A} \boldsymbol{x}_{k+1}+\boldsymbol{B} \boldsymbol{z}_{k}-\boldsymbol{y}+\frac{1}{\rho} \boldsymbol{\lambda}_{k}\right)\right) \\
\boldsymbol{\lambda}_{k+1} & =\boldsymbol{\lambda}_{k}+\rho\left(\boldsymbol{A} \boldsymbol{x}_{k+1}+\boldsymbol{B} \boldsymbol{z}_{k+1}-\boldsymbol{y}\right)
\end{aligned}
$$

See, e.g., [S. Ma 2012]. Convergent if $\tau<\min \left\{\|\boldsymbol{A}\|^{2},\|\boldsymbol{B}\|^{2}\right\}$.
Handles problems with more than two terms, e.g., $\sum_{i} f_{i}\left(\boldsymbol{x}_{i}\right)$.
Now can take advantage of two types of special structure ... separability of the objective and prox capability of f, h.

Finally, what have we accomplished?

Time required to solve a $1,000 \times 1,000$ robust PCA problem:

Algorithm	Accuracy	Rank	$\\|E\\|_{0}$	\# iterations	time (sec)
IT	$5.99 \mathrm{e}-006$	50	101,268	8,550	$119,370.3$
DUAL	$8.65 \mathrm{e}-006$	50	100,024	822	$1,855.4$
APG	$5.85 \mathrm{e}-006$	50	100,347	134	$1,468.9$
APG $_{\text {P }}$	$5.91 \mathrm{e}-006$	50	100,347	134	82.7
EALM $_{\text {p }}$	$2.07 \mathrm{e}-007$	50	100,014	34	37.5
IALM $_{P}$	$3.83 \mathrm{e}-007$	50	99,996	23	11.8

> THIS

LECTURE

Four orders of magnitude improvement, just by choosing the right algorithm to solve the convex program:

Proximal gradient \Rightarrow Accelerated proximal gradient $\Rightarrow \mathrm{ALM} \Rightarrow \mathrm{ADMoM}$

Recap and Conclusions

Key challenges of nonsmoothness and scale can be mitigated by using special structure in sparse and low-rank optimization problems:

Efficient proximity operators \Rightarrow proximal gradient methods
Separable objectives \Rightarrow alternating directions methods

Efficient moderate-accuracy solutions for very large problems.
Special tricks can further improve specific cases (factorization for low-rank)
Techniques in this literature apply quite broadly.
Extremely useful tools for creative problem formulation / solution.

Fundamental theory guiding engineering practice:
What are the basic principles and limitations?
What specific structure in my problem can allow me to do better?

To read more...

Problem complexity and lower bounds:

Nesterov - Introductory Lectures on Convex Optimization: A Basic Course 2004
Nemirovsky - Problem Complexity and Method Efficiency in Convex Optimization

Proximal gradient methods:

Accelerated gradient methods:

Nesterov - A method of solving a convex programming problem with convergence rate $\mathrm{O}\left(1 / \mathrm{k}^{\wedge} 2\right), 1983$
Tseng - On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, 2008
Beck+Teboulle - A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, 2009

Augmented Lagrangian:

Hestenes - Multiplier and gradient methods, 1969
Powell - A method for nonlinear constraints in minimization problems, 1969
Rockafellar - Augmented Lagrangians and the Proximal Point Algorithm in Convex Programming, 1973
Bertsekas - Constrained Optimization and Lagrange Multiplier Methods, 1982

Alternating directions:

Glowinski+Marocco - Sur l'approximation, par elements finis d'ordre un, et la resolution, par ... 1975
Gabay+Mercier - A dual algorithm for the solution of nonlinear variational problems ... 1976
Eckstein+Bertsekas - On the Douglas-Rachford splitting method and the proximal point ... 1992
Boyd et. al. - Distributed optimization and statistical learning via the alternating directions ... 2010
Eckstein - Augmented Lagrangian and Alternating Directions Methods for Convex Optimization 2012

Part III: Non-Convex Alternatives

Previous Strategy for Sparse Estimation

Replace ℓ_{0} Norm with Convex ℓ_{1} Norm

Ideal (noiseless) case:

$$
\begin{aligned}
& \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \quad \text { s.t. } \mathbf{y}=\Phi \mathbf{x} \\
& \text { U } \\
& \|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|
\end{aligned}
$$

Relaxed case:

$$
\min _{\mathbf{x}}\|\mathbf{y}-\Phi \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

Non-Convexity via Iterative Reweighted ℓ_{1}

Non-convex penalty $g(|\mathbf{x}|)$

Updates:

$$
\begin{aligned}
& \mathbf{x}^{(k+1)} \leftarrow \arg \min _{\mathbf{x}} \sum_{i} w_{i}^{(k)}\left|x_{i}\right| \quad \text { s.t. } \mathbf{y}=\mathrm{A} \mathbf{x} \\
& \left.\mathbf{w}^{(k+1)} \leftarrow \frac{\partial g(\mathbf{u})}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{x}^{(k+1)} \mid} \Leftarrow \Leftarrow \begin{array}{l}
\text { slope of convex } \\
\text { upper bound }
\end{array}
\end{aligned}
$$

[Fazel et al., 2003]

Example

Penalty function:

$$
g(\mid \mathbf{x})=\sum_{i} \log \left(\left|x_{i}\right|+\varepsilon\right), \quad \varepsilon>0
$$

Updates:

$$
\begin{aligned}
& \mathbf{x}^{(k+1)} \leftarrow \arg \min _{\mathbf{x}} \sum_{i} w_{i}^{(k)}\left|x_{i}\right| \quad \text { s.t. } \mathbf{y}=\mathrm{A} \mathbf{x} \\
& w_{i}^{(k+1)} \leftarrow \frac{1}{\left(\left|x_{i}^{(k+1)}\right|+\varepsilon\right)}
\end{aligned}
$$

[Fazel et al., 2003; Candès et al., 2008]

Variational Bayes (VB) can provide even more robust alternative penalties with provable guarantees

[Bishop 2006; Wipf et al., 2011]

Why bother with non-convexity?

Three important (interrelated) cases:

1. Scaling/Shrinkage Problem: The ℓ_{1} norm may over-shrink large magnitude coefficients.
2. Correlation Problem: The dictionary A has some correlated columns which disrupt $\ell_{0}-\ell_{1}$ equivalence.
3. Extra Parameters: There are additional parameters to estimate, potentially embedded in A.

Similar principles hold regarding robust PCA

Case 1: Scaling and Shrinkage Issues

- The ℓ_{1} penalty favors both sparse and low-variance solutions:

- Scale-sensitive ℓ_{1} solutions may over-shrink large coefficients, possibly at the expense of sparsity.
[Fan and Li, 2001; Levin et al., 2011]

Scaling Issues

- If the magnitudes of the non-zero elements in \mathbf{x}_{0} are highly scaled, then the sparse recovery problem should be easier.

scaled coefficients (easy)

uniform coefficients (hard)
- The ℓ_{1} solution may overly shrink large coefficients to achieve lower variance, and hence may not exploit the simpler scenario.

Extreme Case: Jeffreys Distribution

Even a simple greedy estimation strategy should work well here

Simulation Example

- For each test case:

1. Generate a random dictionary A with 50 rows and 100 columns.
2. Generate a sparse coefficient vector \mathbf{x}_{0}.
3. Compute signal via $\mathbf{y}=\mathrm{A} \mathbf{x}_{0}$.
4. Run ℓ_{1} and OMP (a very simple greedy strategy) to try and correctly estimate \mathbf{x}_{0}.
5. Average over 1000 trials to compute empirical probability of failure.

- Repeat with different sparsity values, i.e., $\left\|\mathbf{x}_{0}\right\|_{0}$.

Results

Underlying Problem

$$
\left.\begin{array}{cc}
& \begin{array}{c}
\text { Example: } \\
\Psi(u, v)=\text { set of sparse vectors } \mathbf{x}_{0} \text { with support } \\
\text { pattern } u \text { and sign pattern } v
\end{array}
\end{array} \begin{array}{r}
2.3 \\
0 \\
-1.6 \\
0
\end{array}\right] \in \Psi(\{1,3\},\{+,-\})
$$

Theorem

$$
\begin{aligned}
& \text { If } \quad \arg \min _{\mathrm{x}: \mathbf{y}=\mathrm{Ax}}\|\mathbf{x}\|_{0} \neq \arg \min _{\mathrm{x}: \mathbf{y}=\mathrm{Ax}}\|\mathbf{x}\|_{1} \\
& \text { for some } \mathbf{x}_{0} \in \Psi(u, v), \mathbf{y}=\mathrm{A} \mathbf{x}_{0} \text {, then } \ell_{1} \\
& \text { fails for all elements in this set. }
\end{aligned}
$$

[Malioutov et al., 2004]

Always Room for Improvement

Theorem

In noiseless case, under mild conditions VB will:

1. Never do worse than the regular convex ℓ_{1}-norm solution.
2. For any A and $\Psi(u, v)$, there will always be cases where it performs better (... helps with scaling/shrinkage issues).

With large coefficients, convex bound becomes flat
 small penalty in next iteration

Simulation Example Revisited

- For each test case:

1. Generate a random dictionary Φ with 50 rows and 100 columns.
2. Generate a sparse coefficient vector \mathbf{x}_{0}.
3. Compute signal via $\mathbf{y}=\mathrm{A} \mathbf{x}_{0}$.
4. Run VB, ℓ_{1} and OMP (simple greedy strategy) to try and correctly estimate \mathbf{x}_{0}.
5. Average over 1000 trials to compute empirical probability of failure.

- Repeat with different sparsity values, i.e., $\left\|\mathbf{x}_{0}\right\|_{0}$.

Results

Practical Example: Outlier Detection

Outlier Problem Cont.

- Linear generative model:

- Objective: Estimate \mathbf{x} while rejecting outliers

Convert to Sparse Estimation Problem

$\operatorname{Proj}_{N u l\left[A^{\tau}\right]}(\mathbf{y})=\operatorname{Proj}_{\text {Null }\left[\mathrm{A}^{\tau}\right]}(\mathrm{A} \mathbf{x}+\boldsymbol{\varepsilon})=\operatorname{Proj}_{\text {Null }\left[\mathrm{A}^{\tau}\right]}(\boldsymbol{\varepsilon})$

$$
\min _{\boldsymbol{\varepsilon}}\|\boldsymbol{\varepsilon}\|_{0} \text { s.t. } \tilde{\mathbf{y}}=\Phi \boldsymbol{\varepsilon}
$$

Once outliers are known, can estimate \mathbf{x} via:

$$
\hat{\mathbf{x}}=\left(\mathrm{A}^{T} \mathrm{~A}\right)^{-1} \mathrm{~A}^{T}(\mathbf{y}-\boldsymbol{\varepsilon})
$$

[Candès and Tao, 2004]

Practical Solutions

- But unknown outliers are likely unconstrained (different scales), and convex substitution may be suboptimal:

$$
\min _{\boldsymbol{\varepsilon}}\|\boldsymbol{\varepsilon}\|_{1} \text { s.t. } \tilde{\mathbf{y}}=\Phi \boldsymbol{\varepsilon}
$$

- Can instead use non-convex VB ...

Practical Example:
 Surface Normal Estimation via Photometric Stereo

Robust Surface Normal Estimation

- Basic Lambertian model ignores specular reflections, shadows, and other artifacts.
- Alternative per-pixel model:

- Can also include a diffuse error term, and apply VB.

Results

[8.4\% specular corruptions, 24% shadows]
Bunny Image

Ground Truth

[Ikehata et al., 2012]

Aggregate Results

[\# of images varying]

No. of images	Mean Error (deg.)	
	VB	ℓ_{1}
5	$\mathbf{5 . 2}$	11.9
10	$\mathbf{2 . 8}$	5.6
15	$\mathbf{1 . 9}$	4.0
20	$\mathbf{1 . 2}$	2.7
25	$\mathbf{0 . 8 1}$	1.9
30	$\mathbf{0 . 6 2}$	1.6
35	$\mathbf{0 . 5 9}$	1.5
40	$\mathbf{0 . 5 3}$	1.2

[lkehata et al., 2012]

Case 2: Correlated Dictionaries

- Most theory applies to uncorrelated case, but many (most?) practical dictionaries have significant structure.
- Examples:

Dictionary Correlation Structure

Low Correlation: Easy

Examples:
$\mathrm{A}_{\text {(uncor) }} \sim \operatorname{iid} N(0,1)$ entries
$\mathrm{A}_{\text {(uncor) }} \sim$ random rows of DFT

High Correlation: Hard

Example:

$$
\mathrm{A}_{(\text {cor })}=\underbrace{\Psi \mathrm{A}_{(\text {uncor })}}_{\text {arbitrary }} \underbrace{\Phi}_{\text {block }}
$$

How do we compensate for dictionary structure?

Simple Example:
Let vector α denote the column norms of A and define

$$
g(|\mathbf{x}| ; \alpha)=\sum_{i=1}^{n} \alpha_{i}^{-1}\left|x_{i}\right|
$$

Then the problem

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathrm{A} \mathbf{x}\|_{2}^{2}+\lambda g(|\mathbf{x}| ; \alpha)
$$

is invariant to column norms.

So what about some function g that depends on the correlation structure $\mathrm{A}^{T} \mathrm{~A}$

VB and Dictionary Correlations

VB is equivalent to solving the penalized regression problem

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathrm{A} \mathbf{x}\|_{2}^{2}+\lambda g_{V B}\left(|\mathbf{x}| ; \mathrm{A}^{T} \mathrm{~A}\right)
$$

for some function $g_{V B}$ that favors a sparse \mathbf{x}.
[Palmer et al., 2006; Wipf et al., 2011]

Notes on $g_{V B}$:

- Variables are penalized jointly based on the correlation structure of A.
- This allows VB to compensate for strong dictionary correlations.

Clustered Dictionary Model

$\mathrm{A}_{(c o r, k)}$

any dictionary obtained by replacing each column of $\mathrm{A}_{\text {(uncor, } k \text {) }}$ with a "cluster" of n_{i} basis vectors within a radius ε
(cluster support) set of cluster indeces whereby some \mathbf{x}_{0} has at least one nonzero element.

Simple Clustered Example

Problem:

- The l_{1} solution typically selects either zero or one basis vector from each cluster of correlated columns.
- While the 'cluster support' may be partially correct, the chosen basis vectors likely will not be.

VB and the Correlation Problem

Theorem

- Let \mathbf{x}_{0} be a sparse signal.
- Under mild conditions, a minor variant of VB will recover \mathbf{x}_{0} given any $\mathbf{y}=\mathrm{A}_{(c o r, k)} \mathbf{x}_{0}$ provided

$$
\left|\Omega_{0}\right| \leq k \quad \text { and } \quad \sum_{i \in \Omega_{0}} n_{i} \leq m
$$

for some ε sufficiently small.

Key Message: Non-convex algorithms can succeed even when strong correlations cause failure with ℓ_{1}

MEG/EEG Example

source space (\mathbf{x}_{0})

sensor space (y)

- Forward model dictionary A can be computed using Maxwell's equations [Sarvas, 1987].
- Will be dependent on location of sensors, but always highly correlated by physical constraints.

Noisy Localization Results

Real Data

[Owen et al., 2013]

Remarks

- Non-convex VB algorithms implicitly employ a penalty that helps compensate for correlated dictionaries.
- MEG/EEG experiments show advantages of nonconvexity when A is:

1. Highly underdetermined, e.g.,

$$
m=275 \text { and } n=10^{5}
$$

2. Very ill-conditioned and structured, i.e., columns/rows are highly correlated.

Case 3: Dictionary Has Embedded Parameters

- Ideal (noiseless) :

$$
\min _{\mathbf{x}, \mathbf{k} \in \Omega_{k}}\|\mathbf{x}\|_{0} \quad \text { s.t. } \mathbf{y}=\mathrm{A}(\mathbf{k}) \mathbf{x}
$$

- Approximate version:

$$
\min _{\mathbf{x}, \mathbf{k} \in \Omega_{k}}\|\mathbf{y}-\mathrm{A}(\mathbf{k}) \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{0}
$$

- Applications: Bilinear models, blind deconvolution, blind image deblurring, etc.

Example: Blind Deconvolution

- Observation model:

$$
\mathbf{y}=\underset{\substack{\text { convolution } \\ \text { operator }}}{=} \underset{\substack{\text { toeplitz } \\ \text { matrix }}}{\mathrm{A}(\mathbf{k}) \mathbf{x}+\boldsymbol{\varepsilon}}
$$

- Would like to estimate the unknown \mathbf{x} blindly since \mathbf{k} is also unknown.
- In many situations (e.g., image deblurring) unknown \mathbf{x} is sparse.

Efficient Convex Substitution?

Solve:

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{k} \in \Omega_{k}}\|\mathbf{x}\|_{1} \text { s.t. } \mathbf{y}=\mathbf{k} * \mathbf{x} \\
& \Omega_{k}=\left\{\mathbf{k}: \sum_{i} k_{i}=1, \quad k_{i} \geq 0, \forall i\right\}
\end{aligned}
$$

Problem:

$$
\begin{gathered}
\|\mathbf{y}\|_{1}=\left\|\sum_{t} k_{t} \mathbf{x}_{t}\right\|_{1} \leq \sum_{t} k_{t}\left\|\mathbf{x}_{t}\right\|_{1}=\|\mathbf{x}\|_{1} \quad \forall \text { feasible } \mathbf{k}, \mathbf{x} \\
\text { translated signal }
\end{gathered}
$$

- A degenerate solution is favored:

$$
\mathbf{k}=\delta, \quad \mathrm{A}(\mathbf{k})=I
$$

Practical Example: Blind Image Deblurring

- Basic convolution model (can be generalized):

Gradients of Natural Images are Sparse

Can solve a modified sparse coding problem in gradient domain
\mathbf{x} : vectorized derivatives of the sharp image
\mathbf{y} : vectorized derivatives of the blurry image

Practical Blind Deblurring Algorithm

- A nearly ideal cost function for blind deblurring is

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{k} \in \Omega_{k}}\|\mathbf{y}-\mathbf{k} * \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{0} \\
& \Omega_{k}=\left\{\mathbf{k}: \sum_{i} k_{i}=1, k_{i} \geq 0, \forall i\right\}
\end{aligned}
$$

- But local minima are a huge problem, and convex relaxation provably fails ...
- However, can leverage a principled non-convex VB substitution:

$$
\min _{\mathbf{x}, \mathbf{k} \in \Omega_{k}}\|\mathbf{y}-\mathbf{k} * \mathbf{x}\|_{2}^{2}+\lambda g_{\mathrm{VB}}(\mathbf{x}, \mathbf{k})
$$

Blind Deblurring Evaluation Dataset

Levin et al. dataset [CVPR, 2009]

- 4 images of size 255×255 and 8 different empirically measured ground-truth blur kernels, giving 32 total blurry images

Estimation Results

Note: All of these competing methods require considerable heuristics and tuning parameters

Extensions

Can easily adapt our model to more general scenarios:

1. Non-uniform convolution models

Blurry image is a superposition of translated and rotated sharp images
2. Multiple images for simultaneous denoising and deblurring

[Yuan, et al., SIGGRAPH, 2007]

Non-Uniform Real-World Deblurring

O. Whyte et al. , Non-uniform deblurring for shaken images, CVPR, 2010.

Non-Uniform Real-World Deblurring

S. Hirsch et al. , Single image deblurring using motion density functions, ECCV, 2010.

Non-Uniform Real-World Deblurring

N. Joshi et al. , Image deblurring using inertial measurement sensors, SIGGRAPH, 2010.

Non-Uniform Real-World Deblurring

S. Hirsch et al. , Fast removal of non-uniform camera shake, ICCV, 2011.

Dual Motion Real-World Deblurring

X. Zhu et al. , Deconvolving PSFs for better motion deblurring using multiple images, ECCV, 2012.

Personal Photos

two blurry photos taken at a conference

Recap

- Three (interrelated) issues with the convex ℓ_{1} norm:

1. Over-shrinkage at the expense of sparsity
2. Correlated dictionaries disrupt performance
3. Extra dictionary parameters may be hard to estimate

- In all three, non-convex substitutes can potentially enhance performance dramatically.

Similar Principles Apply to other LowDimensional Models

Robust PCA

[Candès et al., 2011; Wipf, 2012]

References

1. C. Bishop and M. Tipping, "Variational Relevance Vector Machines," UAI, 2000.
2. A. Levin, Y. Weiss, F. Durand, and W.T. Freeman, "Understanding and Evaluating Blind Deconvolution Algorithms," Computer Vision and Pattern Recognition (CVPR), 2009.
3. J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao, "Variational EM Algorithms for Non-Gaussian Latent Variable Models," NIPS, 2006.
4. D. Wipf, "Sparse Estimation Algorithms that Compensate for Coherent Dictionaries," MSRA Tech Report, 2013.
5. D. Wipf, B. Rao, S. Nagarajan, "Latent Variable Bayesian Models for Promoting Sparsity," IEEE Trans. Info Theory, 2011.
6. D. Wipf and H. Zhang, "Revisiting Bayesian Blind Deconvolution," MSRA Tech Report, 2013.

Thank You

[^0]: * Such as gradient descent. See e.g., Nesterov, "Introductory Lectures on Convex Optimization"

