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Hype cycle
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General hype cycle for technology
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Hype cycle of current technologies
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Overview of some common and
competing machine learning concepts



Questions to ask

Lessons about competing concepts in machine
learning?

Why is learning structures so important?

Why do we emphasize weak-supervised
learning?



Several pairs of competing concepts

Generative
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Parametric
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Discriminative vs. generative models

s plzly = +1)
L ko)
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p(y|z)

Discriminative models, either
explicitly or implicitly, study the
posterior distribution directly.

p(zly), p(y)

Generative approaches model
the likelihood and prior
separately.

() = p(z|y)p(y)

>y P(z|y)p(y)




Parametric vs. non-parametric

K
y = f(x) y = Z A fr(x)
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Supervised vs. unsupervised




Dense vs. sparse
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SIFT descriptor (D. Lowe)

SIFT detector (D. Lowe)



Flat vs. deep
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Marr's theory
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D. Marr



Lessons we have learned:
(1) perfect feature extraction?
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Canny edges SIFT



Lessons we have learned:
(2) single decision?

decision tree random forests



Lessons we have learned:
(3) features?
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Lessons we have learned:
(4) bottom-up and top-down?
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Yuille and Kersten



Lessons we have learned:
(5) bottom-up and top-down?

Degeneracy of

Measure

Convex Surrogate

Compressed Sensing

Error Correction

Domain Transform

Mixed Structures

Sparse Vector Low-Rank Matrix
individual )
signal correlated signals
Lonorm |[x|[ rank(X)
L,norm | x|, Nuclear norm || X |,
y = Ax Y = A(X)
y = Ax + ¢ Y=AX)+F
yotr = Ax + ¢ Yor=AX)+ FE

Ma and Wright



Lessons we have learned:
(6) convex vs. non-convex?

F)1




Some general notes about
discriminative and generative
models



Neural networks, SVM, and Boosting
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Y. Freund and R. Schapire
V. Vapnik



Empirical comparisons of different algorithms

Caruana and Niculesu-Mizil, ICML 2006

MODEL 18T 2ND 3RD 4TH 5TH 6TH TTH STH 9TH 10TH
BST-DT 0.580 0.228 0.160 0.023 0.009 0.000 0.000 0.000 0.000 0.000
RF 0.390 0.525 0.084 0.001 0.000 0.000 0.000 0.000 0.000 0.000
BAG-DT 0.030 0.232 0.571 0.150 0.017 0.000 0.000 0.000 0.000 0.000
SVM 0.000 0.008 0.145 0.57- 0.240 0.029 0.001 0.000 0.000 0.000
ANN 0.000 0.007 0.035 0.230 0.606 0.122 0.000 0.000 0.000 0.000
KNN 0.000 0.000 0.000 0.009 0.114 0.592 0.245 0.038 0.002 0.000
BST-STMP 0.000 0.000 0.002 0.013 0.014 0.257 0.710 0.004 0.000 0.000
DT 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.616 0.291 0.089
LOGREG 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.312 0.423 0.225
NB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.284 0.656

Overall rank by mean performance across problems and metrics (based on bootstrap analysis).

BST-DT: boosting with decision tree weak classifier
BAG-DT: bagging with decision tree weak classifier
ANN: neural nets

BST-STMP: boosting with decision stump weak classifier

LOGREG: logistic regression

RF: random forest

SVM: support vector machine
KNN: k nearest neighboorhood
DT: decision tree

NB: naive Bayesian

It is informative, but by no means final.



Emplrlcal s’rudy on hlgh -dimension
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Moving average standardized scores of each learning algorithm as a function of the dimension.

The rank for the algorithms to perform consistently well:

(1) random forest (2) neural nets (3) boosted tree (4) SVMs



Some literature

Discriminative Approaches:

Perceptron and Neural networks (Rosenblatt 1958, Windrow and Hoff 1960,
Hopfiled 1982, Rumelhart and McClelland 1986)
Nearest neighborhood classifier (Hart 1968)
Fisher linear discriminant (Fisher)
Support Vector Machine (vapnik 1995)
AdaBoost and its variants (Freund and Schapire 1995, Friedman et al. 1998, Breiman
1994)
Generative Approaches:

PCA, TCA, ICA (Karhunen and Loeve 1947, H  erault et al. 1980, Frey and Jojic 1999)

MRFs, Particle Filtering (Ising, Geman and Geman 1994, Isard and Blake 1996)

Maximum Entropy Model (Della Pietra et al. 1997, Zhu et al. 1997, Hinton 2002)
DBN (Hinton 2006)....



Max entropy principle and boosting

) I Della Pietra et al. 997,
pa(Iy) :Z copl S )\_h_m}eﬁp{— Z Ajhi (1)} zhu, Wu, and Mumford 1997
R j=1 Hinton 2002
Q F d and Schapire 1995
7y = 1 A fi(1 reund and Schapire ,
PA(ID) Zyemp{zjrzlAjfj(f,y)}emp{jgl i v} Friedman et al. 1998

Both have the feature selection procedure.

Both follow a exponential probabilistic model (arguable).

= Although generative model is always preferred, if we can, we are
forced to use discriminative models in many cases.



From discriminative to generative (r200s)

We are given a set of training samples (positive), S, and we want to learn a
corresponding generative model. We can turn a single class learning problem into a
two-class learning problem. Let x be a data vector and y € {—1, +1} its label.

Bayes rule:

ply = +1jz) = p(zly = +1)p(y = +1)

plzly = —1)p(y = —1) + p(z|ly = +1)p(y = +1)

p(y = +1jz)p(y = —-1)
ply = —1|z)p(y = +1)

——  plely=+1) = plzly = —1)

Drop p(y) for simplicity:
p(y = +1|z)
Pl =0 =y = 1))

The above equation says that a generative model for the positives
p(x|]y=+1) can be obtained from the discriminative model p(y|x) and a
generative model p(x|y=-1) for the negatives.

p(z|ly = —1)



From discriminative to generative

Instead, we learn the model recursively.

p(y = +1[z) T ()
ply=—1]z)""

plaly =+1) =

1 g1(y = +1|z)
Z1q1(y = —1|x)

q1(z) ~ p(ylz) pa(z) = p1(x)

1 qx(y = +1|x)

T
p1(x)
=1 %k gy = —1|z)

q;e(fc) Pnt1(2) =

Goal: ppyq(x) — plaly = +1)



Target Distribution

A toy
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Pnt1(z) = 11

k=1

p1 ()

Reference Distribution

example

1 qx(y = +1|x)

Z qi.(y = —1|z)

po ()

p1(z)

p3(z)

negatives

Bootstrappin
g/sampling

Discriminati
ve Model

positives

negatives

/samplin

Discriminati
ve Model

Dsitives

Discriminati
ve Model

Bootstragping negatives

DSitives

Learned Model



From discriminative to generative

p;-|—1(93) — H 1 Qk(y — +1|$)

T
p1(z)
=1 Zk gy = —1|z)

Theory: p,11(z) asymptotically approaches
p(xly=+1).  we write p*(z) = p(zly = +1)
KL[pT (2)|Ip)41(2)] < KL[p™(2)||py,(2)]
Proof:
KL[p" (2)|Ipj(x)] = KL[p™ (2)||p) 41 ()]

[r+yion (S IE=E @) ) o - [+ ) oglyh s

an(y=—1|$)
B n 1 +( q(y = +1fz)
= /p (af:)logznd +/p (z)log q(y:_l‘x)d

q(y = -|-1\$)dx >0
q(y = —1|x)

1
_— +
log 7 + /p (z)log



Texture modeling
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Texture modeling

Training textures

- — -

Synthesized textures



Importance of structural information.



Importance of structured data

 Structured information within data sample.

g A€

e Structured information in-between data
samples.

OCR

ISOMAP (Tenenbaum et al.), LLE (Roweis and Saul)



Structural

15 emotion categories (Anger, Abuse, Blame,
Fear, Forgiveness, Guilt, Happiness_peacefulness,
Hopefulness, Hopelessness, Love, Pride, Sorrow,
and Thankfulness)

Hopelessness/ /Fear

John : I am going to tell you this at the last . You
and John and Mother are what I am thinking - I
can't goon - my life is ruined. I am ill and heart -
broken .

. John . Please God forgive me for
all my wrong doing . [ am lost and frightened .
God help me , Bless my son and my mother .

tree

buildin
road Y

car

prediction-overview

Depth data, Shotton et al. OCR




Structural information

Image from PASCAL



Structural prediction literature

« Hidden Markov Models (Markov 1922, Baum and Petrie 1966, ..)
« Bayesian Network (peral 1986,...)

 Neural Networks (Rosenblatt 1958, Werbos 1975, Hinton 2006)

« Markov Random Fields (Ising 1924, Geman and Geman 1984, ...)

« Structural Support Vector Machine (vapnik 1992, Tsochantaridis et
al. 2005,...)

« Conditional Random Fields (Lafferty et al. 2001,...)
Graphical models...

Typical inference methods include Belief/message
propagation, MCMC (Gibbs sampling, Metropolis-
Hasting), EM, Graph Cuts, Stochastic descent...



Problem formulation
X ={ }

Y = {sky, cloud, sky, building, car,road}

p(Y|X) < p(Y)p(X|Y)

- 1_[ p(Vi,yj) 1_[ p(xi|yi) MRF

(iL,J)EN

p1%) - [ ] pOoylee) [ [0t
(i,))EN CRF



Binary SVM (v. vapnik)

min ||w]||? +C2€i

S. L. yl(W * X +b) > 1 — &




Multi-Class SVM (Crammer & Singer, 2001)

= Training Examples:  (z, 41), ..., (@0, yn) TERY ye{1,...k}
= Inference:

= Training: Find 7(Z)= argmaz;cqy 1 {w‘fﬂ that solve

<161,...,117k>
min Y a?+S % e
W 5eeesWny§ 1=1 n =1

Vi 7 yn  Wh En > Wi En + 1—&n



Structured SVM (Tsochantaridis et al.)

. 1
Formulation min Z=&7a@
& 2

st Yy €Y\yp Bl d(a,y1) > Tl d(a,y) +1
Yy € Y \yn : 0 ®(an, yn) > 0 S(an,y) + 1

Achieve:
argmax,,..q W' f(3Zza, word) = “brace”

Such that:
w' f(3zma, "brace”) > w' f(Zxa,"aaaaa”)
w' f(mzmg, brace”) > w' f(pzg, "aaaab”)

w' f(IZidE “brace”) > w' f(I&I& " zzzzz")

B. Taskar



A unified view of binary, multi-class, and structured SVM

Binary

Specific S ={(Xp, Ym), m = 1.. M}

X e RE
Ye{-1,+1}

Compute feature (explicitly or
implicitly through kernels)

d(X)

+1L,if W -d(X)=0
Y = .
-1, otherwise

Unified Y*=arg max YW - -®(X)
Ye(-1,+1}

Multi-class

S ={(Xp, Y), m =1..M}
X e RE
Ye{1,.., k}

Compute feature (explicitly or
implicitly through kernels)
D (X)

Y*=arg Yg{lle,‘.i(k} Wy - ®(X)

PX,Y) =(PX)-6(1 =Y),.., P(X) -

sk=Y))

Y*=arg Yg{ll%l..),(k} W-o(X,Y)

Structured

X =(xq4,..,%,),x; €RE
Y = (yli"'yn)ryi € {1k}

Compute feature (explicitly or
implicitly through kernels)
d(X,Y)

Y*=arg mﬁle - O(X,Y)

X, Y)=(PX)-6(1=Y),.., (X)-
5(k = Y)'}’p--'}’n)

Y*=arg m;le - DX, Y)



Part |1:

Why weakly-supervised learning?



Data and supervision (images)

Social Networking Sites (e.g. Facebook, MySpace)

Image Search Engines (e.g. Google, Bing)

Photo Sharing Sites (e.g. Flickr, Picasa)

Computer Vision Datasets (e.g. LabelMe, SUN, ImageNet)

Noisy Label

Log (Size)

Image-Level § Bounding Box

Segmentation

Information
CVPR 2013 workshop “Visual Learning with Weak Supervision”



Crowdsourcing:
gross labels are easier to get

C A B8 https//www.mturk.com/mturk/welcome

| Your Account | HITs Qualifications

amazonmechanical turk v

Introduction | Dashboard | Status | Account Settings

Mechanical Turk is a marketplace for work.
We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it's convenient.

363,550 HITs available. View them now.

Make Money Get Results

by working on HITs from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and

HITs - Human Intelligence Tasks - are individual tasks that . . :
get results using Mechanical Turk. Register Now

you work on. Find HITs now.

As a Mechanical Turk Worker you: As a Mechanical Turk Requester you:

* Have access to a global, on-demand, 24 x 7 workforce
* Get thousands of HITs completed in minutes
* Pay only when you're satisfied with the results

* Can work from home
¢ Choose your own work hours
* Get paid for doing good work

Find an Earn Fund your Load your Get
interesting task money account tasks results

)0)@ @O

|__find Hs Now \Setiaed




Fine-grained classification

1) Image 2) Collect Similarity 3) Learn Perceptual
Database w/ Comparisons from Humans Embedding

E Class Labels l
': |
> e * BT
- » D — |ig

2) Computer 3) Human-in-the-Loop Categorization

Vision
g E
= l - ‘
(-
‘u'} e l? =
» = EE =

Wah et al. cvpr 2014



Machine-crowd collaboration

‘b v
\J

Deng, Krause, & Fei-Fei, CVPR2013



Crowd picked bubbles (AMT)

200 classes from Caltech-UCSD-Bird [welinder et al. 2010]

800 top confusing class pairs (via cross-validation)
90K games on Amazon Mechanical Turk

of games are successful

of successful games use <10% of the
bounding box

Bubble sizes as proportions of image Deng, Krause, & Fei-Fei, CV/PR2013



Test Image

BubbleBank representation

Training Images

Linear

F

Deng, Krause, & Fei-Fei, CV/PR2013

SVM



Multiple instance learning (discriminative)




Multiple instance learning (generative)




Multiple instance learning

[Dietterich 97]
. Training data given in sets/bags [weakly
supervised]

. If all instances in set are negative, set is negative
. Set is positive if at least 1 instance in set is positive

. Goal is to learn instance classifier £

| B 1 if E|j S.t. f(a’:w) =1
F(Xi) = { 0 otherwise

. If oracle gave positive instance jfor each positive
set, could train fusing standard supervised
learning



MIL example

Drug Activity Prediction
= Molecule can take on multiple shapes

= Representation ambiguous, use MIL to find most
consistent state

[Dietterich 97]



Multiple instance learning (MIL)

. Supervised Learning Training Input
{271, c e ,Q?n},ﬂ?z' cX
{yla' . 7yn}7yi c y

. MIL Training Input

{Xl,. .. ,Xn},Xi — {337;1,. .. ,Cl?im},.’l?ij cX
{Y1' "'JYn}JYi S y

. Goal: learning instance classifier

h: X —)
{hi1) - Rim}



Multiple instance learning




Bags vs. instances

T

Ly = —Z (1(ys = 1)logp; + 1(y; = —1)log (1 — p;))
i=1

( :
— : ?pij if y; =—1
.. — 9LmiL _ 1 — pij Ohi;
& Oh; L—pi Opij v — 1
\ pt(]' pt'j) 3-'111'} t



Optimization: discriminative EM

. Perform the discriminative learning in the
presence of hidden variables.
d d

ﬁﬁ(ﬂXiﬂ) — EHmFr[HH'.I:E]ﬁﬁ(}i H|X:0)

E-step: Update the hidden variable (label) of
each sample in positive bags.

M-step: train discriminative models based on
the estimated labels.



EM-DD (Zhang and Goldman, 2001)

In the MIL setting, the label of a bag is determined by the
"most positive" instance in the bag, i.e., the one with the
highest probability of being positive among all the
instances in that bag. The difficulty of MIL comes from the
ambiguity of not knowing which instance is the most likely
one.

. The knowledge of which instance determines the label of

the bag is modeled using a set of hidden variables,
which are estimated using the Expectation Maximization
style approach. This results in an algorithm called EM-DD,
which combines this EM-style approach with the DD
algorithm.



Using SVM for MIL directly

. min||w||2+Cz£i

A S. L. yi(W'xi +b)21—€i




MIL example

Object detection with weak supervision
= Positive set: image contains object
= Goal to train standard object detector
= Example positive set:

cleeee|lrn | Ge e e e |6
el RS S S R S
B85 (185 [0S |1 _I; BS| (85| |89 |80 | IS cllie
Ce |6 e Cle|l|e |6 | e |6 6|6

[Viola 05]



Weakly-supervised learning for
structured data.



Visual representation

G
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Kobatake and Tanaka, 1994

Hubel and Wiesel Model




Poselets: a fully supervised approach

Specific body parts with

full supervision
(Bourdev and Malik, 2010)




3D poselets

Torso detection using poselets (Bourdev and Malik, 2010)



Body parts are hard to define in
presence of occlusion




Object detection

object vs. background*®

Frontal Motorbikes Spotted Cats

Rigid () Articulated

Dollar et al. 2008



Object

" Bag of ‘words’

L. Fei-fei



Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the
messages that rz - Our eyes.

image
| eye, cell, optical
nerve, image

.« Hubel, Wiesel ,

following th o
to the various

demonstrate that the message abo
image falling on the retina undergoe¢
wise analysis in a system of nerve cel
stored in columns. In this system each ¢
has its specific function and is responsibl
a specific detail in the pattern of the retinal
image.

China is forecasting a trade surplus of $90bn
(E51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by
a predicted 300/ :

China's .
deliberff{exports, imports, US,
agreesfl/uan, bank, domestic,

foreign, increase,
w, trade, value

freely. However, Beijing has made it ci
it will take its time and tread carefully b
allowing the yuan to rise further in value.

L. Fei-fei




L. Fei-fei



learning recognition

T 7
,7“.‘ /-\

. J

f q . codewords dictionary
eature etect_lon :,=,%:==t_:l__‘l.

[ [ 1. i [_—
& representation P Y LB TR

d1dl BA" . ™. =N
®I=NATFP (A L
|image representation A B <

JRIEIE FEZIR '

category mosiels , category
(and/or) classifiers decision

L. Fei-fei



To learn parts with weak-
supervision,



Object detection

object vs. background*®

Frontal Motorbikes Spotted Cats

Rigid () Articulated

Dollar et al. 2008



Standard vs MIL vs MCL

l
: | € Given Label

__J

< Target Decision

Boundary

Dollar et al. 2008



MCL Definition (1)

= Most general definition of a set/bag classifier:

FhXy) = { 0 otherwise

Note definedF”* in terms of regular function g

= To computerk )

= For every sequence J1s- -5 Jk  test 9(zij, - .-, @iz))
= Computation time exponential in k-  O(m*)  (mis set size)

= Model exponential in number of components



MCL definition (2)

This leads to the second MCL formulation:

Sets F(X;) = § (FF(X)), ..., FE(X))) g a standard functior
- P & [’ “components
f(X):g(]:l(X) “"fp(Xz')) use small k

Sequence of sets

F(X, )depends on up to Tk instances
. Computation timeis O(Tm"*)  + the running timg of
= For k=1, running time is linear in 7and m

But, is training tractable?



Learning: single component

= Note:
B 1 ifd5 s.t. g([xi4]) =1
fl(Xi) N { 0 otherwise ’ < MCL (k=1)
(1 i3 st flzy) =1
F(X:) = { 0 otherwise ’ < MIL

= So first formulation of MCL with k=1 equivalent to MIL
= Can also show reduction for &>1, but training exponential in &

= Therefore existing MIL algorithms provide mechanism to
learn single components



Learning multiple components

= Additive Formulation:
T
F(X;) = sign( Y w2F,(X,) - 1])
t=1

= Additive models are simple but powerful
= Prevalent in statistics, rich theory
= Can use boosting to train additive model



Learning multiple components

= General algorithm:
= Use MIL to obtain weak classifiers (components)

= Use boosting to combine components into strong
classifier

= RealBoost for MCL:




Standard vs MIL vs MCL

Standard




Speaker identification

Speaker 1:

4 ¢ » § 4

2
¢ ¢ B e :

¢t
o

Speaker 2:
0.75 —4— MCL-NOR (eer=0.020)
L 07 ~®— MCL-ISR (eer=0.066)
Training Samples Sets (all sub-clips) 2 065 —#-MCL-GM (eer=0.014)
06 A BoF (eer=0.046)
' ¥ Boost (eer=0.343)
0.55 Jj
0.5 ' ‘ ' ‘ ‘
0 002 004 006 008 0.1

VoiceBox Matlab Toolbox (MFCC features)

w

]
i

|

Lt |
il
£

e

]
5

False Positive Rate

Results




Pedestrian detection

= Inria Dataset [Dalal & Triggs 2005]
= 1213 Training Positives (+ reflections)
= 0O(2000) background training images
= Test dataset about 2 as big

= Verification task:
= Does window contain pedestrian?

= Challenging dataset, much recent work

Specialized version of MCL:
1. Optimize MIL training
2. Incorporate spatial model



Learning from Less Supervision

_earn object class models from unlabeled/weakly
abeled images.

Unsupervised/Weakly Supervised Learning.

R. Girshick



"Is it possible to learn visual object

classes simply from looking at images?" -

[Josef Sivic et al. ICCV 2005]

HHE,  OEpeniEe R

Topic Models (pLSA/LDA)
[Sivic et al. ICCV 05]
[Russell et aI CVPR 06]

| Pyramld Match Kernel + Normallzed Cut |
[Grauman and Darrell. CVPR 06']
[Lee and Grauman. IJCV 09']

il
_--‘---‘-

[ house Jo{ truck )

Lin‘ Analysis Technique
[Kim et al. CVPR 05]
[Kim and Torralba. NIPS 097]

Context-Aware Discovery
[Lee and Grauman. CVPR 107]
[Deselaers et al. TJCV 12']

K. Grauman



PASCAL VOC results over time

PASCAL VOC 2007 mAP

60% Il DPM
- B R-CNN
o Selective Search
% 50% E;;'?n de Sande et
= B Regionlets
% E [Wang et al.]
% <  40% B MKL [Vedaldi et
E g al.]
S B DPM v1
< ° ®
% 30% @
O @
=

20%

2006 2008 2010 2012 2014
Year of Method

R. Girshick



Deformable models

Left eye Right eye
template% @ template

Springs”™ v3aNose template

Mouth
template

Fischler and Elschlager 1973“The Representation and Matching of Pictorial Structures”



34 years later

PASCAL VOC 2007 mAP
60%

Root template Part templates Spring costs

(Felzenszwalb, McAllester, Ramanan ’ 08)



Discriminative-trained part-based models

fo(z) = s, B-®(z, 2)

Lo(8) = 5181 +C Y max(0,1 — yi ()

2—1

person

(Felzenszwalb, McAllester, Ramanan ’ 08)



Deformation is not enough

Viewpoint

Subclasses

R. Girshick



Deformation is not enough

Occlusion/truncation

. Symmetries

Compositional structure

(kid with bucket hat and
scuba goggles)

R. Girshick







Lee, Efros, and Hebert



Visual data mining in computer vision

L

Bane
ois.
]

Low-level “visual words”
- [Sivic & Zisserman 2003, Laptev & Lindeberg 2003, Czurka et al.

Visual world

Object category dlscovery
[Sivic et al. 2005, Grauman & Darrell 2006, Russell et al. 2006, Lee &
Grauman 2010, Payet & Todorovic, 2010, Faktor & Irani 2012, Kang et al.
2012, ...]

= Most approaches mine globally consistent patterns
Lee, Efros, and Hebert



Visual data mining in computer vision

Visual world

—
- —
EE SRR — e .
SV 2 , s
A/ A - ey
N e
23 BN
L=

Mid-level visual
elements

[Doersch et al. 2012, Endres et al. 2013,
Juneja et al. 2013, Fouhey et al. 2013,
Doersch et al. 2013]

« Recent methods discover specific visual patterns
Lee, Efros, and Hebert




Problem

= Much in our visual world undergoes a gradual
change

Temporal:

900 010 920 930 ead 940 ate 1940 050 900

1887- 1900- 1941- 1958- 1969-

1900 1941 1969 1969 1987
Lee, Efros, and Hebert




Goal

= Mine mid-level visual elements in temporally- and spatially-
varying data and model their “visual style”

1940 1960 1980 2000 year

M

¥ l 35 »
i wy iR T

when? where?
Historical dating of cars Geolocalization of StreetView
[Kim et al. 2010, Fu et al. 2010, Palermo et al. [Cristani et al. ZOOémaggifros 2008, Knopp
2012] et al. 2010, Chen & Grauman. 2011, Schindler et
al. 2012]

Lee, Efros, and Hebert



Key Idea

1) Establish connections

‘closed-world”

-
1926 1947 1975

2) Model style-specific differences
Lee, Efros, and Hebert



Making visual connections

Expect style to change gradually... Lee, Efros, and Hebert

Natural world “background” dataset



Mining style-sensitive elements

Patch Nearest neighbors

F « B
; L e w %
=2
} .}/. ; r »

B

o
5 o
—_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— _— —_— —_— —_— —_— —_— —_— —_—
R el -
-\}1- »

=
-

Lee, Efros, and Hebert




Making visual connections

1920s _19305 1940s 1950s 19605 1970s 1980s 1990s

aza-a:j

Qﬁemon pery

Lee, Efros, and Hebert




Mid-Level visual knowledge discovery

s Doersch et al. What Makes Paris Look like Paris? SIGGRAPH 2012

= Singh et al. Unsupervised Discovery of Mid-Level Discriminative
Patches. ECCV 2012



Image search

x "\ = Bing Images - Search the  x

- o i

5 g Google Images [ L=} = | e
€« C f [ www.google.com/imghp?hl=en&tab= el &, L%ﬁ
[ Other bookmarks

For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...
More -

m B

Play YouTube News Gmail Drive Calendar

+You Search Images Maps

QuannanLi ~

images

= HES

Peek ahead atimage results with new related search previews. Learn more.

Advertising Programs  Business Solutions +Google  About Google

10:14 AM
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Harvesting mid-level visual concepts from
large-scale internet images

/00 words 450,000 images

goggles spectacle key faucet wheel

propeller fruit wheel roller coaster

swing mirror button hook candle

streetlight room light saddle bookshelf

shelf umbrella plate snail balloon

public toilet cupboard drawer garage

Cross fence door railing wall | -

sail rack shower curtain homo -

rock pool ball bed bench .“"“F‘g . u-hv'll \r‘-\m‘.
chair sofa toilet seat writing fhaa Bt vl o= %

desk dressing table gravel pool ™ 5 ..-- . 4 ‘- ‘U.‘w. "
table attire table-tennis table shield

backboard basketball court face veil : - “ P ° 4 ﬁ‘ 9
drum guitar horn suit shoe ’5 b A f = .
basket blind floor bear grass ® an . v . %U
bouquet blanket bridal gown vase -

pen bathtub rug curtain baseball

glove towel mouse stick male

horse squash racket box glove

seashore jersey boot fork flipper

soil cesspool duck turtle snake

wing aqualung oxygen mask lion

cell loudspeaker filter stove monkey

kangaroo goggles spectacle key faucet

wheel propeller fruit wheel roller

coaster swing mirror button hook

candle streetlight room light saddle

bookshelf shelf umbrella plate snail

balloon public toilet cupboard drawer

garage Cross fence door railing

wall sail rack shower curtain

homo rock pool ball bed

bench chair sofa toilet seat

writing desk dressing table gravel

pool table attire table-tennis table

shield backboard basketball court face oyl

veil drum guitar horn snail



Supervised learning for visual concepts

Sky

Trees




Difficulty with supervised learning

Sky

= Scalability
= Intrinsic ambiguity in human annotations
= Inconsistency across different subjects




Weakly-Supervised Visual Concept Learning

Ea#av* cy&vﬁv
Gl S FR5
vmv9@71UQo-v8

Bottom-up saliency

for * "noisy input”

Learned Learned || Low-
concepts || concept || level
featores—
Layer 3 4
Learned || Low-
concept || level
S features
Layer 2 {F
Extract | Low-
codebook  [hlulyll level

reSponses




Learned visual concepts

{x X1 X5 X3 X4
Pooled A A A
feature
vectors/

NI
//l/

posterior IT anterior IT
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Learned response maps




Learned mid-level visual concepts

Building

Combined

Image

Response

Flower




Classification using visual concepts

15 Scene



Response maps of mid-level concepts




Extension

Objects > Motions
Nouns Verbs



Views in cognitive science

Test
Stimulus

Implied Motion

= Activation in human MT/MST
= Kourtzi et al., J. Cog Neurosci, 2000, Proverbio et al., PLoS One, 2009

= A series of findings from Boroditsky

= Still images of actions < human cognition < Visual imagery of motion <~
motion language, Psych Sci, 2008, Cognition, 2010, PNAS, 2010

= Experiments in Computer Vision (a MIL demonstration)



Action concepts from still images

We are crawling ~1000 action categories, e.g. brushing teeth, bowling, from
Google and Bing image search engines.



Motion phrase

™y



Expansion

Seeds
Collocation Explorer e
|
e _ ' M-phrases
|
|
Worlinet | Candidate sentences i [ marching
w |
: rchative ul child smiling |
positive il ‘>

cleaning teeth

[ I

They marched their mules into the desert

———————— J
A"

Syntactic Features Semantic Features
—~ -
3 ;g’;t.' IEE.'IE’Y G |def: force to march
| CAT: NP > | Classification | «——| g [hypernyms:
< . walk, travel, go, move, locomote
™~
Text: mule
* | POS: NNS 5 hypemyms: : o
g’ CAT: NP £ mammal, vertebrate, animal, beast, living thing




M-phrases

S + M-verbh-ex

M-verh-ex + O/ Ad

S + M-verb-ex + O/ Ad

M-verb
crawling throwing
marching  applauding
brushing diving
pushing walking

cycling smiling
jogging dancing
archering dunking
bowling drinking
boxing fishing
kayaking bathing
coughing  decanting
dabbling  harvesting
refueling spinning
spitting telephoning
undressing  yelling
dancing crawling
kneading hugging
jibing sledging
parying quarreling
injecting leaping
rushing roaring
shampooing shaving
photographingmelting
mining migrating
nibbling mopping

chanting bullying

whistle blowing
water flowing
leaf swirling
cat running
dog barking
man sailing
military marching
car running
child clinging
dog baying
fish swimming
girl walking
man leaping
potato sprouting
tree swaying
water pouring
balloon popping
dog barking
dog snapping
mammal predating
hair falling
woman nibbling
woman jumping
whale blowing
patient walking
smoke rising

child running
man smoking
fish swimming
kid skiing
woman smoking
baby crawling
band playing
baby wailing
child writing
dog eating
girl dancing
girl pouting
man sitting
train derailing
water bubbling
woman biting
child bathing
child coloring
bomb exploding
hair greying
horse galloping
ship sinking
infant suckling
snake swimming
flower withering
sheep eating

raising hands
pushing against wall
delivering ball
brushing hair
cooking dinner
lifting box
clibming rock
closing eyes
fixing car
playing badminton
playing guitar
ascending mountain
bonding with child
cheering child
cleaning fingernail
disciplining child
feeding child
holding bowl
harpooning whales
riding camel
skating along canal
shuffling card
raising hand
riding bull
cutting vegetables
clapping hands

applying eye makeup
applying lipstick
blowing dry hair
blowing bubbles
blowing candles
brushing tecth
cutting trees
raising eyebrows
fixing bike
playing football
playing cello
assembling car
brushing wall
conditioning hair
cleaning stove
drinking soda
filleting fish
holding nose
jumping over fence
riding motorcycle
veiling face
sifting flour
spiking volleyball
playing table tennis
driving car
decanting wine

wind blowing leaf
boat driting on water
fish swimming in tank
feather drifting past window
dog licking hand
bird clapping wing
face being angry
face being disgusted
face being surprised
dentish cleaning tooth
people crowding street
parent protecting child
pitcher delivering ball
squirrel learping from tree
smoke rising from fire
spider spinning web
teacher teaching child
veteran prading street
wind blowing leaf
lightning striking tree
parent disciplining child
bird perching in tree
wind howling in tree
mushroom growing under tree
face being shy
caterpillar feeding on leaf




Distribution of images

Percentage (%)
0.4

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0 1 2 3 4 5 0 1 2 3 4 5
uw Baseline LINLP framework

Quality from 0 (the worst) to 5 (the best)




Motions in still images

w2 2 4

uﬁiﬁk ¥ RS
g% N L
BTN , fo l % 5\{. '

1,024 categories of motions from Google and Bing






Inner-category consistency
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Recognizing human actions in videos




Background & applications

Content-based video

Sports video analysis |




Spatial-temporal video features by dense trajectory

Dense trajectories

Tracking in each spatial scale separately Trajectory description

Dense sampling
in each spatial scale %/_

P i a0
- -
-

-

-
i
===

L =
-~ — . -

- s s
o - -~

| = —

Wang et al. 2013



Learned video patches from action video clips

Brush Hair

Ride Bike

Shoot Ball

Kick Ball




Learned video patches from action video clips

Kiss Drink Ride Horse Golf Shake Hands
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Weakly-Supervised Learning for Microscopic Image
Segmentation, Clustering, and Classification

= Colon cancer

= Lung cancer 5

= Liver cancer e D
= Breast cancer
= Nasopharyngeal cancer
= Kidney cancer

= Esophagus cancer

s (Gastric cancer

2000 pathology reports of
colon cancer including diseast
information and image
information



Weakly-Supervised Learning

1. It is relatively easy to identify
cancer/non-cancer histopathology
iImages.

2. The detailed segmentation however
requires careful manual annotations.

3. It is an ambiguous task to
identify/recognize the subclasses of the
cancer type.



Histopathology Images (extremely large:
around 1TB per image)




Motivation for Weakly-
Supervised Learning

Cancer histopathology image Non-cancer histopathology image



Motivation for Weakly-Supervised Learning

Cancer Image Non-cancer Image

Positive L) Negative

bags bags

An integrated formulation to perform pixel-level segmentation, patch-level clustering, and image-
level classification with image-level labels as supervision, Multiple Clustered Instance Learning (Xu et
al. cvpr 2012, Xu et al. MICCAI 2012).



Results- Test Images (xu et al. cVPR 2012)

(a): The original
images.
(b): The pixel-
level
segmentation
and clustering

Sx . for standard

% Boosting + K-
means

MA a:*'.; # 2, ol (c): MIL + K-

| ; i means, and our

N MCIL.

MTA

MTA

LTA

p. : (d): MCIL
{//; = ’A, (e): The
: instance-level

# "\ ground truth
S | labeled by three
B pathologists.

NC

NC

(a) (b) (c) (d) (e)



Unsupervised object discovery



Tllustration

Positive bags O

Negative
bags




Bottom-up multiple class learning

Zhu et al., CVPR 2012



Object discovery results




Weakly supervised modeling

of single object class
Ours [32] [11] [9] [41] [38]

PASCAL 06- 45 36 49 34 27 N/A
subset

PASCAL 07- 31 25 28 19 14 30
subset

32] Leistner, et al. ECCV 11’

11] Deselaers et al. IJCV 12’

9] Chum Zisserman. CVPR 07’

41] Russell et al. CVPR 06’

'38] Pandey and Lazebnik. ICCV 11’
'25] Joulin et al. CVPR 12’

[25]
43

30



PASCAL results:




Unsupervised object discovery-a
low-rank approach wang et ai. 2014)




Previous work

RPCA: E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal
component analysis? Journal of the ACM, 58(3), May 2011.

RASL: Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, RASL: Robust
Alignment by Sparse and Low-rank Decomposition for Linearly
Correlated Images, PAMI 2011.

Ilnin||A|| +y||E||ys.t. D-t=A+E




m

A Low-rank solution

AE,Z

X Z A

coo ..

OO —=O

inrank(A) + y||E||o s-t.X - diag(Z) = A+ E,Vk € [K]




Relaxing the conditions

LnEir}rank(A) + y||E|]|og s.t. X diag(Z) = A+ E,Vk € [K] Uzlk =1

min ||A||. + Y||E||; s.t. X diag(Z) = A+ E,Vk € [K] UZZC =1

AEZ
l i=1

min ||All. + y||E|ly s.t.X diag(Z) = A+ E,Vk € [K]1TZz5) =1

Now a convex optimization which can be solved by e.g. Inexact Augmented
Lagrange Multiplier.



Inexact augmented Lagrange multiplier

L(A,E,Z, Yo, Y1,...,Yg) = ||All. + A| E|l1 + (Yo, Xdiag (Z) — A — E) + %HXcliag (Z)— A—E|%

)
Y (m. 1720 — 1) + %||1Tz'i*‘?' ~11}).

=1
IALM MNIM
—1 —1
Kl
dng 4

el 0.8 0.9
a5t 108 40.8
22+ 10.7 10.7
191

Rank of subspace
=

0 005 041 015 02 025 03 0 oos 041 0.15 02 025 03
Ratio of sparse error Ratio of sparse error



precision

Results
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MRF tumor discovery

$9906
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Connection with deep learning

C; S| C: S; m 0
mput feature maps  feature maps feature maps feature maps output
32x32 28x28 14x 14 10x10 Ix3

3%5 2x2 x5 7 o)
convolution \ subsampling  convolution x2 \ \ o fully \
subsampling \\ connected A

feature extraction classification

LeCun,et al.



Conclusion

There are rich mathematical/statistical/computational models which become
Increasingly convenient to use.

The availability of ever increasing data cohort provides a golden opportunity
to exploit rich and intrinsic data representation.

Gross label information is much easier to obtain which can be viewed as
“noisy” input which allows us to explore structural information which might
be hard to specify at the first place.

Weakly-supervised learning allows us to greatly automate and scale up the
learning process, which is strongly tied with the development of human
cognition.

There are still a lot of open questions, so as great opportunities ahead.

Abstraction, Composition, Competition, and
Computation



Thanks! Questions?



