
Graphical Models and Kernel Methods

Jerry Zhu

Department of Computer Sciences
University of Wisconsin–Madison, USA

MLSS
June 17, 2014

1 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

2 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

3 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

4 / 123

The envelope quiz

I red ball = $$$

I You randomly picked an envelope, randomly took out a ball –
and it was black

I Should you choose this envelope or the other envelope?

5 / 123

The envelope quiz

I red ball = $$$

I You randomly picked an envelope, randomly took out a ball –
and it was black

I Should you choose this envelope or the other envelope?

5 / 123

The envelope quiz

I red ball = $$$

I You randomly picked an envelope, randomly took out a ball –
and it was black

I Should you choose this envelope or the other envelope?

5 / 123

The envelope quiz

I Probabilistic inference

I Joint distribution on E ∈ {1, 0}, B ∈ {r, b}:
P (E,B) = P (E)P (B | E)

I P (E = 1) = P (E = 0) = 1/2
I P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0
I The graphical model:

B

E

I Statistical decision theory: switch if P (E = 1 | B = b) < 1/2

I P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3.
Switch.

6 / 123

The envelope quiz

I Probabilistic inference
I Joint distribution on E ∈ {1, 0}, B ∈ {r, b}:
P (E,B) = P (E)P (B | E)

I P (E = 1) = P (E = 0) = 1/2
I P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0
I The graphical model:

B

E

I Statistical decision theory: switch if P (E = 1 | B = b) < 1/2

I P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3.
Switch.

6 / 123

The envelope quiz

I Probabilistic inference
I Joint distribution on E ∈ {1, 0}, B ∈ {r, b}:
P (E,B) = P (E)P (B | E)

I P (E = 1) = P (E = 0) = 1/2

I P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0
I The graphical model:

B

E

I Statistical decision theory: switch if P (E = 1 | B = b) < 1/2

I P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3.
Switch.

6 / 123

The envelope quiz

I Probabilistic inference
I Joint distribution on E ∈ {1, 0}, B ∈ {r, b}:
P (E,B) = P (E)P (B | E)

I P (E = 1) = P (E = 0) = 1/2
I P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0

I The graphical model:

B

E

I Statistical decision theory: switch if P (E = 1 | B = b) < 1/2

I P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3.
Switch.

6 / 123

The envelope quiz

I Probabilistic inference
I Joint distribution on E ∈ {1, 0}, B ∈ {r, b}:
P (E,B) = P (E)P (B | E)

I P (E = 1) = P (E = 0) = 1/2
I P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0
I The graphical model:

B

E

I Statistical decision theory: switch if P (E = 1 | B = b) < 1/2

I P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3.
Switch.

6 / 123

The envelope quiz

I Probabilistic inference
I Joint distribution on E ∈ {1, 0}, B ∈ {r, b}:
P (E,B) = P (E)P (B | E)

I P (E = 1) = P (E = 0) = 1/2
I P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0
I The graphical model:

B

E

I Statistical decision theory: switch if P (E = 1 | B = b) < 1/2

I P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3.
Switch.

6 / 123

The envelope quiz

I Probabilistic inference
I Joint distribution on E ∈ {1, 0}, B ∈ {r, b}:
P (E,B) = P (E)P (B | E)

I P (E = 1) = P (E = 0) = 1/2
I P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0
I The graphical model:

B

E

I Statistical decision theory: switch if P (E = 1 | B = b) < 1/2

I P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3.
Switch.

6 / 123

Reasoning with uncertainty

I The world is reduced to a set of random variables x1, . . . , xd

I e.g. (x1, . . . , xd−1) a feature vector, xd ≡ y the class label

I Inference: given joint distribution p(x1, . . . , xd), compute
p(XQ | XE) where XQ ∪XE ⊆ {x1 . . . xd}

I e.g. Q = {d}, E = {1 . . . d− 1}, by the definition of
conditional

p(xd | x1, . . . , xd−1) =
p(x1, . . . , xd−1, xd)∑

v p(x1, . . . , xd−1, xd = v)

I Learning: estimate p(x1, . . . , xd) from training data

X(1), . . . , X(N), where X(i) = (x
(i)
1 , . . . , x

(i)
d)

7 / 123

Reasoning with uncertainty

I The world is reduced to a set of random variables x1, . . . , xd
I e.g. (x1, . . . , xd−1) a feature vector, xd ≡ y the class label

I Inference: given joint distribution p(x1, . . . , xd), compute
p(XQ | XE) where XQ ∪XE ⊆ {x1 . . . xd}

I e.g. Q = {d}, E = {1 . . . d− 1}, by the definition of
conditional

p(xd | x1, . . . , xd−1) =
p(x1, . . . , xd−1, xd)∑

v p(x1, . . . , xd−1, xd = v)

I Learning: estimate p(x1, . . . , xd) from training data

X(1), . . . , X(N), where X(i) = (x
(i)
1 , . . . , x

(i)
d)

7 / 123

Reasoning with uncertainty

I The world is reduced to a set of random variables x1, . . . , xd
I e.g. (x1, . . . , xd−1) a feature vector, xd ≡ y the class label

I Inference: given joint distribution p(x1, . . . , xd), compute
p(XQ | XE) where XQ ∪XE ⊆ {x1 . . . xd}

I e.g. Q = {d}, E = {1 . . . d− 1}, by the definition of
conditional

p(xd | x1, . . . , xd−1) =
p(x1, . . . , xd−1, xd)∑

v p(x1, . . . , xd−1, xd = v)

I Learning: estimate p(x1, . . . , xd) from training data

X(1), . . . , X(N), where X(i) = (x
(i)
1 , . . . , x

(i)
d)

7 / 123

Reasoning with uncertainty

I The world is reduced to a set of random variables x1, . . . , xd
I e.g. (x1, . . . , xd−1) a feature vector, xd ≡ y the class label

I Inference: given joint distribution p(x1, . . . , xd), compute
p(XQ | XE) where XQ ∪XE ⊆ {x1 . . . xd}

I e.g. Q = {d}, E = {1 . . . d− 1}, by the definition of
conditional

p(xd | x1, . . . , xd−1) =
p(x1, . . . , xd−1, xd)∑

v p(x1, . . . , xd−1, xd = v)

I Learning: estimate p(x1, . . . , xd) from training data

X(1), . . . , X(N), where X(i) = (x
(i)
1 , . . . , x

(i)
d)

7 / 123

Reasoning with uncertainty

I The world is reduced to a set of random variables x1, . . . , xd
I e.g. (x1, . . . , xd−1) a feature vector, xd ≡ y the class label

I Inference: given joint distribution p(x1, . . . , xd), compute
p(XQ | XE) where XQ ∪XE ⊆ {x1 . . . xd}

I e.g. Q = {d}, E = {1 . . . d− 1}, by the definition of
conditional

p(xd | x1, . . . , xd−1) =
p(x1, . . . , xd−1, xd)∑

v p(x1, . . . , xd−1, xd = v)

I Learning: estimate p(x1, . . . , xd) from training data

X(1), . . . , X(N), where X(i) = (x
(i)
1 , . . . , x

(i)
d)

7 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)

I exponential näıve storage (2d for binary r.v.)
I hard to interpret (conditional independence)

I inference p(XQ | XE)

I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data

I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)
I exponential näıve storage (2d for binary r.v.)

I hard to interpret (conditional independence)

I inference p(XQ | XE)

I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data

I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)
I exponential näıve storage (2d for binary r.v.)
I hard to interpret (conditional independence)

I inference p(XQ | XE)

I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data

I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)
I exponential näıve storage (2d for binary r.v.)
I hard to interpret (conditional independence)

I inference p(XQ | XE)

I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data

I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)
I exponential näıve storage (2d for binary r.v.)
I hard to interpret (conditional independence)

I inference p(XQ | XE)
I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data

I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)
I exponential näıve storage (2d for binary r.v.)
I hard to interpret (conditional independence)

I inference p(XQ | XE)
I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data

I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)
I exponential näıve storage (2d for binary r.v.)
I hard to interpret (conditional independence)

I inference p(XQ | XE)
I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data
I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

It is difficult to reason with uncertainty

I joint distribution p(x1, . . . , xd)
I exponential näıve storage (2d for binary r.v.)
I hard to interpret (conditional independence)

I inference p(XQ | XE)
I Often can’t afford to do it by brute force

I If p(x1, . . . , xd) not given, estimate it from data
I Often can’t afford to do it by brute force

I Graphical model: efficient representation, inference, and
learning on p(x1, . . . , xd), exactly or approximately

8 / 123

What are graphical models?

I Graphical model = joint distribution p(x1, . . . , xd)

I Bayesian network or Markov random field
I conditional independence

I Inference = p(XQ | XE), in general XQ ∪XE ⊂ {x1 . . . xd}

I exact, MCMC, variational

I If p(x1, . . . , xd) not given, estimate it from data

I parameter and structure learning

9 / 123

What are graphical models?

I Graphical model = joint distribution p(x1, . . . , xd)
I Bayesian network or Markov random field

I conditional independence

I Inference = p(XQ | XE), in general XQ ∪XE ⊂ {x1 . . . xd}

I exact, MCMC, variational

I If p(x1, . . . , xd) not given, estimate it from data

I parameter and structure learning

9 / 123

What are graphical models?

I Graphical model = joint distribution p(x1, . . . , xd)
I Bayesian network or Markov random field
I conditional independence

I Inference = p(XQ | XE), in general XQ ∪XE ⊂ {x1 . . . xd}

I exact, MCMC, variational

I If p(x1, . . . , xd) not given, estimate it from data

I parameter and structure learning

9 / 123

What are graphical models?

I Graphical model = joint distribution p(x1, . . . , xd)
I Bayesian network or Markov random field
I conditional independence

I Inference = p(XQ | XE), in general XQ ∪XE ⊂ {x1 . . . xd}

I exact, MCMC, variational

I If p(x1, . . . , xd) not given, estimate it from data

I parameter and structure learning

9 / 123

What are graphical models?

I Graphical model = joint distribution p(x1, . . . , xd)
I Bayesian network or Markov random field
I conditional independence

I Inference = p(XQ | XE), in general XQ ∪XE ⊂ {x1 . . . xd}
I exact, MCMC, variational

I If p(x1, . . . , xd) not given, estimate it from data

I parameter and structure learning

9 / 123

What are graphical models?

I Graphical model = joint distribution p(x1, . . . , xd)
I Bayesian network or Markov random field
I conditional independence

I Inference = p(XQ | XE), in general XQ ∪XE ⊂ {x1 . . . xd}
I exact, MCMC, variational

I If p(x1, . . . , xd) not given, estimate it from data

I parameter and structure learning

9 / 123

What are graphical models?

I Graphical model = joint distribution p(x1, . . . , xd)
I Bayesian network or Markov random field
I conditional independence

I Inference = p(XQ | XE), in general XQ ∪XE ⊂ {x1 . . . xd}
I exact, MCMC, variational

I If p(x1, . . . , xd) not given, estimate it from data
I parameter and structure learning

9 / 123

Graphical-Model-Nots

I Graphical model is the study of probabilistic models

I Just because there are nodes and edges doesn’t mean it’s a
graphical model

I These are not graphical models:

neural network decision tree network flow HMM template
(but HMMs are!)

10 / 123

Graphical-Model-Nots

I Graphical model is the study of probabilistic models

I Just because there are nodes and edges doesn’t mean it’s a
graphical model

I These are not graphical models:

neural network decision tree network flow HMM template
(but HMMs are!)

10 / 123

Graphical-Model-Nots

I Graphical model is the study of probabilistic models

I Just because there are nodes and edges doesn’t mean it’s a
graphical model

I These are not graphical models:

neural network decision tree network flow HMM template
(but HMMs are!)

10 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

11 / 123

Directed graphical models

12 / 123

Directed graphical models

I Also called Bayesian networks

I A directed graph has nodes x1, . . . , xd, some of them
connected by directed edges xi → xj

I A cycle is a directed path x1 → . . .→ xk where x1 = xk
I A directed acyclic graph (DAG) contains no cycles

13 / 123

Directed graphical models

I Also called Bayesian networks

I A directed graph has nodes x1, . . . , xd, some of them
connected by directed edges xi → xj

I A cycle is a directed path x1 → . . .→ xk where x1 = xk
I A directed acyclic graph (DAG) contains no cycles

13 / 123

Directed graphical models

I Also called Bayesian networks

I A directed graph has nodes x1, . . . , xd, some of them
connected by directed edges xi → xj

I A cycle is a directed path x1 → . . .→ xk where x1 = xk

I A directed acyclic graph (DAG) contains no cycles

13 / 123

Directed graphical models

I Also called Bayesian networks

I A directed graph has nodes x1, . . . , xd, some of them
connected by directed edges xi → xj

I A cycle is a directed path x1 → . . .→ xk where x1 = xk
I A directed acyclic graph (DAG) contains no cycles

13 / 123

Directed graphical models

I A Bayesian network on the DAG is a family of distributions
satisfying

{p | p(x1, . . . , xd) =
∏
i

p(xi | Pa(xi))}

where Pa(xi) is the set of parents of xi.

I p(xi | Pa(xi)) is the conditional probability distribution
(CPD) at xi

I By specifying the CPDs for all i, we specify a joint
distribution p(x1, . . . , xd)

14 / 123

Directed graphical models

I A Bayesian network on the DAG is a family of distributions
satisfying

{p | p(x1, . . . , xd) =
∏
i

p(xi | Pa(xi))}

where Pa(xi) is the set of parents of xi.

I p(xi | Pa(xi)) is the conditional probability distribution
(CPD) at xi

I By specifying the CPDs for all i, we specify a joint
distribution p(x1, . . . , xd)

14 / 123

Directed graphical models

I A Bayesian network on the DAG is a family of distributions
satisfying

{p | p(x1, . . . , xd) =
∏
i

p(xi | Pa(xi))}

where Pa(xi) is the set of parents of xi.

I p(xi | Pa(xi)) is the conditional probability distribution
(CPD) at xi

I By specifying the CPDs for all i, we specify a joint
distribution p(x1, . . . , xd)

14 / 123

Example: Burglary, Earthquake, Alarm, John and Marry

Binary variables

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

P (B,∼ E,A, J,∼M)

= P (B)P (∼ E)P (A | B,∼ E)P (J | A)P (∼M | A)

= 0.001× (1− 0.002)× 0.94× 0.9× (1− 0.7)

≈ .000253

15 / 123

Example: Naive Bayes

y y

x x. . .1 d x

d

I p(y, x1, . . . xd) = p(y)
∏d
i=1 p(xi | y)

I Plate representation on the right

I p(y) multinomial

I p(xi | y) depends on the feature type: multinomial (count xi),
Gaussian (continuous xi), etc.

16 / 123

Example: Naive Bayes

y y

x x. . .1 d x

d

I p(y, x1, . . . xd) = p(y)
∏d
i=1 p(xi | y)

I Plate representation on the right

I p(y) multinomial

I p(xi | y) depends on the feature type: multinomial (count xi),
Gaussian (continuous xi), etc.

16 / 123

Example: Naive Bayes

y y

x x. . .1 d x

d

I p(y, x1, . . . xd) = p(y)
∏d
i=1 p(xi | y)

I Plate representation on the right

I p(y) multinomial

I p(xi | y) depends on the feature type: multinomial (count xi),
Gaussian (continuous xi), etc.

16 / 123

Example: Naive Bayes

y y

x x. . .1 d x

d

I p(y, x1, . . . xd) = p(y)
∏d
i=1 p(xi | y)

I Plate representation on the right

I p(y) multinomial

I p(xi | y) depends on the feature type: multinomial (count xi),
Gaussian (continuous xi), etc.

16 / 123

No Causality Whatsoever

P(A)=a
P(B|A)=b
P(B|~A)=c

A

B

B

A

P(B)=ab+(1−a)c
P(A|B)=ab/(ab+(1−a)c)
P(A|~B)=a(1−b)/(1−ab−(1−a)c)

The two BNs are equivalent in all respects

I Do not read causality from Bayesian networks

I They only represent correlation (joint probability distribution)

I However, it is perfectly fine to design BNs causally

17 / 123

No Causality Whatsoever

P(A)=a
P(B|A)=b
P(B|~A)=c

A

B

B

A

P(B)=ab+(1−a)c
P(A|B)=ab/(ab+(1−a)c)
P(A|~B)=a(1−b)/(1−ab−(1−a)c)

The two BNs are equivalent in all respects

I Do not read causality from Bayesian networks

I They only represent correlation (joint probability distribution)

I However, it is perfectly fine to design BNs causally

17 / 123

No Causality Whatsoever

P(A)=a
P(B|A)=b
P(B|~A)=c

A

B

B

A

P(B)=ab+(1−a)c
P(A|B)=ab/(ab+(1−a)c)
P(A|~B)=a(1−b)/(1−ab−(1−a)c)

The two BNs are equivalent in all respects

I Do not read causality from Bayesian networks

I They only represent correlation (joint probability distribution)

I However, it is perfectly fine to design BNs causally

17 / 123

What do we need probabilistic models for?

I Make predictions. p(y | x) plus decision theory

I Interpret models. Very natural to include latent variables

18 / 123

What do we need probabilistic models for?

I Make predictions. p(y | x) plus decision theory

I Interpret models. Very natural to include latent variables

18 / 123

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

19 / 123

Conditional Independence

I Two r.v.s A, B are independent if

P (A,B) = P (A)P (B)

P (A|B) = P (A)

P (B|A) = P (B)

I Two r.v.s A, B are conditionally independent given C if

P (A,B | C) = P (A | C)P (B | C)

P (A | B,C) = P (A | C)

P (B | A,C) = P (B | C)

I This extends to groups of r.v.s

I Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)

20 / 123

Conditional Independence

I Two r.v.s A, B are independent if

P (A,B) = P (A)P (B)

P (A|B) = P (A)

P (B|A) = P (B)

I Two r.v.s A, B are conditionally independent given C if

P (A,B | C) = P (A | C)P (B | C)

P (A | B,C) = P (A | C)

P (B | A,C) = P (B | C)

I This extends to groups of r.v.s

I Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)

20 / 123

Conditional Independence

I Two r.v.s A, B are independent if

P (A,B) = P (A)P (B)

P (A|B) = P (A)

P (B|A) = P (B)

I Two r.v.s A, B are conditionally independent given C if

P (A,B | C) = P (A | C)P (B | C)

P (A | B,C) = P (A | C)

P (B | A,C) = P (B | C)

I This extends to groups of r.v.s

I Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)

20 / 123

Conditional Independence

I Two r.v.s A, B are independent if

P (A,B) = P (A)P (B)

P (A|B) = P (A)

P (B|A) = P (B)

I Two r.v.s A, B are conditionally independent given C if

P (A,B | C) = P (A | C)P (B | C)

P (A | B,C) = P (A | C)

P (B | A,C) = P (B | C)

I This extends to groups of r.v.s

I Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)

20 / 123

d-Separation Case 1: Tail-to-Tail

C

A B

C

A B

I A, B in general dependent

I A, B conditionally independent given C (observed nodes are
shaded)

I An observed C is a tail-to-tail node, blocks the undirected
path A-B

21 / 123

d-Separation Case 1: Tail-to-Tail

C

A B

C

A B

I A, B in general dependent

I A, B conditionally independent given C (observed nodes are
shaded)

I An observed C is a tail-to-tail node, blocks the undirected
path A-B

21 / 123

d-Separation Case 1: Tail-to-Tail

C

A B

C

A B

I A, B in general dependent

I A, B conditionally independent given C (observed nodes are
shaded)

I An observed C is a tail-to-tail node, blocks the undirected
path A-B

21 / 123

d-Separation Case 2: Head-to-Tail

A C B A C B

I A, B in general dependent

I A, B conditionally independent given C

I An observed C is a head-to-tail node, blocks the path A-B

22 / 123

d-Separation Case 2: Head-to-Tail

A C B A C B

I A, B in general dependent

I A, B conditionally independent given C

I An observed C is a head-to-tail node, blocks the path A-B

22 / 123

d-Separation Case 2: Head-to-Tail

A C B A C B

I A, B in general dependent

I A, B conditionally independent given C

I An observed C is a head-to-tail node, blocks the path A-B

22 / 123

d-Separation Case 3: Head-to-Head

A B A B

C C

I A, B in general independent

I A, B conditionally dependent given C, or any of C’s
descendants

I An observed C is a head-to-head node, unblocks the path A-B

23 / 123

d-Separation Case 3: Head-to-Head

A B A B

C C

I A, B in general independent

I A, B conditionally dependent given C, or any of C’s
descendants

I An observed C is a head-to-head node, unblocks the path A-B

23 / 123

d-Separation Case 3: Head-to-Head

A B A B

C C

I A, B in general independent

I A, B conditionally dependent given C, or any of C’s
descendants

I An observed C is a head-to-head node, unblocks the path A-B

23 / 123

d-Separation

I Variable groups A and B are conditionally independent given
C, if all undirected paths from nodes in A to nodes in B are
blocked

24 / 123

d-Separation Example 1

I The undirected path from A to B is unblocked by E (because
of C), and is not blocked by F

I A, B dependent given C

A

C

B

F

E

25 / 123

d-Separation Example 1

I The undirected path from A to B is unblocked by E (because
of C), and is not blocked by F

I A, B dependent given C

A

C

B

F

E

25 / 123

d-Separation Example 2

I The path from A to B is blocked both at E and F

I A, B conditionally independent given F

A

B

F

E

C

26 / 123

d-Separation Example 2

I The path from A to B is blocked both at E and F

I A, B conditionally independent given F

A

B

F

E

C

26 / 123

Undirected graphical models

27 / 123

Undirected graphical models

I Also known as Markov Random Fields

I Recall directed graphical models require a DAG and locally
normalized CPDs

I efficient computation
I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}
I Z =

∫ ∏
C ψC(XC)dX is the partition function

28 / 123

Undirected graphical models

I Also known as Markov Random Fields
I Recall directed graphical models require a DAG and locally

normalized CPDs

I efficient computation
I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}
I Z =

∫ ∏
C ψC(XC)dX is the partition function

28 / 123

Undirected graphical models

I Also known as Markov Random Fields
I Recall directed graphical models require a DAG and locally

normalized CPDs
I efficient computation

I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}
I Z =

∫ ∏
C ψC(XC)dX is the partition function

28 / 123

Undirected graphical models

I Also known as Markov Random Fields
I Recall directed graphical models require a DAG and locally

normalized CPDs
I efficient computation
I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}
I Z =

∫ ∏
C ψC(XC)dX is the partition function

28 / 123

Undirected graphical models

I Also known as Markov Random Fields
I Recall directed graphical models require a DAG and locally

normalized CPDs
I efficient computation
I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}
I Z =

∫ ∏
C ψC(XC)dX is the partition function

28 / 123

Undirected graphical models

I Also known as Markov Random Fields
I Recall directed graphical models require a DAG and locally

normalized CPDs
I efficient computation
I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}
I Z =

∫ ∏
C ψC(XC)dX is the partition function

28 / 123

Undirected graphical models

I Also known as Markov Random Fields
I Recall directed graphical models require a DAG and locally

normalized CPDs
I efficient computation
I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}

I Z =
∫ ∏

C ψC(XC)dX is the partition function

28 / 123

Undirected graphical models

I Also known as Markov Random Fields
I Recall directed graphical models require a DAG and locally

normalized CPDs
I efficient computation
I but restrictive

I A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model is a family of distributions
satisfying {

p | p(X) =
1

Z

∏
C

ψC(XC)

}
I Z =

∫ ∏
C ψC(XC)dX is the partition function

28 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}

I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)

I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

29 / 123

Log-Linear Models

I Real-valued feature functions f1(X), . . . , fk(X)

I Real-valued weights w1, . . . , wk

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Equivalent to MRF p(X) = 1
Z

∏
C ψC(XC) with

ψC(XC) = exp (wCfC(X))

30 / 123

Log-Linear Models

I Real-valued feature functions f1(X), . . . , fk(X)

I Real-valued weights w1, . . . , wk

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Equivalent to MRF p(X) = 1
Z

∏
C ψC(XC) with

ψC(XC) = exp (wCfC(X))

30 / 123

Log-Linear Models

I Real-valued feature functions f1(X), . . . , fk(X)

I Real-valued weights w1, . . . , wk

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Equivalent to MRF p(X) = 1
Z

∏
C ψC(XC) with

ψC(XC) = exp (wCfC(X))

30 / 123

Example: Ising Model

θs
θ

xs xt
st

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


I fs(X) = xs, fst(X) = xsxt

31 / 123

Example: Image Denoising

[From Bishop PRML] noisy image argmaxX P (X|Y)

pθ(X | Y) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


θs =

{
c ys = 1
−c ys = 0

, θst > 0

32 / 123

Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

I Multivariate Gaussian

I The n× n covariance matrix Σ positive semi-definite

I Let Ω = Σ−1 be the precision matrix

I xi, xj are conditionally independent given all other variables, if
and only if Ωij = 0

I When Ωij 6= 0, there is an edge between xi, xj

33 / 123

Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

I Multivariate Gaussian

I The n× n covariance matrix Σ positive semi-definite

I Let Ω = Σ−1 be the precision matrix

I xi, xj are conditionally independent given all other variables, if
and only if Ωij = 0

I When Ωij 6= 0, there is an edge between xi, xj

33 / 123

Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

I Multivariate Gaussian

I The n× n covariance matrix Σ positive semi-definite

I Let Ω = Σ−1 be the precision matrix

I xi, xj are conditionally independent given all other variables, if
and only if Ωij = 0

I When Ωij 6= 0, there is an edge between xi, xj

33 / 123

Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

I Multivariate Gaussian

I The n× n covariance matrix Σ positive semi-definite

I Let Ω = Σ−1 be the precision matrix

I xi, xj are conditionally independent given all other variables, if
and only if Ωij = 0

I When Ωij 6= 0, there is an edge between xi, xj

33 / 123

Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

I Multivariate Gaussian

I The n× n covariance matrix Σ positive semi-definite

I Let Ω = Σ−1 be the precision matrix

I xi, xj are conditionally independent given all other variables, if
and only if Ωij = 0

I When Ωij 6= 0, there is an edge between xi, xj

33 / 123

Conditional Independence in Markov Random Fields

I Two group of variables A, B are conditionally independent
given another group C, if A, B become disconnected by
removing C and all edges involving C

A
C

B

34 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

35 / 123

Exact Inference

36 / 123

Inference by Enumeration

I Let X = (XQ, XE , XO) for query, evidence, and other
variables.

I Goal: P (XQ | XE)

I

P (XQ | XE) =
P (XQ, XE)

P (XE)
=

∑
XO

P (XQ, XE , XO)∑
XQ,XO

P (XQ, XE , XO)

I Summing exponential number of terms: with k variables in
XO each taking r values, there are rk terms

I Not covered: Variable elimination and junction tree (aka
clique tree)

37 / 123

Inference by Enumeration

I Let X = (XQ, XE , XO) for query, evidence, and other
variables.

I Goal: P (XQ | XE)

I

P (XQ | XE) =
P (XQ, XE)

P (XE)
=

∑
XO

P (XQ, XE , XO)∑
XQ,XO

P (XQ, XE , XO)

I Summing exponential number of terms: with k variables in
XO each taking r values, there are rk terms

I Not covered: Variable elimination and junction tree (aka
clique tree)

37 / 123

Inference by Enumeration

I Let X = (XQ, XE , XO) for query, evidence, and other
variables.

I Goal: P (XQ | XE)

I

P (XQ | XE) =
P (XQ, XE)

P (XE)
=

∑
XO

P (XQ, XE , XO)∑
XQ,XO

P (XQ, XE , XO)

I Summing exponential number of terms: with k variables in
XO each taking r values, there are rk terms

I Not covered: Variable elimination and junction tree (aka
clique tree)

37 / 123

Inference by Enumeration

I Let X = (XQ, XE , XO) for query, evidence, and other
variables.

I Goal: P (XQ | XE)

I

P (XQ | XE) =
P (XQ, XE)

P (XE)
=

∑
XO

P (XQ, XE , XO)∑
XQ,XO

P (XQ, XE , XO)

I Summing exponential number of terms: with k variables in
XO each taking r values, there are rk terms

I Not covered: Variable elimination and junction tree (aka
clique tree)

37 / 123

Inference by Enumeration

I Let X = (XQ, XE , XO) for query, evidence, and other
variables.

I Goal: P (XQ | XE)

I

P (XQ | XE) =
P (XQ, XE)

P (XE)
=

∑
XO

P (XQ, XE , XO)∑
XQ,XO

P (XQ, XE , XO)

I Summing exponential number of terms: with k variables in
XO each taking r values, there are rk terms

I Not covered: Variable elimination and junction tree (aka
clique tree)

37 / 123

Markov Chain Monte Carlo

38 / 123

Markov Chain Monte Carlo

I Forward sampling

I Gibbs sampling

I Collapsed Gibbs sampling

I Not covered: block Gibbs, Metropolis-Hastings, etc.

I Unbiased (after burn-in), but can have high variance

39 / 123

Markov Chain Monte Carlo

I Forward sampling

I Gibbs sampling

I Collapsed Gibbs sampling

I Not covered: block Gibbs, Metropolis-Hastings, etc.

I Unbiased (after burn-in), but can have high variance

39 / 123

Markov Chain Monte Carlo

I Forward sampling

I Gibbs sampling

I Collapsed Gibbs sampling

I Not covered: block Gibbs, Metropolis-Hastings, etc.

I Unbiased (after burn-in), but can have high variance

39 / 123

Markov Chain Monte Carlo

I Forward sampling

I Gibbs sampling

I Collapsed Gibbs sampling

I Not covered: block Gibbs, Metropolis-Hastings, etc.

I Unbiased (after burn-in), but can have high variance

39 / 123

Markov Chain Monte Carlo

I Forward sampling

I Gibbs sampling

I Collapsed Gibbs sampling

I Not covered: block Gibbs, Metropolis-Hastings, etc.

I Unbiased (after burn-in), but can have high variance

39 / 123

Monte Carlo Methods

I Consider the inference problem p(XQ = cQ | XE) where
XQ ∪XE ⊆ {x1 . . . xd}

p(XQ = cQ | XE) =

∫
1(xQ=cQ)p(xQ | XE)dxQ

I If we can draw samples x
(1)
Q , . . . x

(m)
Q ∼ p(xQ | XE), an

unbiased estimator is

p(XQ = cQ | XE) ≈ 1

m

m∑
i=1

1
(x

(i)
Q =cQ)

I The variance of the estimator decreases as O(1/m)

I Inference reduces to sampling from p(xQ | XE)

40 / 123

Monte Carlo Methods

I Consider the inference problem p(XQ = cQ | XE) where
XQ ∪XE ⊆ {x1 . . . xd}

p(XQ = cQ | XE) =

∫
1(xQ=cQ)p(xQ | XE)dxQ

I If we can draw samples x
(1)
Q , . . . x

(m)
Q ∼ p(xQ | XE), an

unbiased estimator is

p(XQ = cQ | XE) ≈ 1

m

m∑
i=1

1
(x

(i)
Q =cQ)

I The variance of the estimator decreases as O(1/m)

I Inference reduces to sampling from p(xQ | XE)

40 / 123

Monte Carlo Methods

I Consider the inference problem p(XQ = cQ | XE) where
XQ ∪XE ⊆ {x1 . . . xd}

p(XQ = cQ | XE) =

∫
1(xQ=cQ)p(xQ | XE)dxQ

I If we can draw samples x
(1)
Q , . . . x

(m)
Q ∼ p(xQ | XE), an

unbiased estimator is

p(XQ = cQ | XE) ≈ 1

m

m∑
i=1

1
(x

(i)
Q =cQ)

I The variance of the estimator decreases as O(1/m)

I Inference reduces to sampling from p(xQ | XE)

40 / 123

Monte Carlo Methods

I Consider the inference problem p(XQ = cQ | XE) where
XQ ∪XE ⊆ {x1 . . . xd}

p(XQ = cQ | XE) =

∫
1(xQ=cQ)p(xQ | XE)dxQ

I If we can draw samples x
(1)
Q , . . . x

(m)
Q ∼ p(xQ | XE), an

unbiased estimator is

p(XQ = cQ | XE) ≈ 1

m

m∑
i=1

1
(x

(i)
Q =cQ)

I The variance of the estimator decreases as O(1/m)

I Inference reduces to sampling from p(xQ | XE)

40 / 123

Forward Sampling

I Draw X ∼ P (X)

I Throw away X if it doesn’t match the evidence XE

41 / 123

Forward Sampling

I Draw X ∼ P (X)

I Throw away X if it doesn’t match the evidence XE

41 / 123

Forward Sampling: Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):

1. Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then
B = 1 else B = 0

2. Sample E ∼ Ber(0.002)

3. If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4. If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)

5. If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)

42 / 123

Forward Sampling: Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):

1. Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then
B = 1 else B = 0

2. Sample E ∼ Ber(0.002)

3. If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4. If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)

5. If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)

42 / 123

Forward Sampling: Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):

1. Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then
B = 1 else B = 0

2. Sample E ∼ Ber(0.002)

3. If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4. If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)

5. If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)

42 / 123

Forward Sampling: Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):

1. Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then
B = 1 else B = 0

2. Sample E ∼ Ber(0.002)

3. If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4. If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)

5. If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)

42 / 123

Forward Sampling: Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):

1. Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then
B = 1 else B = 0

2. Sample E ∼ Ber(0.002)

3. If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4. If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)

5. If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)

42 / 123

Inference with Forward Sampling

I Say the inference task is P (B = 1 | E = 1,M = 1)

I Throw away all samples except those with (E = 1,M = 1)

p(B = 1 | E = 1,M = 1) ≈ 1

m

m∑
i=1

1(B(i)=1)

where m is the number of surviving samples

I Can be highly inefficient (note P (E = 1) tiny)

I Does not work for Markov Random Fields (can’t sample from
P (X))

43 / 123

Inference with Forward Sampling

I Say the inference task is P (B = 1 | E = 1,M = 1)

I Throw away all samples except those with (E = 1,M = 1)

p(B = 1 | E = 1,M = 1) ≈ 1

m

m∑
i=1

1(B(i)=1)

where m is the number of surviving samples

I Can be highly inefficient (note P (E = 1) tiny)

I Does not work for Markov Random Fields (can’t sample from
P (X))

43 / 123

Inference with Forward Sampling

I Say the inference task is P (B = 1 | E = 1,M = 1)

I Throw away all samples except those with (E = 1,M = 1)

p(B = 1 | E = 1,M = 1) ≈ 1

m

m∑
i=1

1(B(i)=1)

where m is the number of surviving samples

I Can be highly inefficient (note P (E = 1) tiny)

I Does not work for Markov Random Fields (can’t sample from
P (X))

43 / 123

Inference with Forward Sampling

I Say the inference task is P (B = 1 | E = 1,M = 1)

I Throw away all samples except those with (E = 1,M = 1)

p(B = 1 | E = 1,M = 1) ≈ 1

m

m∑
i=1

1(B(i)=1)

where m is the number of surviving samples

I Can be highly inefficient (note P (E = 1) tiny)

I Does not work for Markov Random Fields (can’t sample from
P (X))

43 / 123

Gibbs Sampling: Example P (B = 1 | E = 1,M = 1)

I Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)

I Works for both graphical models
I Initialization:

I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

44 / 123

Gibbs Sampling: Example P (B = 1 | E = 1,M = 1)

I Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)

I Works for both graphical models
I Initialization:

I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

44 / 123

Gibbs Sampling: Example P (B = 1 | E = 1,M = 1)

I Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)

I Works for both graphical models

I Initialization:

I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

44 / 123

Gibbs Sampling: Example P (B = 1 | E = 1,M = 1)

I Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)

I Works for both graphical models
I Initialization:

I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

44 / 123

Gibbs Sampling: Example P (B = 1 | E = 1,M = 1)

I Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)

I Works for both graphical models
I Initialization:

I Fix evidence; randomly set other variables

I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

44 / 123

Gibbs Sampling: Example P (B = 1 | E = 1,M = 1)

I Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)

I Works for both graphical models
I Initialization:

I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

44 / 123

Gibbs Sampling
I For each non-evidence variable xi, fixing all other nodes X−i,

resample its value xi ∼ P (xi | X−i)

I This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))
I For a Bayesian network MarkovBlanket(xi) includes xi’s

parents, spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.
I For many graphical models the Markov Blanket is small.
I For example,
B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

45 / 123

Gibbs Sampling
I For each non-evidence variable xi, fixing all other nodes X−i,

resample its value xi ∼ P (xi | X−i)
I This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))

I For a Bayesian network MarkovBlanket(xi) includes xi’s
parents, spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.
I For many graphical models the Markov Blanket is small.
I For example,
B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

45 / 123

Gibbs Sampling
I For each non-evidence variable xi, fixing all other nodes X−i,

resample its value xi ∼ P (xi | X−i)
I This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))
I For a Bayesian network MarkovBlanket(xi) includes xi’s

parents, spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.

I For many graphical models the Markov Blanket is small.
I For example,
B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

45 / 123

Gibbs Sampling
I For each non-evidence variable xi, fixing all other nodes X−i,

resample its value xi ∼ P (xi | X−i)
I This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))
I For a Bayesian network MarkovBlanket(xi) includes xi’s

parents, spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.
I For many graphical models the Markov Blanket is small.

I For example,
B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

45 / 123

Gibbs Sampling
I For each non-evidence variable xi, fixing all other nodes X−i,

resample its value xi ∼ P (xi | X−i)
I This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))
I For a Bayesian network MarkovBlanket(xi) includes xi’s

parents, spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.
I For many graphical models the Markov Blanket is small.
I For example,
B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

45 / 123

Gibbs Sampling

I Say we sampled B = 1. Then
X(1) = (B = 1, E = 1, A = 0, J = 0,M = 1)

I Starting from X(1), sample
A ∼ P (A | B = 1, E = 1, J = 0,M = 1) to get X(2)

I Move on to J , then repeat B,A, J,B,A, J . . .

I Keep all samples after burn in. P (B = 1 | E = 1,M = 1) is
the fraction of samples with B = 1.

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

46 / 123

Gibbs Sampling

I Say we sampled B = 1. Then
X(1) = (B = 1, E = 1, A = 0, J = 0,M = 1)

I Starting from X(1), sample
A ∼ P (A | B = 1, E = 1, J = 0,M = 1) to get X(2)

I Move on to J , then repeat B,A, J,B,A, J . . .

I Keep all samples after burn in. P (B = 1 | E = 1,M = 1) is
the fraction of samples with B = 1.

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

46 / 123

Gibbs Sampling

I Say we sampled B = 1. Then
X(1) = (B = 1, E = 1, A = 0, J = 0,M = 1)

I Starting from X(1), sample
A ∼ P (A | B = 1, E = 1, J = 0,M = 1) to get X(2)

I Move on to J , then repeat B,A, J,B,A, J . . .

I Keep all samples after burn in. P (B = 1 | E = 1,M = 1) is
the fraction of samples with B = 1.

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

46 / 123

Gibbs Sampling

I Say we sampled B = 1. Then
X(1) = (B = 1, E = 1, A = 0, J = 0,M = 1)

I Starting from X(1), sample
A ∼ P (A | B = 1, E = 1, J = 0,M = 1) to get X(2)

I Move on to J , then repeat B,A, J,B,A, J . . .

I Keep all samples after burn in. P (B = 1 | E = 1,M = 1) is
the fraction of samples with B = 1.

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

46 / 123

Gibbs Sampling Example 2: The Ising Model

xs

A

B

C

D

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt



47 / 123

Gibbs Example 2: The Ising Model

xs

A

B

C

D

I The Markov blanket of xs is A,B,C,D

I In general for undirected graphical models

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

I The Gibbs update is

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

48 / 123

Gibbs Example 2: The Ising Model

xs

A

B

C

D

I The Markov blanket of xs is A,B,C,D

I In general for undirected graphical models

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

I The Gibbs update is

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

48 / 123

Gibbs Example 2: The Ising Model

xs

A

B

C

D

I The Markov blanket of xs is A,B,C,D

I In general for undirected graphical models

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

I The Gibbs update is

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

48 / 123

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)

I Certain Markov chains have a stationary distribution π such
that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)

I But it takes time for the chain to reach stationary distribution
(mix)

I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated); Do
not thin

49 / 123

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)

I Certain Markov chains have a stationary distribution π such
that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)

I But it takes time for the chain to reach stationary distribution
(mix)

I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated); Do
not thin

49 / 123

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)

I Certain Markov chains have a stationary distribution π such
that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)

I But it takes time for the chain to reach stationary distribution
(mix)

I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated); Do
not thin

49 / 123

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)

I Certain Markov chains have a stationary distribution π such
that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)

I But it takes time for the chain to reach stationary distribution
(mix)

I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated); Do
not thin

49 / 123

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)

I Certain Markov chains have a stationary distribution π such
that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)

I But it takes time for the chain to reach stationary distribution
(mix)

I Can be difficult to assert mixing

I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated); Do
not thin

49 / 123

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)

I Certain Markov chains have a stationary distribution π such
that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)

I But it takes time for the chain to reach stationary distribution
(mix)

I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated); Do
not thin

49 / 123

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)

I Certain Markov chains have a stationary distribution π such
that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)

I But it takes time for the chain to reach stationary distribution
(mix)

I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated); Do
not thin

49 / 123

Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) for X(i) ∼ p

I Sometimes X = (Y, Z) where EZ|Y has a closed-form

I If so,

Ep[f(X)] = Ep(Y)Ep(Z|Y)[f(Y,Z)]

≈ 1

m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

for Y (i) ∼ p(Y)

I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ

50 / 123

Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) for X(i) ∼ p

I Sometimes X = (Y, Z) where EZ|Y has a closed-form

I If so,

Ep[f(X)] = Ep(Y)Ep(Z|Y)[f(Y,Z)]

≈ 1

m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

for Y (i) ∼ p(Y)

I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ

50 / 123

Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) for X(i) ∼ p

I Sometimes X = (Y, Z) where EZ|Y has a closed-form

I If so,

Ep[f(X)] = Ep(Y)Ep(Z|Y)[f(Y,Z)]

≈ 1

m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

for Y (i) ∼ p(Y)

I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ

50 / 123

Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) for X(i) ∼ p

I Sometimes X = (Y, Z) where EZ|Y has a closed-form

I If so,

Ep[f(X)] = Ep(Y)Ep(Z|Y)[f(Y,Z)]

≈ 1

m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

for Y (i) ∼ p(Y)

I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ

50 / 123

Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) for X(i) ∼ p

I Sometimes X = (Y, Z) where EZ|Y has a closed-form

I If so,

Ep[f(X)] = Ep(Y)Ep(Z|Y)[f(Y,Z)]

≈ 1

m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

for Y (i) ∼ p(Y)

I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ

50 / 123

Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) for X(i) ∼ p

I Sometimes X = (Y, Z) where EZ|Y has a closed-form

I If so,

Ep[f(X)] = Ep(Y)Ep(Z|Y)[f(Y,Z)]

≈ 1

m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

for Y (i) ∼ p(Y)

I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ

50 / 123

Example: Collapsed Gibbs Sampling for LDA

Collapse θ, φ, Gibbs update:

P (zi = j | z−i,w) ∝
n
(wi)
−i,j + βn

(di)
−i,j + α

n
(·)
−i,j +Wβn

(di)
−i,· + Tα

I n
(wi)
−i,j : number of times word wi has been assigned to topic j,

excluding the current position

I n
(di)
−i,j : number of times a word from document di has been

assigned to topic j, excluding the current position

I n
(·)
−i,j : number of times any word has been assigned to topic j,

excluding the current position

I n
(di)
−i,·: length of document di, excluding the current position

51 / 123

Example: Collapsed Gibbs Sampling for LDA

Collapse θ, φ, Gibbs update:

P (zi = j | z−i,w) ∝
n
(wi)
−i,j + βn

(di)
−i,j + α

n
(·)
−i,j +Wβn

(di)
−i,· + Tα

I n
(wi)
−i,j : number of times word wi has been assigned to topic j,

excluding the current position

I n
(di)
−i,j : number of times a word from document di has been

assigned to topic j, excluding the current position

I n
(·)
−i,j : number of times any word has been assigned to topic j,

excluding the current position

I n
(di)
−i,·: length of document di, excluding the current position

51 / 123

Example: Collapsed Gibbs Sampling for LDA

Collapse θ, φ, Gibbs update:

P (zi = j | z−i,w) ∝
n
(wi)
−i,j + βn

(di)
−i,j + α

n
(·)
−i,j +Wβn

(di)
−i,· + Tα

I n
(wi)
−i,j : number of times word wi has been assigned to topic j,

excluding the current position

I n
(di)
−i,j : number of times a word from document di has been

assigned to topic j, excluding the current position

I n
(·)
−i,j : number of times any word has been assigned to topic j,

excluding the current position

I n
(di)
−i,·: length of document di, excluding the current position

51 / 123

Example: Collapsed Gibbs Sampling for LDA

Collapse θ, φ, Gibbs update:

P (zi = j | z−i,w) ∝
n
(wi)
−i,j + βn

(di)
−i,j + α

n
(·)
−i,j +Wβn

(di)
−i,· + Tα

I n
(wi)
−i,j : number of times word wi has been assigned to topic j,

excluding the current position

I n
(di)
−i,j : number of times a word from document di has been

assigned to topic j, excluding the current position

I n
(·)
−i,j : number of times any word has been assigned to topic j,

excluding the current position

I n
(di)
−i,·: length of document di, excluding the current position

51 / 123

Belief Propagation

52 / 123

Factor Graph

I For both directed and undirected graphical models

I Bipartite: edges between a variable node and a factor node

I Factors represent computation

A B

C

(A,B,C)ψ

A B

C

A B

C

(A,B,C)ψf

A B

C

f
P(A)P(B)P(C|A,B)

53 / 123

Factor Graph

I For both directed and undirected graphical models

I Bipartite: edges between a variable node and a factor node

I Factors represent computation

A B

C

(A,B,C)ψ

A B

C

A B

C

(A,B,C)ψf

A B

C

f
P(A)P(B)P(C|A,B)

53 / 123

Factor Graph

I For both directed and undirected graphical models

I Bipartite: edges between a variable node and a factor node

I Factors represent computation

A B

C

(A,B,C)ψ

A B

C

A B

C

(A,B,C)ψf

A B

C

f
P(A)P(B)P(C|A,B)

53 / 123

The Sum-Product Algorithm

I Also known as belief propagation (BP)

I Exact if the graph is a tree; otherwise known as “loopy BP”,
approximate

I The algorithm involves passing messages on the factor graph

I Alternative view: variational approximation (more later)

54 / 123

The Sum-Product Algorithm

I Also known as belief propagation (BP)

I Exact if the graph is a tree; otherwise known as “loopy BP”,
approximate

I The algorithm involves passing messages on the factor graph

I Alternative view: variational approximation (more later)

54 / 123

The Sum-Product Algorithm

I Also known as belief propagation (BP)

I Exact if the graph is a tree; otherwise known as “loopy BP”,
approximate

I The algorithm involves passing messages on the factor graph

I Alternative view: variational approximation (more later)

54 / 123

The Sum-Product Algorithm

I Also known as belief propagation (BP)

I Exact if the graph is a tree; otherwise known as “loopy BP”,
approximate

I The algorithm involves passing messages on the factor graph

I Alternative view: variational approximation (more later)

54 / 123

Example: A Simple HMM

I The Hidden Markov Model template (not a graphical model)

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

55 / 123

Example: A Simple HMM

I Observing x1 = R, x2 = G, the directed graphical model

z1

x =G2

z2

x =R1

I Factor graph
z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

56 / 123

Example: A Simple HMM

I Observing x1 = R, x2 = G, the directed graphical model

z1

x =G2

z2

x =R1

I Factor graph
z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

56 / 123

Messages

I A message is a vector of length K, where K is the number of
values x takes.

I There are two types of messages:

1. µf→x: message from a factor node f to a variable node x
µf→x(i) is the ith element, i = 1 . . .K.

2. µx→f : message from a variable node x to a factor node f

57 / 123

Messages

I A message is a vector of length K, where K is the number of
values x takes.

I There are two types of messages:

1. µf→x: message from a factor node f to a variable node x
µf→x(i) is the ith element, i = 1 . . .K.

2. µx→f : message from a variable node x to a factor node f

57 / 123

Messages

I A message is a vector of length K, where K is the number of
values x takes.

I There are two types of messages:

1. µf→x: message from a factor node f to a variable node x
µf→x(i) is the ith element, i = 1 . . .K.

2. µx→f : message from a variable node x to a factor node f

57 / 123

Messages

I A message is a vector of length K, where K is the number of
values x takes.

I There are two types of messages:

1. µf→x: message from a factor node f to a variable node x
µf→x(i) is the ith element, i = 1 . . .K.

2. µx→f : message from a variable node x to a factor node f

57 / 123

Leaf Messages

I Assume tree factor graph. Pick an arbitrary root, say z2

I Start messages at leaves.

I If a leaf is a factor node f , µf→x(x) = f(x)

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4

µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

I If a leaf is a variable node x, µx→f (x) = 1

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

58 / 123

Leaf Messages

I Assume tree factor graph. Pick an arbitrary root, say z2
I Start messages at leaves.

I If a leaf is a factor node f , µf→x(x) = f(x)

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4

µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

I If a leaf is a variable node x, µx→f (x) = 1

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

58 / 123

Leaf Messages

I Assume tree factor graph. Pick an arbitrary root, say z2
I Start messages at leaves.

I If a leaf is a factor node f , µf→x(x) = f(x)

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4

µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

I If a leaf is a variable node x, µx→f (x) = 1

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

58 / 123

Leaf Messages

I Assume tree factor graph. Pick an arbitrary root, say z2
I Start messages at leaves.

I If a leaf is a factor node f , µf→x(x) = f(x)

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4

µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

I If a leaf is a variable node x, µx→f (x) = 1

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

58 / 123

Message from Variable to Factor
I A node (factor or variable) can send out a message if all other

incoming messages have arrived

I Let x be in factor fs. ne(x)\fs are factors connected to x
excluding fs.

µx→fs(x) =
∏

f∈ne(x)\fs

µf→x(x)

µz1→f2(z1 = 1) = 1/4

µz1→f2(z1 = 2) = 1/8

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B
59 / 123

Message from Variable to Factor
I A node (factor or variable) can send out a message if all other

incoming messages have arrived
I Let x be in factor fs. ne(x)\fs are factors connected to x

excluding fs.

µx→fs(x) =
∏

f∈ne(x)\fs

µf→x(x)

µz1→f2(z1 = 1) = 1/4

µz1→f2(z1 = 2) = 1/8

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B
59 / 123

Message from Factor to Variable

I Let x be in factor fs. Let the other variables in fs be x1:M .

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM)

M∏
m=1

µxm→fs(xm)

I In this example

µf2→z2(s) =
2∑

s′=1

µz1→f2(s′)f2(z1 = s′, z2 = s)

= 1/4P (z2 = s|z1 = 1)P (x2 = G|z2 = s)

+1/8P (z2 = s|z1 = 2)P (x2 = G|z2 = s)

I We get µf2→z2(z2 = 1) = 1/32, µf2→z2(z2 = 2) = 1/8

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

60 / 123

Message from Factor to Variable

I Let x be in factor fs. Let the other variables in fs be x1:M .

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM)

M∏
m=1

µxm→fs(xm)

I In this example

µf2→z2(s) =

2∑
s′=1

µz1→f2(s′)f2(z1 = s′, z2 = s)

= 1/4P (z2 = s|z1 = 1)P (x2 = G|z2 = s)

+1/8P (z2 = s|z1 = 2)P (x2 = G|z2 = s)

I We get µf2→z2(z2 = 1) = 1/32, µf2→z2(z2 = 2) = 1/8

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

60 / 123

Message from Factor to Variable

I Let x be in factor fs. Let the other variables in fs be x1:M .

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM)

M∏
m=1

µxm→fs(xm)

I In this example

µf2→z2(s) =

2∑
s′=1

µz1→f2(s′)f2(z1 = s′, z2 = s)

= 1/4P (z2 = s|z1 = 1)P (x2 = G|z2 = s)

+1/8P (z2 = s|z1 = 2)P (x2 = G|z2 = s)

I We get µf2→z2(z2 = 1) = 1/32, µf2→z2(z2 = 2) = 1/8

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

60 / 123

Up to Root, Back Down

I The message has reached the root, pass it back down

µz2→f2(z2 = 1) = 1

µz2→f2(z2 = 2) = 1

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

61 / 123

Keep Passing Down

I µf2→z1(s) =
∑2

s′=1 µz2→f2(s′)f2(z1 = s, z2 = s′)
= 1P (z2 = 1|z1 = s)P (x2 = G|z2 = 1)

+ 1P (z2 = 2|z1 = s)P (x2 = G|z2 = 2).

I We get
µf2→z1(z1 = 1) = 7/16
µf2→z1(z1 = 2) = 3/8

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

62 / 123

Keep Passing Down

I µf2→z1(s) =
∑2

s′=1 µz2→f2(s′)f2(z1 = s, z2 = s′)
= 1P (z2 = 1|z1 = s)P (x2 = G|z2 = 1)

+ 1P (z2 = 2|z1 = s)P (x2 = G|z2 = 2).

I We get
µf2→z1(z1 = 1) = 7/16
µf2→z1(z1 = 2) = 3/8

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

62 / 123

From Messages to Marginals

I Once a variable receives all incoming messages, we compute
its marginal as

p(x) ∝
∏

f∈ne(x)

µf→x(x)

I In this example

P (z1|x1, x2) ∝ µf1→z1 · µf2→z1 =
(1/4
1/8

)
·
(7/16

3/8

)
=
(7/64
3/64

)
⇒(

0.7
0.3

)
P (z2|x1, x2) ∝ µf2→z2 =

(1/32
1/8

)
⇒
(
0.2
0.8

)
I One can also compute the marginal of the set of variables xs

involved in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x)

63 / 123

From Messages to Marginals

I Once a variable receives all incoming messages, we compute
its marginal as

p(x) ∝
∏

f∈ne(x)

µf→x(x)

I In this example

P (z1|x1, x2) ∝ µf1→z1 · µf2→z1 =
(1/4
1/8

)
·
(7/16

3/8

)
=
(7/64
3/64

)
⇒(

0.7
0.3

)
P (z2|x1, x2) ∝ µf2→z2 =

(1/32
1/8

)
⇒
(
0.2
0.8

)

I One can also compute the marginal of the set of variables xs
involved in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x)

63 / 123

From Messages to Marginals

I Once a variable receives all incoming messages, we compute
its marginal as

p(x) ∝
∏

f∈ne(x)

µf→x(x)

I In this example

P (z1|x1, x2) ∝ µf1→z1 · µf2→z1 =
(1/4
1/8

)
·
(7/16

3/8

)
=
(7/64
3/64

)
⇒(

0.7
0.3

)
P (z2|x1, x2) ∝ µf2→z2 =

(1/32
1/8

)
⇒
(
0.2
0.8

)
I One can also compute the marginal of the set of variables xs

involved in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x)

63 / 123

Handling Evidence

I Observing x = v,

I we can absorb it in the factor (as we did); or
I set messages µx→f (x) = 0 for all x 6= v

I Observing XE ,

I multiplying the incoming messages to x /∈ XE gives the joint
(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)

64 / 123

Handling Evidence

I Observing x = v,
I we can absorb it in the factor (as we did); or

I set messages µx→f (x) = 0 for all x 6= v

I Observing XE ,

I multiplying the incoming messages to x /∈ XE gives the joint
(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)

64 / 123

Handling Evidence

I Observing x = v,
I we can absorb it in the factor (as we did); or
I set messages µx→f (x) = 0 for all x 6= v

I Observing XE ,

I multiplying the incoming messages to x /∈ XE gives the joint
(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)

64 / 123

Handling Evidence

I Observing x = v,
I we can absorb it in the factor (as we did); or
I set messages µx→f (x) = 0 for all x 6= v

I Observing XE ,

I multiplying the incoming messages to x /∈ XE gives the joint
(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)

64 / 123

Handling Evidence

I Observing x = v,
I we can absorb it in the factor (as we did); or
I set messages µx→f (x) = 0 for all x 6= v

I Observing XE ,
I multiplying the incoming messages to x /∈ XE gives the joint

(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)

64 / 123

Handling Evidence

I Observing x = v,
I we can absorb it in the factor (as we did); or
I set messages µx→f (x) = 0 for all x 6= v

I Observing XE ,
I multiplying the incoming messages to x /∈ XE gives the joint

(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)

64 / 123

Loopy Belief Propagation

I So far, we assumed a tree graph

I When the factor graph contains loops, pass messages
indefinitely until convergence

I Loopy BP may not convergence, but “works” in many cases

65 / 123

Loopy Belief Propagation

I So far, we assumed a tree graph

I When the factor graph contains loops, pass messages
indefinitely until convergence

I Loopy BP may not convergence, but “works” in many cases

65 / 123

Loopy Belief Propagation

I So far, we assumed a tree graph

I When the factor graph contains loops, pass messages
indefinitely until convergence

I Loopy BP may not convergence, but “works” in many cases

65 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

66 / 123

Parameter Learning

I Assume the graph structure is given

I Parameters:

I θi in CPDs p(xi | pa(xi), θi) in directed graphical models

p(X) =
∏
i

p(xi | Pa(xi), θi)

I Weights wi in undirected graphical model

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Principle: maximum likelihood estimate

67 / 123

Parameter Learning

I Assume the graph structure is given
I Parameters:

I θi in CPDs p(xi | pa(xi), θi) in directed graphical models

p(X) =
∏
i

p(xi | Pa(xi), θi)

I Weights wi in undirected graphical model

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Principle: maximum likelihood estimate

67 / 123

Parameter Learning

I Assume the graph structure is given
I Parameters:

I θi in CPDs p(xi | pa(xi), θi) in directed graphical models

p(X) =
∏
i

p(xi | Pa(xi), θi)

I Weights wi in undirected graphical model

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Principle: maximum likelihood estimate

67 / 123

Parameter Learning

I Assume the graph structure is given
I Parameters:

I θi in CPDs p(xi | pa(xi), θi) in directed graphical models

p(X) =
∏
i

p(xi | Pa(xi), θi)

I Weights wi in undirected graphical model

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Principle: maximum likelihood estimate

67 / 123

Parameter Learning

I Assume the graph structure is given
I Parameters:

I θi in CPDs p(xi | pa(xi), θi) in directed graphical models

p(X) =
∏
i

p(xi | Pa(xi), θi)

I Weights wi in undirected graphical model

p(X) =
1

Z
exp

(
k∑
i=1

wifi(X)

)

I Principle: maximum likelihood estimate

67 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed

I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)
I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved

I given X1
o , . . . , X

n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize
I The EM algorithm finds a local maximum

68 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed
I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)
I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved

I given X1
o , . . . , X

n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize
I The EM algorithm finds a local maximum

68 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed
I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)

I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved

I given X1
o , . . . , X

n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize
I The EM algorithm finds a local maximum

68 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed
I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)
I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved

I given X1
o , . . . , X

n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize
I The EM algorithm finds a local maximum

68 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed
I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)
I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved

I given X1
o , . . . , X

n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize
I The EM algorithm finds a local maximum

68 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed
I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)
I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved
I given X1

o , . . . , X
n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize
I The EM algorithm finds a local maximum

68 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed
I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)
I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved
I given X1

o , . . . , X
n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize

I The EM algorithm finds a local maximum

68 / 123

Parameter Learning: Maximum Likelihood Estimate

I fully observed: all dimensions of X are observed
I given X1, . . . , Xn, the MLE is

θ̂ = argmax
θ

n∑
i=1

log p(Xi | θ)

I log likelihood factorizes for directed models (easy)
I gradient method for undirected models

I partially observed: X = (Xo, Xh) where Xh unobserved
I given X1

o , . . . , X
n
o , the MLE is

θ̂ = argmax
θ

n∑
i=1

log

(∑
Xh

p(Xi
o, Xh | θ)

)

I log likelihood does not factorize
I The EM algorithm finds a local maximum

68 / 123

Structure Learning

I Let M be all allowed candidate features

I Let M ⊆M be the “active subset”

P (X |M, θ) =
1

Z
exp

(∑
i∈M

θifi(X)

)

I score(M) = maxθ lnP (Data |M, θ)

I The score is always better for larger M – needs regularization
or Bayesian treatment

I M and θ treated separately; combinatorial search over M

69 / 123

Structure Learning

I Let M be all allowed candidate features

I Let M ⊆M be the “active subset”

P (X |M, θ) =
1

Z
exp

(∑
i∈M

θifi(X)

)

I score(M) = maxθ lnP (Data |M, θ)

I The score is always better for larger M – needs regularization
or Bayesian treatment

I M and θ treated separately; combinatorial search over M

69 / 123

Structure Learning

I Let M be all allowed candidate features

I Let M ⊆M be the “active subset”

P (X |M, θ) =
1

Z
exp

(∑
i∈M

θifi(X)

)

I score(M) = maxθ lnP (Data |M, θ)

I The score is always better for larger M – needs regularization
or Bayesian treatment

I M and θ treated separately; combinatorial search over M

69 / 123

Structure Learning

I Let M be all allowed candidate features

I Let M ⊆M be the “active subset”

P (X |M, θ) =
1

Z
exp

(∑
i∈M

θifi(X)

)

I score(M) = maxθ lnP (Data |M, θ)

I The score is always better for larger M – needs regularization
or Bayesian treatment

I M and θ treated separately; combinatorial search over M

69 / 123

Structure Learning

I Let M be all allowed candidate features

I Let M ⊆M be the “active subset”

P (X |M, θ) =
1

Z
exp

(∑
i∈M

θifi(X)

)

I score(M) = maxθ lnP (Data |M, θ)

I The score is always better for larger M – needs regularization
or Bayesian treatment

I M and θ treated separately; combinatorial search over M

69 / 123

Structure Learning for Gaussian Random Fields

I Consider a d-dimensional multivariate Gaussian N(µ,Σ)

I The graphical model has p nodes x1, . . . , xd
I The edge between xi, xj is absent if and only if Ωij = 0,

where Ω = Σ−1

I Equivalently, xi, xj are conditionally independent given other
variables

70 / 123

Structure Learning for Gaussian Random Fields

I Consider a d-dimensional multivariate Gaussian N(µ,Σ)

I The graphical model has p nodes x1, . . . , xd

I The edge between xi, xj is absent if and only if Ωij = 0,
where Ω = Σ−1

I Equivalently, xi, xj are conditionally independent given other
variables

70 / 123

Structure Learning for Gaussian Random Fields

I Consider a d-dimensional multivariate Gaussian N(µ,Σ)

I The graphical model has p nodes x1, . . . , xd
I The edge between xi, xj is absent if and only if Ωij = 0,

where Ω = Σ−1

I Equivalently, xi, xj are conditionally independent given other
variables

70 / 123

Structure Learning for Gaussian Random Fields

I Consider a d-dimensional multivariate Gaussian N(µ,Σ)

I The graphical model has p nodes x1, . . . , xd
I The edge between xi, xj is absent if and only if Ωij = 0,

where Ω = Σ−1

I Equivalently, xi, xj are conditionally independent given other
variables

70 / 123

Example

I If we know Σ =


14 −16 4 −2
−16 32 −8 4

4 −8 8 −4
−2 4 −4 5



I Then Ω = Σ−1 =


0.1667 0.0833 0.0000 0
0.0833 0.0833 0.0417 0
0.0000 0.0417 0.2500 0.1667

0 0 0.1667 0.3333


I The corresponding graphical model structure is

x
x

x
x

1
2

3

4

71 / 123

Example

I If we know Σ =


14 −16 4 −2
−16 32 −8 4

4 −8 8 −4
−2 4 −4 5



I Then Ω = Σ−1 =


0.1667 0.0833 0.0000 0
0.0833 0.0833 0.0417 0
0.0000 0.0417 0.2500 0.1667

0 0 0.1667 0.3333



I The corresponding graphical model structure is

x
x

x
x

1
2

3

4

71 / 123

Example

I If we know Σ =


14 −16 4 −2
−16 32 −8 4

4 −8 8 −4
−2 4 −4 5



I Then Ω = Σ−1 =


0.1667 0.0833 0.0000 0
0.0833 0.0833 0.0417 0
0.0000 0.0417 0.2500 0.1667

0 0 0.1667 0.3333


I The corresponding graphical model structure is

x
x

x
x

1
2

3

4

71 / 123

Structure Learning for Gaussian Random Fields

I Let data be X(1), . . . , X(n) ∼ N(µ,Σ)

I The log likelihood is
n
2 log |Ω| − 1

2

∑n
i=1(X

(i) − µ)>Ω(X(i) − µ)

I The maximum likelihood estimate of Σ is the sample
covariance

S =
1

n

∑
i

(X(i) − X̄)>(X(i) − X̄)

where X̄ is the sample mean

I S−1 is not a good estimate of Ω when n is small

72 / 123

Structure Learning for Gaussian Random Fields

I Let data be X(1), . . . , X(n) ∼ N(µ,Σ)

I The log likelihood is
n
2 log |Ω| − 1

2

∑n
i=1(X

(i) − µ)>Ω(X(i) − µ)

I The maximum likelihood estimate of Σ is the sample
covariance

S =
1

n

∑
i

(X(i) − X̄)>(X(i) − X̄)

where X̄ is the sample mean

I S−1 is not a good estimate of Ω when n is small

72 / 123

Structure Learning for Gaussian Random Fields

I Let data be X(1), . . . , X(n) ∼ N(µ,Σ)

I The log likelihood is
n
2 log |Ω| − 1

2

∑n
i=1(X

(i) − µ)>Ω(X(i) − µ)

I The maximum likelihood estimate of Σ is the sample
covariance

S =
1

n

∑
i

(X(i) − X̄)>(X(i) − X̄)

where X̄ is the sample mean

I S−1 is not a good estimate of Ω when n is small

72 / 123

Structure Learning for Gaussian Random Fields

I Let data be X(1), . . . , X(n) ∼ N(µ,Σ)

I The log likelihood is
n
2 log |Ω| − 1

2

∑n
i=1(X

(i) − µ)>Ω(X(i) − µ)

I The maximum likelihood estimate of Σ is the sample
covariance

S =
1

n

∑
i

(X(i) − X̄)>(X(i) − X̄)

where X̄ is the sample mean

I S−1 is not a good estimate of Ω when n is small

72 / 123

Structure Learning for Gaussian Random Fields

I For centered data, minimize a regularized problem instead:

− log |Ω|+ 1

n

n∑
i=1

X(i)>ΩX(i) + λ
∑
i 6=j
|Ωij |

I Known as GLASSO

73 / 123

Structure Learning for Gaussian Random Fields

I For centered data, minimize a regularized problem instead:

− log |Ω|+ 1

n

n∑
i=1

X(i)>ΩX(i) + λ
∑
i 6=j
|Ωij |

I Known as GLASSO

73 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

74 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd

I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj

I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?

I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are

I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj

I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?

I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj

I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?

I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj

I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?

I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj
I Data fully defined by n× n matrix K where Kij = x>i xj

I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?

I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj
I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?

I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj
I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?

I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj
I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?
I They work if K ′ is positive semi-definition (kernel matrix)

I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj
I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?
I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)

I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj
I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?
I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Kernel methods

I Traditionally, an item x is a feature vector in Rd
I Feature engineering decides what the features are
I Learning algorithms work on x1, . . . , xn ∈ Rd directly

I Many algorithms actually only use inner products x>i xj
I Data fully defined by n× n matrix K where Kij = x>i xj
I We can just give K to these algorithms

I What if we give any matrix K ′ to these algorithms?
I They work if K ′ is positive semi-definition (kernel matrix)
I There are feature vectors φ(x) ∈ RD such that
K ′ij = φ(xi)

>φ(xj)
I φ(x) implicit feature engineering

I Precise definition: Reproducing Kernel Hilbert Space (RKHS)

75 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

76 / 123

The Linearly Separable Case

I x ∈ Rd, y ∈ {−1, 1}

I discriminant function f(x) = w>x+ b

I classification rule sign(f(x))

I linear decision boundary {x ∈ Rd | f(x) = 0} orthogonal to w

77 / 123

The Linearly Separable Case

I x ∈ Rd, y ∈ {−1, 1}
I discriminant function f(x) = w>x+ b

I classification rule sign(f(x))

I linear decision boundary {x ∈ Rd | f(x) = 0} orthogonal to w

77 / 123

The Linearly Separable Case

I x ∈ Rd, y ∈ {−1, 1}
I discriminant function f(x) = w>x+ b

I classification rule sign(f(x))

I linear decision boundary {x ∈ Rd | f(x) = 0} orthogonal to w

77 / 123

The Linearly Separable Case

I x ∈ Rd, y ∈ {−1, 1}
I discriminant function f(x) = w>x+ b

I classification rule sign(f(x))

I linear decision boundary {x ∈ Rd | f(x) = 0} orthogonal to w

77 / 123

The Linearly Separable Case

I Distance between a correctly classified x and the decision
boundary:

yf(x)

‖w‖

78 / 123

The Linearly Separable Case

I Training task: given {(x, y)1:n}, find a decision boundary w, b
to maximize the distance to the closest point

max
w,b

n
min
i=1

yi(w
>xi + b)

‖w‖

79 / 123

The Linearly Separable Case

I Equivalently,

max
w,b

1
‖w‖

s.t. yi(w
>xi + b) ≥ 1 i = 1 . . . n

80 / 123

The Linearly Separable Case

I Equivalently,

min
w,b

1
2‖w‖

2

s.t. yi(w
>xi + b) ≥ 1 i = 1 . . . n

I Primal problem, uses feature vectors xi ∈ Rd

I The equivalent dual problem will involve only inner products
x>i xj

81 / 123

The Linearly Separable Case

I Equivalently,

min
w,b

1
2‖w‖

2

s.t. yi(w
>xi + b) ≥ 1 i = 1 . . . n

I Primal problem, uses feature vectors xi ∈ Rd

I The equivalent dual problem will involve only inner products
x>i xj

81 / 123

The Linearly Separable Case

I Equivalently,

min
w,b

1
2‖w‖

2

s.t. yi(w
>xi + b) ≥ 1 i = 1 . . . n

I Primal problem, uses feature vectors xi ∈ Rd

I The equivalent dual problem will involve only inner products
x>i xj

81 / 123

The Linearly Separable Case

I The dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. αi ≥ 0 i = 1 . . . n∑n
i=1 αiyi = 0

I d+ 1 primal variables w, b

I n dual variables α (interesting when d� n)

82 / 123

The Linearly Separable Case

I The dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. αi ≥ 0 i = 1 . . . n∑n
i=1 αiyi = 0

I d+ 1 primal variables w, b

I n dual variables α (interesting when d� n)

82 / 123

The Linearly Separable Case

I The dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. αi ≥ 0 i = 1 . . . n∑n
i=1 αiyi = 0

I d+ 1 primal variables w, b

I n dual variables α (interesting when d� n)

82 / 123

The Linearly Separable Case

To classify a test point x

I primal discriminant function f(x) = w>x+ b

I dual discriminant function f(x) =
∑n

i=1 αiyix
>
i x+ b

I another inner-product

83 / 123

The Linearly Separable Case

To classify a test point x

I primal discriminant function f(x) = w>x+ b

I dual discriminant function f(x) =
∑n

i=1 αiyix
>
i x+ b

I another inner-product

83 / 123

The Linearly Separable Case

To classify a test point x

I primal discriminant function f(x) = w>x+ b

I dual discriminant function f(x) =
∑n

i=1 αiyix
>
i x+ b

I another inner-product

83 / 123

Support vectors

I The Karush-Kuhn-Tucker complementarity condition:
αi(yi(w

>xi + b)− 1) = 0, i = 1 . . . n

I yi(w
>xi + b)− 1 > 0 (xi outside the margin) ⇒ αi = 0 (xi

not support vector)

I αi 6= 0 (xi is support vector) ⇒ yi(w
>xi + b) = 1 (xi on the

margin)

84 / 123

Support vectors

I The Karush-Kuhn-Tucker complementarity condition:
αi(yi(w

>xi + b)− 1) = 0, i = 1 . . . n

I yi(w
>xi + b)− 1 > 0 (xi outside the margin) ⇒ αi = 0 (xi

not support vector)

I αi 6= 0 (xi is support vector) ⇒ yi(w
>xi + b) = 1 (xi on the

margin)

84 / 123

Support vectors

I The Karush-Kuhn-Tucker complementarity condition:
αi(yi(w

>xi + b)− 1) = 0, i = 1 . . . n

I yi(w
>xi + b)− 1 > 0 (xi outside the margin) ⇒ αi = 0 (xi

not support vector)

I αi 6= 0 (xi is support vector) ⇒ yi(w
>xi + b) = 1 (xi on the

margin)

84 / 123

The Non-Separable Case

I Relax margin constraints

yi(w
>xi + b) ≥ 1− ξi

I Slack variables ξi ≥ 0

I Large enough ξi allows xi on the wrong side of the decision
boundary

85 / 123

The Non-Separable Case

I Relax margin constraints

yi(w
>xi + b) ≥ 1− ξi

I Slack variables ξi ≥ 0

I Large enough ξi allows xi on the wrong side of the decision
boundary

85 / 123

The Non-Separable Case

I Relax margin constraints

yi(w
>xi + b) ≥ 1− ξi

I Slack variables ξi ≥ 0

I Large enough ξi allows xi on the wrong side of the decision
boundary

85 / 123

The Non-Separable Case

I Primal problem

min
w,b,ξ

1
2‖w‖

2 + C
∑n

i=1 ξi

s.t. yi(w
>xi + b) ≥ 1− ξi i = 1 . . . n

ξi ≥ 0

86 / 123

The Non-Separable Case

I Dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. 0 ≤ αi ≤ C i = 1 . . . n∑n
i=1 αiyi = 0

I Again, data enter optimization as inner products
I Support vectors:

I αi = 0⇒ xi not a support vector
I 0 < αi < C ⇒ ξ = 0, support vector xi on the margin
I α = C ⇒ xi inside the margin if ξ ≤ 1, or on the wrong side

of the decision boundary if ξ > 1

87 / 123

The Non-Separable Case

I Dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. 0 ≤ αi ≤ C i = 1 . . . n∑n
i=1 αiyi = 0

I Again, data enter optimization as inner products

I Support vectors:

I αi = 0⇒ xi not a support vector
I 0 < αi < C ⇒ ξ = 0, support vector xi on the margin
I α = C ⇒ xi inside the margin if ξ ≤ 1, or on the wrong side

of the decision boundary if ξ > 1

87 / 123

The Non-Separable Case

I Dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. 0 ≤ αi ≤ C i = 1 . . . n∑n
i=1 αiyi = 0

I Again, data enter optimization as inner products
I Support vectors:

I αi = 0⇒ xi not a support vector
I 0 < αi < C ⇒ ξ = 0, support vector xi on the margin
I α = C ⇒ xi inside the margin if ξ ≤ 1, or on the wrong side

of the decision boundary if ξ > 1

87 / 123

The Non-Separable Case

I Dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. 0 ≤ αi ≤ C i = 1 . . . n∑n
i=1 αiyi = 0

I Again, data enter optimization as inner products
I Support vectors:

I αi = 0⇒ xi not a support vector

I 0 < αi < C ⇒ ξ = 0, support vector xi on the margin
I α = C ⇒ xi inside the margin if ξ ≤ 1, or on the wrong side

of the decision boundary if ξ > 1

87 / 123

The Non-Separable Case

I Dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. 0 ≤ αi ≤ C i = 1 . . . n∑n
i=1 αiyi = 0

I Again, data enter optimization as inner products
I Support vectors:

I αi = 0⇒ xi not a support vector
I 0 < αi < C ⇒ ξ = 0, support vector xi on the margin

I α = C ⇒ xi inside the margin if ξ ≤ 1, or on the wrong side
of the decision boundary if ξ > 1

87 / 123

The Non-Separable Case

I Dual problem

max
α

−1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi

s.t. 0 ≤ αi ≤ C i = 1 . . . n∑n
i=1 αiyi = 0

I Again, data enter optimization as inner products
I Support vectors:

I αi = 0⇒ xi not a support vector
I 0 < αi < C ⇒ ξ = 0, support vector xi on the margin
I α = C ⇒ xi inside the margin if ξ ≤ 1, or on the wrong side

of the decision boundary if ξ > 1

87 / 123

The Non-Separable Case

I The discriminant function is

f(x) =

n∑
i=1

αiyix
>
i x+ b

I Inner product again

88 / 123

The Non-Separable Case

I The discriminant function is

f(x) =

n∑
i=1

αiyix
>
i x+ b

I Inner product again

88 / 123

The Kernel Trick

I SVM dual problem only involves inner products x>i xj

I Let K(xi, xj) = x>i xj

I Replace x>i xj with K(xi, xj) everywhere

I Tautology

89 / 123

The Kernel Trick

I SVM dual problem only involves inner products x>i xj
I Let K(xi, xj) = x>i xj

I Replace x>i xj with K(xi, xj) everywhere

I Tautology

89 / 123

The Kernel Trick

I SVM dual problem only involves inner products x>i xj
I Let K(xi, xj) = x>i xj

I Replace x>i xj with K(xi, xj) everywhere

I Tautology

89 / 123

The Kernel Trick

I SVM dual problem only involves inner products x>i xj
I Let K(xi, xj) = x>i xj

I Replace x>i xj with K(xi, xj) everywhere

I Tautology

89 / 123

The Kernel Trick

I Instead of K(xi, xj) = x>i xj , let K be any positive definite
function

I K p.d. if ∀n,∀x1 . . . xn the matrix

Kn =

K(x1, x1) . . . K(x1, xn)
...

K(xn, x1) . . . K(xn, xn)


is positive semi-definite.

I Kn positive semi-definite if ∀z = (z1, . . . , zn)> ∈ Rn,

z>Knz ≥ 0

90 / 123

The Kernel Trick

I Instead of K(xi, xj) = x>i xj , let K be any positive definite
function

I K p.d. if ∀n,∀x1 . . . xn the matrix

Kn =

K(x1, x1) . . . K(x1, xn)
...

K(xn, x1) . . . K(xn, xn)


is positive semi-definite.

I Kn positive semi-definite if ∀z = (z1, . . . , zn)> ∈ Rn,

z>Knz ≥ 0

90 / 123

The Kernel Trick

I Instead of K(xi, xj) = x>i xj , let K be any positive definite
function

I K p.d. if ∀n,∀x1 . . . xn the matrix

Kn =

K(x1, x1) . . . K(x1, xn)
...

K(xn, x1) . . . K(xn, xn)


is positive semi-definite.

I Kn positive semi-definite if ∀z = (z1, . . . , zn)> ∈ Rn,

z>Knz ≥ 0

90 / 123

The Kernel Trick

P.d. K examples:

I Linear kernel
k(xi, xj) = x>i xj

I Polynomial kernel

k(xi, xj) = (1 + x>i xj)
p

I Radial Basis Function (RBF) kernel

k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)

91 / 123

The Kernel Trick

P.d. K examples:

I Linear kernel
k(xi, xj) = x>i xj

I Polynomial kernel

k(xi, xj) = (1 + x>i xj)
p

I Radial Basis Function (RBF) kernel

k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)

91 / 123

The Kernel Trick

P.d. K examples:

I Linear kernel
k(xi, xj) = x>i xj

I Polynomial kernel

k(xi, xj) = (1 + x>i xj)
p

I Radial Basis Function (RBF) kernel

k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)

91 / 123

The Kernel Trick

I SVM dual problem can use any p.d. K (kernelize)

I There exists a feature mapping φ() such that
K(xi, xj) = φ(xi)

>φ(xj)

I φ() may not be finite dimensional
I φ() may not be unique

I What does the kernel trick buy us?

92 / 123

The Kernel Trick

I SVM dual problem can use any p.d. K (kernelize)
I There exists a feature mapping φ() such that
K(xi, xj) = φ(xi)

>φ(xj)

I φ() may not be finite dimensional
I φ() may not be unique

I What does the kernel trick buy us?

92 / 123

The Kernel Trick

I SVM dual problem can use any p.d. K (kernelize)
I There exists a feature mapping φ() such that
K(xi, xj) = φ(xi)

>φ(xj)
I φ() may not be finite dimensional

I φ() may not be unique

I What does the kernel trick buy us?

92 / 123

The Kernel Trick

I SVM dual problem can use any p.d. K (kernelize)
I There exists a feature mapping φ() such that
K(xi, xj) = φ(xi)

>φ(xj)
I φ() may not be finite dimensional
I φ() may not be unique

I What does the kernel trick buy us?

92 / 123

The Kernel Trick

I SVM dual problem can use any p.d. K (kernelize)
I There exists a feature mapping φ() such that
K(xi, xj) = φ(xi)

>φ(xj)
I φ() may not be finite dimensional
I φ() may not be unique

I What does the kernel trick buy us?

92 / 123

The Kernel Trick

I x1 = −1(+), x2 = 0(−), x3 = 1(+)

I Not a linearly separable dataset

I But we can map x to R3

φ(x) = (1,
√

2x, x2)>

and separate them with a hyperplane

I Non-linear decision boundary in the original space

I Equivalently, we used a kernel

K(xi, xj) = φ(xi)
>φ(xj) = (1 + xixj)

2

in linear SVM without slack variables.

93 / 123

The Kernel Trick

I x1 = −1(+), x2 = 0(−), x3 = 1(+)

I Not a linearly separable dataset

I But we can map x to R3

φ(x) = (1,
√

2x, x2)>

and separate them with a hyperplane

I Non-linear decision boundary in the original space

I Equivalently, we used a kernel

K(xi, xj) = φ(xi)
>φ(xj) = (1 + xixj)

2

in linear SVM without slack variables.

93 / 123

The Kernel Trick

I x1 = −1(+), x2 = 0(−), x3 = 1(+)

I Not a linearly separable dataset

I But we can map x to R3

φ(x) = (1,
√

2x, x2)>

and separate them with a hyperplane

I Non-linear decision boundary in the original space

I Equivalently, we used a kernel

K(xi, xj) = φ(xi)
>φ(xj) = (1 + xixj)

2

in linear SVM without slack variables.

93 / 123

The Kernel Trick

I x1 = −1(+), x2 = 0(−), x3 = 1(+)

I Not a linearly separable dataset

I But we can map x to R3

φ(x) = (1,
√

2x, x2)>

and separate them with a hyperplane

I Non-linear decision boundary in the original space

I Equivalently, we used a kernel

K(xi, xj) = φ(xi)
>φ(xj) = (1 + xixj)

2

in linear SVM without slack variables.

93 / 123

The Kernel Trick

I x1 = −1(+), x2 = 0(−), x3 = 1(+)

I Not a linearly separable dataset

I But we can map x to R3

φ(x) = (1,
√

2x, x2)>

and separate them with a hyperplane

I Non-linear decision boundary in the original space

I Equivalently, we used a kernel

K(xi, xj) = φ(xi)
>φ(xj) = (1 + xixj)

2

in linear SVM without slack variables.

93 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

94 / 123

The Kernel Trick is not just for SVMs

Summary of the kernel trick:

I data as inner products

I p.d. K kernel

I induced feature map φ() such that K(xi, xj) = φ(xi)
>φ(xj)

I choosing the kernel K equivalent to feature engineering

I many algorithms can be kernelized

95 / 123

The Kernel Trick is not just for SVMs

Summary of the kernel trick:

I data as inner products

I p.d. K kernel

I induced feature map φ() such that K(xi, xj) = φ(xi)
>φ(xj)

I choosing the kernel K equivalent to feature engineering

I many algorithms can be kernelized

95 / 123

The Kernel Trick is not just for SVMs

Summary of the kernel trick:

I data as inner products

I p.d. K kernel

I induced feature map φ() such that K(xi, xj) = φ(xi)
>φ(xj)

I choosing the kernel K equivalent to feature engineering

I many algorithms can be kernelized

95 / 123

The Kernel Trick is not just for SVMs

Summary of the kernel trick:

I data as inner products

I p.d. K kernel

I induced feature map φ() such that K(xi, xj) = φ(xi)
>φ(xj)

I choosing the kernel K equivalent to feature engineering

I many algorithms can be kernelized

95 / 123

The Kernel Trick is not just for SVMs

Summary of the kernel trick:

I data as inner products

I p.d. K kernel

I induced feature map φ() such that K(xi, xj) = φ(xi)
>φ(xj)

I choosing the kernel K equivalent to feature engineering

I many algorithms can be kernelized

95 / 123

Principal Component Analysis (PCA)

I Unsupervised learning

I Given x1 . . . xn ∈ Rd, finds directions of maximum spread

I Centering data:
xi ← xi − x̄

where x̄ = 1
n

∑
j xj

I d× d sample covariance matrix

C =
1

n

∑
i

xix
>
i

96 / 123

Principal Component Analysis (PCA)

I Unsupervised learning

I Given x1 . . . xn ∈ Rd, finds directions of maximum spread

I Centering data:
xi ← xi − x̄

where x̄ = 1
n

∑
j xj

I d× d sample covariance matrix

C =
1

n

∑
i

xix
>
i

96 / 123

Principal Component Analysis (PCA)

I Unsupervised learning

I Given x1 . . . xn ∈ Rd, finds directions of maximum spread

I Centering data:
xi ← xi − x̄

where x̄ = 1
n

∑
j xj

I d× d sample covariance matrix

C =
1

n

∑
i

xix
>
i

96 / 123

Principal Component Analysis (PCA)

I Unsupervised learning

I Given x1 . . . xn ∈ Rd, finds directions of maximum spread

I Centering data:
xi ← xi − x̄

where x̄ = 1
n

∑
j xj

I d× d sample covariance matrix

C =
1

n

∑
i

xix
>
i

96 / 123

PCA

I Eigendecomposition

C = UΛU> =

d∑
j=1

λjuju
>
j

I Eigenvalues λ1 ≥ . . . ≥ λd ≥ 0 the variances

I Eigenvectors u1 . . . ud the principal components with
decreasing importance

Cuj = λjuj , j = 1 . . . d

I u1 . . . ud orthonormal basis of Rd, rotated axes

97 / 123

PCA

I Eigendecomposition

C = UΛU> =

d∑
j=1

λjuju
>
j

I Eigenvalues λ1 ≥ . . . ≥ λd ≥ 0 the variances

I Eigenvectors u1 . . . ud the principal components with
decreasing importance

Cuj = λjuj , j = 1 . . . d

I u1 . . . ud orthonormal basis of Rd, rotated axes

97 / 123

PCA

I Eigendecomposition

C = UΛU> =

d∑
j=1

λjuju
>
j

I Eigenvalues λ1 ≥ . . . ≥ λd ≥ 0 the variances

I Eigenvectors u1 . . . ud the principal components with
decreasing importance

Cuj = λjuj , j = 1 . . . d

I u1 . . . ud orthonormal basis of Rd, rotated axes

97 / 123

PCA

I Eigendecomposition

C = UΛU> =

d∑
j=1

λjuju
>
j

I Eigenvalues λ1 ≥ . . . ≥ λd ≥ 0 the variances

I Eigenvectors u1 . . . ud the principal components with
decreasing importance

Cuj = λjuj , j = 1 . . . d

I u1 . . . ud orthonormal basis of Rd, rotated axes

97 / 123

PCA

I Dimension reduction: project to the top k ≤ d directions

I Uk the first k columns of U = [u1 | u2 | . . . | ud]
I x ∈ Rd projected to Rk by

U>k x =

u
>
1 x
...

u>k x


I Uk minimizes training set `2-error among rank-k projections

n∑
i=1

‖xi − U>k xi‖22

I So far PCA with feature vectors in Rd. Next: PCA with inner
products

98 / 123

PCA

I Dimension reduction: project to the top k ≤ d directions

I Uk the first k columns of U = [u1 | u2 | . . . | ud]

I x ∈ Rd projected to Rk by

U>k x =

u
>
1 x
...

u>k x


I Uk minimizes training set `2-error among rank-k projections

n∑
i=1

‖xi − U>k xi‖22

I So far PCA with feature vectors in Rd. Next: PCA with inner
products

98 / 123

PCA

I Dimension reduction: project to the top k ≤ d directions

I Uk the first k columns of U = [u1 | u2 | . . . | ud]
I x ∈ Rd projected to Rk by

U>k x =

u
>
1 x
...

u>k x



I Uk minimizes training set `2-error among rank-k projections

n∑
i=1

‖xi − U>k xi‖22

I So far PCA with feature vectors in Rd. Next: PCA with inner
products

98 / 123

PCA

I Dimension reduction: project to the top k ≤ d directions

I Uk the first k columns of U = [u1 | u2 | . . . | ud]
I x ∈ Rd projected to Rk by

U>k x =

u
>
1 x
...

u>k x


I Uk minimizes training set `2-error among rank-k projections

n∑
i=1

‖xi − U>k xi‖22

I So far PCA with feature vectors in Rd. Next: PCA with inner
products

98 / 123

PCA

I Dimension reduction: project to the top k ≤ d directions

I Uk the first k columns of U = [u1 | u2 | . . . | ud]
I x ∈ Rd projected to Rk by

U>k x =

u
>
1 x
...

u>k x


I Uk minimizes training set `2-error among rank-k projections

n∑
i=1

‖xi − U>k xi‖22

I So far PCA with feature vectors in Rd. Next: PCA with inner
products

98 / 123

PCA with inner products

I For j = 1 . . . d

Cuj = λjuj

1

n

n∑
i=1

xix
>
i uj = λjuj

n∑
i=1

(x>i uj)

nλj
xi = uj

I Any uj can be written in the form

uj =
n∑
i=1

αjixi

I αji ∈ R, value not obvious (involving uj)

99 / 123

PCA with inner products

I For j = 1 . . . d

Cuj = λjuj

1

n

n∑
i=1

xix
>
i uj = λjuj

n∑
i=1

(x>i uj)

nλj
xi = uj

I Any uj can be written in the form

uj =
n∑
i=1

αjixi

I αji ∈ R, value not obvious (involving uj)

99 / 123

PCA with inner products

I For j = 1 . . . d

Cuj = λjuj

1

n

n∑
i=1

xix
>
i uj = λjuj

n∑
i=1

(x>i uj)

nλj
xi = uj

I Any uj can be written in the form

uj =
n∑
i=1

αjixi

I αji ∈ R, value not obvious (involving uj)

99 / 123

PCA with inner products

I n× n matrix K with Kij = x>i xj

I αj = (αj1, . . . , αjn)> satisfy the eigenvalue equation

Kαj = nλjαj

100 / 123

PCA with inner products

I n× n matrix K with Kij = x>i xj

I αj = (αj1, . . . , αjn)> satisfy the eigenvalue equation

Kαj = nλjαj

100 / 123

Why?

Cuj = λjuj

x>i Cuj = x>i λjuj , i = 1 . . . n

x>i

(
1

n

n∑
k=1

xkx
>
k

)(
n∑

m=1

αjmxm

)
= x>i λj

n∑
m=1

αjmxm

1

n

n∑
k=1

n∑
m=1

αjmx
>
i xkx

>
k xm =

n∑
m=1

λjαjmx
>
i xm

1

n

n∑
k=1

n∑
m=1

αjmKikKkm =

n∑
m=1

λjαjmKim

1

n
Ki·Kαj = λjKi·αj , i = 1 . . . n

1

n
KKαj = λjKαj

Kαj = nλjαj

assuming n ≤ d and K invertible 101 / 123

PCA with inner products
I αj = (αj1, . . . , αjn)> satisfy the eigenvalue equation

Kαj = nλjαj

I Norm of αj is also fixed:

‖uj‖ = 1

u>j uj = 1
n∑

k,m=1

αjkx
>
k xmαjm = 1

n∑
k,m=1

αjkKkmαjm = 1

α>j Kαj = 1

α>j nλjαj = 1

‖αj‖ =

√
1

nλj

102 / 123

PCA with inner products
I αj = (αj1, . . . , αjn)> satisfy the eigenvalue equation

Kαj = nλjαj

I Norm of αj is also fixed:

‖uj‖ = 1

u>j uj = 1
n∑

k,m=1

αjkx
>
k xmαjm = 1

n∑
k,m=1

αjkKkmαjm = 1

α>j Kαj = 1

α>j nλjαj = 1

‖αj‖ =

√
1

nλj
102 / 123

PCA with inner products

I Compute α1, . . . , αk by solving the eigenvalue equation (k
largest eigenvalues)

I Project (new) point x to top k ≤ n directionsu
>
1 x
...

u>k x

 =


∑n

i=1 α1ix
>
i x

...∑n
i=1 αkix

>
i x

 =

α
>
1 Kx

...
α>kKx


where Kx = (K(x1, x), . . . ,K(xn, x))> and K(xi, x) = x>i x

103 / 123

PCA with inner products

I Compute α1, . . . , αk by solving the eigenvalue equation (k
largest eigenvalues)

I Project (new) point x to top k ≤ n directionsu
>
1 x
...

u>k x

 =


∑n

i=1 α1ix
>
i x

...∑n
i=1 αkix

>
i x

 =

α
>
1 Kx

...
α>kKx


where Kx = (K(x1, x), . . . ,K(xn, x))> and K(xi, x) = x>i x

103 / 123

Kernel PCA

Perhaps replacing Kij = x>i xj with any kernel K(xi, xj)?

I Equivalently, we are doing standard PCA in φ(x) space

I But... is the training set centered
∑n

i=1 φ(xi) = 0?

I Need to center K

104 / 123

Kernel PCA

Perhaps replacing Kij = x>i xj with any kernel K(xi, xj)?

I Equivalently, we are doing standard PCA in φ(x) space

I But... is the training set centered
∑n

i=1 φ(xi) = 0?

I Need to center K

104 / 123

Kernel PCA

Perhaps replacing Kij = x>i xj with any kernel K(xi, xj)?

I Equivalently, we are doing standard PCA in φ(x) space

I But... is the training set centered
∑n

i=1 φ(xi) = 0?

I Need to center K

104 / 123

Centering the kernel for training

φ′(xi) = φ(xi)−
1

n

n∑
k=1

φ(xk)

φ′(xi)
>φ′(xj) =

(
φ(xi)−

1

n

n∑
k=1

φ(xk)

)>(
φ(xj)−

1

n

n∑
k=1

φ(xk)

)

K ′ij = Kij −
1

n

n∑
k=1

Kjk −
1

n

n∑
k=1

Kik +
1

n2

n∑
k,m=1

Kkm

Finding αj by solving the eigenvalue problem

K ′αj = nλjαj

105 / 123

Projecting (new) point x with centering

I New point x needs to be centered φ′(x) = φ(x)−
∑n

i=1 φ(xi)

I Note x not involved in computing the training set mean

I Recall j-th projection is α>j K
′
x

I K ′x = (K ′(x1, x), . . . ,K ′(xn, x))>

K ′(xi, x) = K(xi, x)− 1

n

n∑
k=1

K(xk, x)− 1

n

n∑
k=1

Kik+
1

n2

n∑
k,m=1

Kkm

106 / 123

Projecting (new) point x with centering

I New point x needs to be centered φ′(x) = φ(x)−
∑n

i=1 φ(xi)

I Note x not involved in computing the training set mean

I Recall j-th projection is α>j K
′
x

I K ′x = (K ′(x1, x), . . . ,K ′(xn, x))>

K ′(xi, x) = K(xi, x)− 1

n

n∑
k=1

K(xk, x)− 1

n

n∑
k=1

Kik+
1

n2

n∑
k,m=1

Kkm

106 / 123

Projecting (new) point x with centering

I New point x needs to be centered φ′(x) = φ(x)−
∑n

i=1 φ(xi)

I Note x not involved in computing the training set mean

I Recall j-th projection is α>j K
′
x

I K ′x = (K ′(x1, x), . . . ,K ′(xn, x))>

K ′(xi, x) = K(xi, x)− 1

n

n∑
k=1

K(xk, x)− 1

n

n∑
k=1

Kik+
1

n2

n∑
k,m=1

Kkm

106 / 123

Projecting (new) point x with centering

I New point x needs to be centered φ′(x) = φ(x)−
∑n

i=1 φ(xi)

I Note x not involved in computing the training set mean

I Recall j-th projection is α>j K
′
x

I K ′x = (K ′(x1, x), . . . ,K ′(xn, x))>

K ′(xi, x) = K(xi, x)− 1

n

n∑
k=1

K(xk, x)− 1

n

n∑
k=1

Kik+
1

n2

n∑
k,m=1

Kkm

106 / 123

Projecting (new) point x with centering

I New point x needs to be centered φ′(x) = φ(x)−
∑n

i=1 φ(xi)

I Note x not involved in computing the training set mean

I Recall j-th projection is α>j K
′
x

I K ′x = (K ′(x1, x), . . . ,K ′(xn, x))>

K ′(xi, x) = K(xi, x)− 1

n

n∑
k=1

K(xk, x)− 1

n

n∑
k=1

Kik+
1

n2

n∑
k,m=1

Kkm

106 / 123

Projecting (new) point x with centering

I New point x needs to be centered φ′(x) = φ(x)−
∑n

i=1 φ(xi)

I Note x not involved in computing the training set mean

I Recall j-th projection is α>j K
′
x

I K ′x = (K ′(x1, x), . . . ,K ′(xn, x))>

K ′(xi, x) = K(xi, x)− 1

n

n∑
k=1

K(xk, x)− 1

n

n∑
k=1

Kik+
1

n2

n∑
k,m=1

Kkm

106 / 123

Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

107 / 123

Norm

Let F be a vector space over R. A function ‖ · ‖F : F 7→ R≥0 is a
norm if

I ‖f‖F = 0 iff f = 0 (separation)

I ‖af‖F = |a|‖f‖F (positive homogeneity)

I ‖f + g‖F ≤ ‖f‖F + ‖g‖F (triangle inequality)

108 / 123

Norm

Let F be a vector space over R. A function ‖ · ‖F : F 7→ R≥0 is a
norm if

I ‖f‖F = 0 iff f = 0 (separation)

I ‖af‖F = |a|‖f‖F (positive homogeneity)

I ‖f + g‖F ≤ ‖f‖F + ‖g‖F (triangle inequality)

108 / 123

Norm

Let F be a vector space over R. A function ‖ · ‖F : F 7→ R≥0 is a
norm if

I ‖f‖F = 0 iff f = 0 (separation)

I ‖af‖F = |a|‖f‖F (positive homogeneity)

I ‖f + g‖F ≤ ‖f‖F + ‖g‖F (triangle inequality)

108 / 123

Norm

Example

I Let µ be a positive measure on X ⊂ Rd and p ≥ 1

I Let Lp(X , µ) =
{
f : X 7→ R measurable |

∫
X |f(x)|pdµ <∞

}
I ‖f‖p =

(∫
X |f(x)|pdµ

) 1
p is a norm

109 / 123

Norm

Example

I Let µ be a positive measure on X ⊂ Rd and p ≥ 1

I Let Lp(X , µ) =
{
f : X 7→ R measurable |

∫
X |f(x)|pdµ <∞

}

I ‖f‖p =
(∫
X |f(x)|pdµ

) 1
p is a norm

109 / 123

Norm

Example

I Let µ be a positive measure on X ⊂ Rd and p ≥ 1

I Let Lp(X , µ) =
{
f : X 7→ R measurable |

∫
X |f(x)|pdµ <∞

}
I ‖f‖p =

(∫
X |f(x)|pdµ

) 1
p is a norm

109 / 123

Cauchy sequence

A sequence {fn}∞n=1 of elements of a normed vector space
(F , ‖ · ‖F) is a Cauchy sequence if:

I ∀ε > 0, ∃N

I ∀n,m ≥ N, ‖fn − fm‖F < ε

110 / 123

Cauchy sequence

A sequence {fn}∞n=1 of elements of a normed vector space
(F , ‖ · ‖F) is a Cauchy sequence if:

I ∀ε > 0, ∃N
I ∀n,m ≥ N, ‖fn − fm‖F < ε

110 / 123

Convergent sequence

A sequence {fn}∞n=1 of elements of a normed vector space
(F , ‖ · ‖F) converges to f ∈ F if:

I ∀ε > 0, ∃N

I ∀n ≥ N, ‖fn − f‖F < ε

I f must be in F

111 / 123

Convergent sequence

A sequence {fn}∞n=1 of elements of a normed vector space
(F , ‖ · ‖F) converges to f ∈ F if:

I ∀ε > 0, ∃N
I ∀n ≥ N, ‖fn − f‖F < ε

I f must be in F

111 / 123

Convergent sequence

A sequence {fn}∞n=1 of elements of a normed vector space
(F , ‖ · ‖F) converges to f ∈ F if:

I ∀ε > 0, ∃N
I ∀n ≥ N, ‖fn − f‖F < ε

I f must be in F

111 / 123

Cauchy may not converge

I Convergent ⇒ Cauchy

I Cauchy may not converge (in F)

I Example: C[0, 1] bounded continuous functions on [0, 1]

I ‖f‖ =
√∫ 1

0 f(x)2dx

I fn(x) = 0 for x ∈ [0, 12 −
1
n], 1 otherwise

I {fn(x)} is Cauchy, but not convergent (limit /∈ C[0, 1])

112 / 123

Cauchy may not converge

I Convergent ⇒ Cauchy

I Cauchy may not converge (in F)

I Example: C[0, 1] bounded continuous functions on [0, 1]

I ‖f‖ =
√∫ 1

0 f(x)2dx

I fn(x) = 0 for x ∈ [0, 12 −
1
n], 1 otherwise

I {fn(x)} is Cauchy, but not convergent (limit /∈ C[0, 1])

112 / 123

Cauchy may not converge

I Convergent ⇒ Cauchy

I Cauchy may not converge (in F)

I Example: C[0, 1] bounded continuous functions on [0, 1]

I ‖f‖ =
√∫ 1

0 f(x)2dx

I fn(x) = 0 for x ∈ [0, 12 −
1
n], 1 otherwise

I {fn(x)} is Cauchy, but not convergent (limit /∈ C[0, 1])

112 / 123

Cauchy may not converge

I Convergent ⇒ Cauchy

I Cauchy may not converge (in F)

I Example: C[0, 1] bounded continuous functions on [0, 1]

I ‖f‖ =
√∫ 1

0 f(x)2dx

I fn(x) = 0 for x ∈ [0, 12 −
1
n], 1 otherwise

I {fn(x)} is Cauchy, but not convergent (limit /∈ C[0, 1])

112 / 123

Cauchy may not converge

I Convergent ⇒ Cauchy

I Cauchy may not converge (in F)

I Example: C[0, 1] bounded continuous functions on [0, 1]

I ‖f‖ =
√∫ 1

0 f(x)2dx

I fn(x) = 0 for x ∈ [0, 12 −
1
n], 1 otherwise

I {fn(x)} is Cauchy, but not convergent (limit /∈ C[0, 1])

112 / 123

Cauchy may not converge

I Convergent ⇒ Cauchy

I Cauchy may not converge (in F)

I Example: C[0, 1] bounded continuous functions on [0, 1]

I ‖f‖ =
√∫ 1

0 f(x)2dx

I fn(x) = 0 for x ∈ [0, 12 −
1
n], 1 otherwise

I {fn(x)} is Cauchy, but not convergent (limit /∈ C[0, 1])

112 / 123

Banach space

I One may complete the vector space by adding the limits of all
Cauchy sequences

I A Banach space is a complete normed space

I Example:
Lp(X , µ) =

{
f : X 7→ R measurable |

∫
X |f(x)|pdµ <∞

}
with norm ‖f‖p =

(∫
X |f(x)|pdµ

) 1
p is a Banach space

113 / 123

Banach space

I One may complete the vector space by adding the limits of all
Cauchy sequences

I A Banach space is a complete normed space

I Example:
Lp(X , µ) =

{
f : X 7→ R measurable |

∫
X |f(x)|pdµ <∞

}
with norm ‖f‖p =

(∫
X |f(x)|pdµ

) 1
p is a Banach space

113 / 123

Banach space

I One may complete the vector space by adding the limits of all
Cauchy sequences

I A Banach space is a complete normed space

I Example:
Lp(X , µ) =

{
f : X 7→ R measurable |

∫
X |f(x)|pdµ <∞

}
with norm ‖f‖p =

(∫
X |f(x)|pdµ

) 1
p is a Banach space

113 / 123

Inner product

I Let F be a vector space over R. A function
〈·, ·〉F : F × F 7→ R is an inner product if

I 〈af1 + bf2, g〉F = a〈f1, g〉F + b〈f2, g〉F
I 〈f, g〉F = 〈g, f〉F
I 〈f, f〉F ≥ 0 with 0 iff f = 0

I An inner product space is a normed space with ‖f‖ =
√
〈f, f〉

114 / 123

Inner product

I Let F be a vector space over R. A function
〈·, ·〉F : F × F 7→ R is an inner product if

I 〈af1 + bf2, g〉F = a〈f1, g〉F + b〈f2, g〉F

I 〈f, g〉F = 〈g, f〉F
I 〈f, f〉F ≥ 0 with 0 iff f = 0

I An inner product space is a normed space with ‖f‖ =
√
〈f, f〉

114 / 123

Inner product

I Let F be a vector space over R. A function
〈·, ·〉F : F × F 7→ R is an inner product if

I 〈af1 + bf2, g〉F = a〈f1, g〉F + b〈f2, g〉F
I 〈f, g〉F = 〈g, f〉F

I 〈f, f〉F ≥ 0 with 0 iff f = 0

I An inner product space is a normed space with ‖f‖ =
√
〈f, f〉

114 / 123

Inner product

I Let F be a vector space over R. A function
〈·, ·〉F : F × F 7→ R is an inner product if

I 〈af1 + bf2, g〉F = a〈f1, g〉F + b〈f2, g〉F
I 〈f, g〉F = 〈g, f〉F
I 〈f, f〉F ≥ 0 with 0 iff f = 0

I An inner product space is a normed space with ‖f‖ =
√
〈f, f〉

114 / 123

Inner product

I Let F be a vector space over R. A function
〈·, ·〉F : F × F 7→ R is an inner product if

I 〈af1 + bf2, g〉F = a〈f1, g〉F + b〈f2, g〉F
I 〈f, g〉F = 〈g, f〉F
I 〈f, f〉F ≥ 0 with 0 iff f = 0

I An inner product space is a normed space with ‖f‖ =
√
〈f, f〉

114 / 123

Hilbert space

I A Hilbert space is a complete inner product space, i.e. a
Banach space with an inner product

I Example: L2(X , µ) is a Hilbert space with inner product

〈f, g〉 =

∫
X
f(x)g(x)dµ

115 / 123

Hilbert space

I A Hilbert space is a complete inner product space, i.e. a
Banach space with an inner product

I Example: L2(X , µ) is a Hilbert space with inner product

〈f, g〉 =

∫
X
f(x)g(x)dµ

115 / 123

Linear functional

I Let F ,G be normed vector spaces over R

I A function A : F 7→ G is a linear operator iff

I A(af) = aA(f), ∀a ∈ R, f ∈ F
I A(f1 + f2) = A(f1) +A(f2), ∀f1, f2 ∈ F

I When G = R, A is a linear functional

I Example: For a fixed h ∈ F ,

Ah(f) = 〈f, h〉F

is a linear functional

116 / 123

Linear functional

I Let F ,G be normed vector spaces over R
I A function A : F 7→ G is a linear operator iff

I A(af) = aA(f), ∀a ∈ R, f ∈ F
I A(f1 + f2) = A(f1) +A(f2), ∀f1, f2 ∈ F

I When G = R, A is a linear functional

I Example: For a fixed h ∈ F ,

Ah(f) = 〈f, h〉F

is a linear functional

116 / 123

Linear functional

I Let F ,G be normed vector spaces over R
I A function A : F 7→ G is a linear operator iff

I A(af) = aA(f), ∀a ∈ R, f ∈ F

I A(f1 + f2) = A(f1) +A(f2), ∀f1, f2 ∈ F
I When G = R, A is a linear functional

I Example: For a fixed h ∈ F ,

Ah(f) = 〈f, h〉F

is a linear functional

116 / 123

Linear functional

I Let F ,G be normed vector spaces over R
I A function A : F 7→ G is a linear operator iff

I A(af) = aA(f), ∀a ∈ R, f ∈ F
I A(f1 + f2) = A(f1) +A(f2), ∀f1, f2 ∈ F

I When G = R, A is a linear functional

I Example: For a fixed h ∈ F ,

Ah(f) = 〈f, h〉F

is a linear functional

116 / 123

Linear functional

I Let F ,G be normed vector spaces over R
I A function A : F 7→ G is a linear operator iff

I A(af) = aA(f), ∀a ∈ R, f ∈ F
I A(f1 + f2) = A(f1) +A(f2), ∀f1, f2 ∈ F

I When G = R, A is a linear functional

I Example: For a fixed h ∈ F ,

Ah(f) = 〈f, h〉F

is a linear functional

116 / 123

Linear functional

I Let F ,G be normed vector spaces over R
I A function A : F 7→ G is a linear operator iff

I A(af) = aA(f), ∀a ∈ R, f ∈ F
I A(f1 + f2) = A(f1) +A(f2), ∀f1, f2 ∈ F

I When G = R, A is a linear functional

I Example: For a fixed h ∈ F ,

Ah(f) = 〈f, h〉F

is a linear functional

116 / 123

Continuity

I A : F 7→ G is continuous at f0 ∈ F , if for every ε > 0, ∃δ s.t.

‖f − f0|F < δ ⇒ ‖Af −Af0‖G < ε

I A is continuous on F if it is continuous at all f ∈ F

117 / 123

Continuity

I A : F 7→ G is continuous at f0 ∈ F , if for every ε > 0, ∃δ s.t.

‖f − f0|F < δ ⇒ ‖Af −Af0‖G < ε

I A is continuous on F if it is continuous at all f ∈ F

117 / 123

Riesz representation

In a Hilbert space F , all continuous linear functionals are of the
form 〈·, g〉F , for some g ∈ F .

118 / 123

Evaluation functional

I Let X be a non-empty set

I Let H be a Hilbert space of functions f : X 7→ R
I For a fixed x ∈ X the functional δx : H 7→ R defined as

δx(f) = f(x)

is the Dirac evaluation functional at x

I δx is linear:

δx(af+bg) = (af+bg)(x) = af(x)+bg(x) = aδx(f)+bδx(g)

I Is δx continuous?

I . . . Not necessarily

119 / 123

Evaluation functional

I Let X be a non-empty set

I Let H be a Hilbert space of functions f : X 7→ R

I For a fixed x ∈ X the functional δx : H 7→ R defined as

δx(f) = f(x)

is the Dirac evaluation functional at x

I δx is linear:

δx(af+bg) = (af+bg)(x) = af(x)+bg(x) = aδx(f)+bδx(g)

I Is δx continuous?

I . . . Not necessarily

119 / 123

Evaluation functional

I Let X be a non-empty set

I Let H be a Hilbert space of functions f : X 7→ R
I For a fixed x ∈ X the functional δx : H 7→ R defined as

δx(f) = f(x)

is the Dirac evaluation functional at x

I δx is linear:

δx(af+bg) = (af+bg)(x) = af(x)+bg(x) = aδx(f)+bδx(g)

I Is δx continuous?

I . . . Not necessarily

119 / 123

Evaluation functional

I Let X be a non-empty set

I Let H be a Hilbert space of functions f : X 7→ R
I For a fixed x ∈ X the functional δx : H 7→ R defined as

δx(f) = f(x)

is the Dirac evaluation functional at x

I δx is linear:

δx(af+bg) = (af+bg)(x) = af(x)+bg(x) = aδx(f)+bδx(g)

I Is δx continuous?

I . . . Not necessarily

119 / 123

Evaluation functional

I Let X be a non-empty set

I Let H be a Hilbert space of functions f : X 7→ R
I For a fixed x ∈ X the functional δx : H 7→ R defined as

δx(f) = f(x)

is the Dirac evaluation functional at x

I δx is linear:

δx(af+bg) = (af+bg)(x) = af(x)+bg(x) = aδx(f)+bδx(g)

I Is δx continuous?

I . . . Not necessarily

119 / 123

Evaluation functional

I Let X be a non-empty set

I Let H be a Hilbert space of functions f : X 7→ R
I For a fixed x ∈ X the functional δx : H 7→ R defined as

δx(f) = f(x)

is the Dirac evaluation functional at x

I δx is linear:

δx(af+bg) = (af+bg)(x) = af(x)+bg(x) = aδx(f)+bδx(g)

I Is δx continuous?

I . . . Not necessarily

119 / 123

Reproducing Kernel Hilbert Space

I A Hilbert space H of functions f : X 7→ R defined on a
non-empty set X is a Reproducing Kernel Hilbert Space
(RKHS) if δx is continuous for all x ∈ X

I The reproducing kernel of H is a function k : X ×X 7→ R if it
satisfies

I k(·, x) ∈ H,∀x ∈ X
I 〈f, k(·, x)〉H = f(x),∀f ∈ H, x ∈ X (reproducing)

I Obviously,
〈k(·, y), k(·, x)〉H = k(x, y)

I H is an RKHS (i.e. its evaluation functionals δx are
continuous) iff H has a reproducing kernel

120 / 123

Reproducing Kernel Hilbert Space

I A Hilbert space H of functions f : X 7→ R defined on a
non-empty set X is a Reproducing Kernel Hilbert Space
(RKHS) if δx is continuous for all x ∈ X

I The reproducing kernel of H is a function k : X ×X 7→ R if it
satisfies

I k(·, x) ∈ H,∀x ∈ X
I 〈f, k(·, x)〉H = f(x),∀f ∈ H, x ∈ X (reproducing)

I Obviously,
〈k(·, y), k(·, x)〉H = k(x, y)

I H is an RKHS (i.e. its evaluation functionals δx are
continuous) iff H has a reproducing kernel

120 / 123

Reproducing Kernel Hilbert Space

I A Hilbert space H of functions f : X 7→ R defined on a
non-empty set X is a Reproducing Kernel Hilbert Space
(RKHS) if δx is continuous for all x ∈ X

I The reproducing kernel of H is a function k : X ×X 7→ R if it
satisfies

I k(·, x) ∈ H,∀x ∈ X

I 〈f, k(·, x)〉H = f(x),∀f ∈ H, x ∈ X (reproducing)

I Obviously,
〈k(·, y), k(·, x)〉H = k(x, y)

I H is an RKHS (i.e. its evaluation functionals δx are
continuous) iff H has a reproducing kernel

120 / 123

Reproducing Kernel Hilbert Space

I A Hilbert space H of functions f : X 7→ R defined on a
non-empty set X is a Reproducing Kernel Hilbert Space
(RKHS) if δx is continuous for all x ∈ X

I The reproducing kernel of H is a function k : X ×X 7→ R if it
satisfies

I k(·, x) ∈ H,∀x ∈ X
I 〈f, k(·, x)〉H = f(x),∀f ∈ H, x ∈ X (reproducing)

I Obviously,
〈k(·, y), k(·, x)〉H = k(x, y)

I H is an RKHS (i.e. its evaluation functionals δx are
continuous) iff H has a reproducing kernel

120 / 123

Reproducing Kernel Hilbert Space

I A Hilbert space H of functions f : X 7→ R defined on a
non-empty set X is a Reproducing Kernel Hilbert Space
(RKHS) if δx is continuous for all x ∈ X

I The reproducing kernel of H is a function k : X ×X 7→ R if it
satisfies

I k(·, x) ∈ H,∀x ∈ X
I 〈f, k(·, x)〉H = f(x),∀f ∈ H, x ∈ X (reproducing)

I Obviously,
〈k(·, y), k(·, x)〉H = k(x, y)

I H is an RKHS (i.e. its evaluation functionals δx are
continuous) iff H has a reproducing kernel

120 / 123

Reproducing Kernel Hilbert Space

I A Hilbert space H of functions f : X 7→ R defined on a
non-empty set X is a Reproducing Kernel Hilbert Space
(RKHS) if δx is continuous for all x ∈ X

I The reproducing kernel of H is a function k : X ×X 7→ R if it
satisfies

I k(·, x) ∈ H,∀x ∈ X
I 〈f, k(·, x)〉H = f(x),∀f ∈ H, x ∈ X (reproducing)

I Obviously,
〈k(·, y), k(·, x)〉H = k(x, y)

I H is an RKHS (i.e. its evaluation functionals δx are
continuous) iff H has a reproducing kernel

120 / 123

Positive definiteness

I A symmetric function h : X × X 7→ R is positive definite if
∀n, ∀a ∈ Rn, ∀x1 . . . xn ∈ X ,

a>Ha ≥ 0

where H is the n× n matrix with Hij = h(xi, xj)

I Reproducing kernels are positive definite

I Let k : X × X 7→ R be positive definite. There is a unique
RKHS H = {f : X 7→ R} with reproducing kernel k
[Moore-Aronszajn]

121 / 123

Positive definiteness

I A symmetric function h : X × X 7→ R is positive definite if
∀n, ∀a ∈ Rn, ∀x1 . . . xn ∈ X ,

a>Ha ≥ 0

where H is the n× n matrix with Hij = h(xi, xj)

I Reproducing kernels are positive definite

I Let k : X × X 7→ R be positive definite. There is a unique
RKHS H = {f : X 7→ R} with reproducing kernel k
[Moore-Aronszajn]

121 / 123

Positive definiteness

I A symmetric function h : X × X 7→ R is positive definite if
∀n, ∀a ∈ Rn, ∀x1 . . . xn ∈ X ,

a>Ha ≥ 0

where H is the n× n matrix with Hij = h(xi, xj)

I Reproducing kernels are positive definite

I Let k : X × X 7→ R be positive definite. There is a unique
RKHS H = {f : X 7→ R} with reproducing kernel k
[Moore-Aronszajn]

121 / 123

Representer Theorem

I Let X be a non-empty set

I Let k be a positive definite kernel on X × X
I Let Hk be the corresponding RKHS

I Let training data be (x1, y1) . . . (xn, yn) ∈ X × R
I Let the regularizer function Ω : R≥0 7→ R be strictly

monotonically increasing

I Let the empirical risk function R̂ be arbitrary

I Any minimizer

argmin
f∈Hk

R̂((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖)

admits the form
n∑
i=1

αik(·, xi)

122 / 123

Representer Theorem

I Let X be a non-empty set

I Let k be a positive definite kernel on X × X

I Let Hk be the corresponding RKHS

I Let training data be (x1, y1) . . . (xn, yn) ∈ X × R
I Let the regularizer function Ω : R≥0 7→ R be strictly

monotonically increasing

I Let the empirical risk function R̂ be arbitrary

I Any minimizer

argmin
f∈Hk

R̂((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖)

admits the form
n∑
i=1

αik(·, xi)

122 / 123

Representer Theorem

I Let X be a non-empty set

I Let k be a positive definite kernel on X × X
I Let Hk be the corresponding RKHS

I Let training data be (x1, y1) . . . (xn, yn) ∈ X × R
I Let the regularizer function Ω : R≥0 7→ R be strictly

monotonically increasing

I Let the empirical risk function R̂ be arbitrary

I Any minimizer

argmin
f∈Hk

R̂((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖)

admits the form
n∑
i=1

αik(·, xi)

122 / 123

Representer Theorem

I Let X be a non-empty set

I Let k be a positive definite kernel on X × X
I Let Hk be the corresponding RKHS

I Let training data be (x1, y1) . . . (xn, yn) ∈ X × R

I Let the regularizer function Ω : R≥0 7→ R be strictly
monotonically increasing

I Let the empirical risk function R̂ be arbitrary

I Any minimizer

argmin
f∈Hk

R̂((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖)

admits the form
n∑
i=1

αik(·, xi)

122 / 123

Representer Theorem

I Let X be a non-empty set

I Let k be a positive definite kernel on X × X
I Let Hk be the corresponding RKHS

I Let training data be (x1, y1) . . . (xn, yn) ∈ X × R
I Let the regularizer function Ω : R≥0 7→ R be strictly

monotonically increasing

I Let the empirical risk function R̂ be arbitrary

I Any minimizer

argmin
f∈Hk

R̂((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖)

admits the form
n∑
i=1

αik(·, xi)

122 / 123

Representer Theorem

I Let X be a non-empty set

I Let k be a positive definite kernel on X × X
I Let Hk be the corresponding RKHS

I Let training data be (x1, y1) . . . (xn, yn) ∈ X × R
I Let the regularizer function Ω : R≥0 7→ R be strictly

monotonically increasing

I Let the empirical risk function R̂ be arbitrary

I Any minimizer

argmin
f∈Hk

R̂((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖)

admits the form
n∑
i=1

αik(·, xi)

122 / 123

Representer Theorem

I Let X be a non-empty set

I Let k be a positive definite kernel on X × X
I Let Hk be the corresponding RKHS

I Let training data be (x1, y1) . . . (xn, yn) ∈ X × R
I Let the regularizer function Ω : R≥0 7→ R be strictly

monotonically increasing

I Let the empirical risk function R̂ be arbitrary

I Any minimizer

argmin
f∈Hk

R̂((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖)

admits the form
n∑
i=1

αik(·, xi)

122 / 123

References

Graphical Models

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

I Schölkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

I Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

I Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online
notes 2014

123 / 123

References

Graphical Models

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

I Schölkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

I Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

I Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online
notes 2014

123 / 123

References

Graphical Models

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

I Schölkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

I Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

I Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online
notes 2014

123 / 123

References

Graphical Models

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

I Schölkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

I Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

I Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online
notes 2014

123 / 123

References

Graphical Models

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

I Schölkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

I Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

I Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online
notes 2014

123 / 123

References

Graphical Models

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

I Schölkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

I Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

I Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online
notes 2014

123 / 123

	Graphical Models
	Probabilistic Inference
	Directed vs. Undirected Graphical Models
	Inference
	Parameter Estimation

	Kernel Methods
	Support Vector Machines
	Kernel PCA
	Reproducing Kernel Hilbert Spaces

