Graphical Models and Kernel Methods

Jerry Zhu

Department of Computer Sciences
University of Wisconsin—Madison, USA

MLSS
June 17, 2014

1/123



Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces

123



Outline

Graphical Models

3/123



Outline

Graphical Models
Probabilistic Inference

4/123



The envelope quiz

> red ball = $$$

5/123



The envelope quiz

> red ball = $$$

> You randomly picked an envelope, randomly took out a ball -

and it was black

5/123



The envelope quiz

» red ball = $$$
> You randomly picked an envelope, randomly took out a ball -
and it was black

» Should you choose this envelope or the other envelope?

5/123



The envelope quiz

» Probabilistic inference

6

123



The envelope quiz

» Probabilistic inference

» Joint distribution on E € {1,0}, B € {r,b}:

P(E,B) = P(E)P(B | E)

6

123



The envelope quiz

» Probabilistic inference

» Joint distribution on E € {1,0}, B € {r,b}:

P(E,B) = P(E)P(B | E)
» P(E=1)=P(E=0)=1/2

6

123



The envelope quiz

» Probabilistic inference

» Joint distribution on E € {1,0}, B € {r,b}:

>
| 4

P(E,B) = P(E)P(B | E)
P(E=1)=P(E=0)=1/2

P(B=r|E=1)=1/2,P(B=7r|E=0)=0

6

123



The envelope quiz

» Probabilistic inference

>

v

v

Joint distribution on E € {1,0}, B € {r,b}:

P(E,B) = P(E)P(B | E)

P(E=1)=P(E=0)=1/2
» PB=r|E=1)=1/2,P(B=r|E=0)=0

The graphical model:

6

123



The envelope quiz

» Probabilistic inference

» Joint distribution on E € {1,0}, B € {r,b}:

P(E,B) = P(E)P(B | E)

» P(E=1)=P(E=0)=1/2
» PB=r|E=1)=1/2,P(B=r|E=0)=0

» The graphical model:

» Statistical decision theory: switch if P(E=1| B =10) <1/2

6

123



The envelope quiz

» Probabilistic inference

» Joint distribution on E € {1,0}, B € {r,b}:
P(E,B)=P(E)P(B | E)

» PIE=1)=P(E=0)=1/2

» PB=r|E=1)=1/2P(B=r|E=0)=0

» The graphical model:

» Statistical decision theory: switch if P(E=1| B =10) <1/2

» PIE=1|B=b) = P(B=b|E=1)P(E=1)

Switch.

1/2x1/2

P(B=b)

3/4

=1/3,

6

123



Reasoning with uncertainty

» The world is reduced to a set of random variables z1, ..., zq4

7/123



Reasoning with uncertainty

» The world is reduced to a set of random variables z1, ..., zq4
» eg. (1,...,24-1) a feature vector, x4 = y the class label

7/123



Reasoning with uncertainty

» The world is reduced to a set of random variables z1, ..., zq4
» eg. (1,...,24-1) a feature vector, x4 = y the class label
» Inference: given joint distribution p(z1,...,z4), compute

p(XQ | XE) where XoUXEg C {z1...24}

7/123



Reasoning with uncertainty

» The world is reduced to a set of random variables z1, ..., zq4
» eg. (1,...,24-1) a feature vector, x4 = y the class label
» Inference: given joint distribution p(z1,...,z4), compute

p(XQ | XE) where XoUXEg C {z1...24}
» eg. Q={d}, E={1...d— 1}, by the definition of
conditional

p(xla o 7$d717xd)
p(x1, ..., Tg—1,Tq = V)

p(xd | x1,...7.'1:d71) = Z
v

7/123



Reasoning with uncertainty

» The world is reduced to a set of random variables z1, ..., zq4
» eg. (1,...,24-1) a feature vector, x4 = y the class label
» Inference: given joint distribution p(z1,...,z4), compute

p(XQ | XE) where XoUXEg C {z1...24}
» eg. Q={d}, E={1...d— 1}, by the definition of

conditional
(21, Ta—1,Ta)
Tqg|x1,...,09-1) =
p( d| 1 d 1) va(m1"~'7xd—17'rd:7j)
» Learning: estimate p(z1,...,x4) from training data
XM X where X0 = (209 20

7/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)

8/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)
» exponential naive storage (2% for binary r.v.)

8/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)
» exponential naive storage (2% for binary r.v.)
» hard to interpret (conditional independence)

8/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)
» exponential naive storage (2% for binary r.v.)
» hard to interpret (conditional independence)

> inference p(Xq | Xg)

8/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)
» exponential naive storage (2% for binary r.v.)
» hard to interpret (conditional independence)

> inference p(Xq | Xg)
» Often can't afford to do it by brute force

8/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)
» exponential naive storage (2% for binary r.v.)
» hard to interpret (conditional independence)

> inference p(Xq | Xg)
» Often can't afford to do it by brute force
» If p(z1,...,24) not given, estimate it from data

8/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)
» exponential naive storage (2% for binary r.v.)
» hard to interpret (conditional independence)

> inference p(Xq | Xg)
» Often can't afford to do it by brute force

» If p(z1,...,24) not given, estimate it from data
» Often can't afford to do it by brute force

8/123



It is difficult to reason with uncertainty

» joint distribution p(x1,...,2z4)
» exponential naive storage (2% for binary r.v.)
» hard to interpret (conditional independence)
> inference p(Xq | Xg)
» Often can't afford to do it by brute force
» If p(z1,...,24) not given, estimate it from data
» Often can't afford to do it by brute force
» Graphical model: efficient representation, inference, and
learning on p(x1,...,xz4), exactly or approximately

8/123



What are graphical models?

» Graphical model = joint distribution p(z1,...,z4)

9/123



What are graphical models?

» Graphical model = joint distribution p(z1,...,z)
» Bayesian network or Markov random field

9/123



What are graphical models?

» Graphical model = joint distribution p(z1,...,z)
» Bayesian network or Markov random field
» conditional independence

9/123



What are graphical models?

» Graphical model = joint distribution p(z1,...,z)
» Bayesian network or Markov random field
» conditional independence

» Inference = p(Xg | XE), in general Xg U Xp C {z1...24}

9/123



What are graphical models?

» Graphical model = joint distribution p(z1,...,z)
» Bayesian network or Markov random field
» conditional independence

» Inference = p(Xg | XE), in general Xg U Xp C {z1...24}
» exact, MCMC, variational

9/123



What are graphical models?

» Graphical model = joint distribution p(z1,...,z)
» Bayesian network or Markov random field
» conditional independence

» Inference = p(Xg | XE), in general Xg U Xp C {z1...24}
» exact, MCMC, variational
> If p(z1,...,24) not given, estimate it from data

9/123



What are graphical models?

» Graphical model = joint distribution p(z1,...,z)
» Bayesian network or Markov random field
» conditional independence

» Inference = p(Xg | XE), in general Xg U Xp C {z1...24}
» exact, MCMC, variational

> If p(z1,...,24) not given, estimate it from data
> parameter and structure learning

9/123



Graphical-Model-Nots

» Graphical model is the study of probabilistic models

10/123



Graphical-Model-Nots

» Graphical model is the study of probabilistic models

> Just because there are nodes and edges doesn't mean it's a
graphical model

10/123



Graphical-Model-Nots

» Graphical model is the study of probabilistic models

> Just because there are nodes and edges doesn't mean it's a
graphical model

> These are not graphical models:

Hidden

neural network decision tree  network flow  HMM template
(but HMMs arel!)

10/123



Outline

Graphical Models

Directed vs. Undirected Graphical Models

11/123



Directed graphical models

12 /123



Directed graphical models

» Also called Bayesian networks

13 /123



Directed graphical models

» Also called Bayesian networks

» A directed graph has nodes 1, ..., x4, some of them
connected by directed edges x; — z;

13 /123



Directed graphical models

» Also called Bayesian networks

» A directed graph has nodes 1, ..., x4, some of them
connected by directed edges x; — z;

» A cycle is a directed path 1 — ... — x where 1 = x,

13 /123



Directed graphical models

v

Also called Bayesian networks

v

A directed graph has nodes z1, ..., x4, some of them
connected by directed edges x; — z;

v

A cycle is a directed path z1 — ... — z; where z1 = z,

v

A directed acyclic graph (DAG) contains no cycles

13 /123



Directed graphical models

» A Bayesian network on the DAG is a family of distributions
satisfying

{plp(x,. . 2a) = Hp(ﬂfz' | Pa(x;))}

where Pa(x;) is the set of parents of x;.

14 /123



Directed graphical models

» A Bayesian network on the DAG is a family of distributions
satisfying

{p|p(1,...,zq) = [ [ pla:i | Pa(x:))}
where Pa(x;) is the set of parents of x;.

» p(x; | Pa(x;)) is the conditional probability distribution
(CPD) at x;

14 /123



Directed graphical models

» A Bayesian network on the DAG is a family of distributions
satisfying

{plp(x,. . 2a) = Hp(ﬂfz' | Pa(x;))}

where Pa(x;) is the set of parents of x;.

» p(x; | Pa(x;)) is the conditional probability distribution
(CPD) at x;

» By specifying the CPDs for all 4, we specify a joint
distribution p(x1,...,z4)

14 /123



Example: Burglary, Earthquake, Alarm, John and Marry

Binary variables
P(B)=0.001 P(E)=0.002

P(A | B, E)=0.95 ~N S
P(A | B, ~E) = 0.94
P(A |~B, E) = 0.29
PAA|-B -B)=0001 _ ~ N

()

PA|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

P(B,~ E,A,J,~ M)

P(B)P(~ E)P(A | B,~ E)P(J | A)P(~ M | A)
= 0.001 x (1—0.002) x 0.94 x 0.9 x (1 —0.7)

000253

15/123



Example: Naive Bayes

o Y
@/---\@ 0

> p(y, 21, ... xq) = p(y) TIE i | )

11111



Example: Naive Bayes

A
oo

d
> p(y, @1, wq) = p(y) [Timy p(i [ y)
> Plate representation on the right

CH

16 /123



Example: Naive Bayes

A
oo

d
> p(y, @1, wq) = p(y) [Timy p(i [ y)
> Plate representation on the right

CH

» p(y) multinomial

16 /123



Example: Naive Bayes

v

v

v

v

A
oo

d
p(y, @1, ... 2a) = p(y) [Ti= p(xi | y)
Plate representation on the right

p(y) multinomial

p(z; | y) depends on the feature type: multinomial (count x;),

Gaussian (continuous z;), etc.

o

16 /123



No Causality Whatsoever

P(A|~B)=a(1-b)/(1-ab—(1-a)

P(A)=a e P(B)=ab+(1-a)c
EESIA);)b P(A|B)=ab/(ab+(1-a)c)
~ :C

The two BNs are equivalent in all respects

» Do not read causality from Bayesian networks

17 /123



No Causality Whatsoever

P(A|~B)=a(1-b)/(1-ab—(1-a)

P(A)=a e P(B)=ab+(1-a)c
EESIA);)b P(A|B)=ab/(ab+(1-a)c)
~ :C

The two BNs are equivalent in all respects
» Do not read causality from Bayesian networks

» They only represent correlation (joint probability distribution)

17 /123



No Causality Whatsoever

P(A)=a @ P(B)=ab+(1-a)c
P(B|A)=b P(A|B)=ab/(ab+(1-a)c)
P(B|~A)=c @ P(A|~B)=a(1-b)/(1-ab—(1-a)
The two BNs are equivalent in all respects
» Do not read causality from Bayesian networks
» They only represent correlation (joint probability distribution)

» However, it is perfectly fine to design BNs causally

17 /123



What do we need probabilistic models for?

» Make predictions. p(y | ) plus decision theory

18 /123



What do we need probabilistic models for?

» Make predictions. p(y | ) plus decision theory
> Interpret models. Very natural to include latent variables

18 /123



Example: Latent Dirichlet Allocation (LDA)

OO - @ Oo-®

A generative model for p(¢,0, z,w | «, B):
For each topic ¢
¢ ~ Dirichlet(8)
For each document d
0 ~ Dirichlet(c)
For each word position in d
topic z ~ Multinomial(#)
word w ~ Multinomial(¢,)
Inference goals: p(z | w, o, B), argmax, 4 p(¢,0 | w, a, B)

19/123



Conditional Independence

» Two r.v.s A, B are independent if

P(A,B) = P(A)P(B)
P(A|B) = P(A)
P(B|A) = P(B)

20 /123



Conditional Independence

» Two r.v.s A, B are independent if
P(A,B) = P(A)P(B)
P(A|B) = P(A)
P(B|A) = P(B)
» Two r.v.s A, B are conditionally independent given C if
P(A,B|C) = PA|C)P(B|C)

P(A|B,C) = P(A|C)
P(B|A,C) = P(B|C)

20 /123



Conditional Independence

» Two r.v.s A, B are independent if

P(A,B) = P(A)P(B)
P(A|B) = P(A)
P(B|A) = P(B)
» Two r.v.s A, B are conditionally independent given C if
P(A,B|C) = PA|C)P(B|C)
P(A|B,C) = P(A|C)
P(B|A,C) = P(B|CO)

» This extends to groups of r.v.s

20 /123



Conditional Independence

» Two r.v.s A, B are independent if

P(A,B) = P(A)P(B)
P(A|B) = P(A)
P(B|A) = P(B)

» Two r.v.s A, B are conditionally independent given C if
P(A,B|C) = PA|C)P(B|C)
P(A|B,C) = P(A|C)
P(B|A,C) = P(B|CO)

» This extends to groups of r.v.s

» Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)

20 /123



d-Separation Case 1: Tail-to-Tall

N s

» A, B in general dependent

21/123



d-Separation Case 1: Tail-to-Tall

e

®) ®)

» A, B in general dependent

» A, B conditionally independent given C (observed nodes are
shaded)

21/123



d-Separation Case 1: Tail-to-Tall

e

®) ®)

» A, B in general dependent

» A, B conditionally independent given C (observed nodes are
shaded)

» An observed C is a tail-to-tail node, blocks the undirected
path A-B

21/123



d-Separation Case 2: Head-to-Tail

®—0—® W@

» A, B in general dependent

22/123



d-Separation Case 2: Head-to-Tail

OO O ®W—©@—@
» A, B in general dependent
» A, B conditionally independent given C

22/123



d-Separation Case 2: Head-to-Tail

OO O ®W—©@—@
» A, B in general dependent

» A, B conditionally independent given C
» An observed C is a head-to-tail node, blocks the path A-B

22/123



d-Separation Case 3: Head-to-Head

N ©/ N @

» A, B in general independent

23 /123



d-Separation Case 3: Head-to-Head

N @/ N @

» A, B in general independent

» A, B conditionally dependent given C, or any of C's
descendants

23 /123



d-Separation Case 3: Head-to-Head

N @/ N @

» A, B in general independent

» A, B conditionally dependent given C, or any of C's
descendants

» An observed C is a head-to-head node, unblocks the path A-B

23 /123



d-Separation

> Variable groups A and B are conditionally independent given
C, if all undirected paths from nodes in A to nodes in B are
blocked

24 /123



d-Separation Example 1

» The undirected path from A to B is unblocked by E (because
of C), and is not blocked by F

25 /123



d-Separation Example 1

» The undirected path from A to B is unblocked by E (because
of C), and is not blocked by F

» A, B dependent given C

25 /123



d-Separation Example 2

» The path from A to B is blocked both at E and F

26 /123



d-Separation Example 2

» The path from A to B is blocked both at E and F
» A, B conditionally independent given F

) ®

\1@/ \
o

26 /123



Undirected graphical models

27 /123



Undirected graphical models

» Also known as Markov Random Fields

28 /123



Undirected graphical models

» Also known as Markov Random Fields

> Recall directed graphical models require a DAG and locally
normalized CPDs

28 /123



Undirected graphical models

» Also known as Markov Random Fields

> Recall directed graphical models require a DAG and locally
normalized CPDs

» efficient computation

28 /123



Undirected graphical models

» Also known as Markov Random Fields

> Recall directed graphical models require a DAG and locally
normalized CPDs

» efficient computation
» but restrictive

28 /123



Undirected graphical models

» Also known as Markov Random Fields

> Recall directed graphical models require a DAG and locally
normalized CPDs

» efficient computation
» but restrictive

> A clique C' in an undirected graph is a set of fully connected
nodes (full of loops!)

28 /123



Undirected graphical models

> Also known as Markov Random Fields
> Recall directed graphical models require a DAG and locally
normalized CPDs
» efficient computation
> but restrictive
> A clique C' in an undirected graph is a set of fully connected

nodes (full of loops!)

v

Define a nonnegative potential function ¥¢ : Xo — R4

28 /123



Undirected graphical models

» Also known as Markov Random Fields

> Recall directed graphical models require a DAG and locally
normalized CPDs

» efficient computation
» but restrictive

> A clique C' in an undirected graph is a set of fully connected
nodes (full of loops!)

» Define a nonnegative potential function ¢ : Xo — R4
» An undirected graphical model is a family of distributions

satisfying
{p | p(X ch Xc) }

28 /123



Undirected graphical models

» Also known as Markov Random Fields

> Recall directed graphical models require a DAG and locally

v

normalized CPDs

» efficient computation
» but restrictive

A clique C in an undirected graph is a set of fully connected
nodes (full of loops!)

Define a nonnegative potential function ¥¢ : Xo — R4

An undirected graphical model is a family of distributions

satisfying
{p | p(X ch Xc) }

Z = [Tlove(Xe)dX is the partition function

28 /123



Example: A Tiny Markov Random Field

» z,29 € {—1,1}

29 /123



Example: A Tiny Markov Random Field

> I1,T9 € {—1, 1}

> A single clique ¥o(z1, z9) = 172

29 /123



Example: A Tiny Markov Random Field

> I1,T9 € {—1, 1}

> A single clique ¥o(z1, z9) = 172

> p(z1,19) = %eaxlwz

29 /123



Example: A Tiny Markov Random Field

v

x1,T2 € {—1, 1}
A single clique Yo (21, x2) = 172

v

> p(z1,19) = %eaxlwz

> Z=(e"+e " +e *+e)

29 /123



Example: A Tiny Markov Random Field

v

x1,T2 € {—1, 1}
A single clique Yo (21, x2) = 172

v

p(.%'l,.%'Q) — %eaxlxg

Z=(e"+e "+e +e)
p(17 1) = p(_la _1) = ea/(2ea + 267(1)

v

v

v

29 /123



Example: A Tiny Markov Random Field

v

xr1,T9 € {—1, 1}

A single clique Yo (21, x2) = 172

v

(a1, x2) = Zet172

Z=(e"+e "+e +e)
p(1,1) = p(—1,—-1) = e*/(2e* 4+ 2¢™ %)
p(—=1,1) =p(1,-1) = e~ %/(2e* 4+ 2¢)

v

v

v

v

29 /123



Example: A Tiny Markov Random Field

v

xr1,T9 € {—1, 1}

A single clique Yo (21, x2) = 172

v

p(l‘l,.%'Q) — %eaxlxg

Z=(e"+e "+e +e)

p(1,1) = p(—1,—-1) = e*/(2e* 4+ 2¢™ %)

p(—=1,1) =p(l,—1) = e ?/(2e* +2¢ %)

When the parameter a > 0, favor homogeneous chains

v

v

v

v

v

29 /123



Example: A Tiny Markov Random Field

C
> T1,T2 € {—1, 1}
> A single clique ¥o(z1, z9) = 172
> p(m,m) — %eam‘m

v

Z=(e"+e "+e +e)

p(1,1) = p(—1,—-1) = e*/(2e* 4+ 2¢™ %)

p(—=1,1) =p(l,—1) = e ?/(2e* +2¢ %)

When the parameter a > 0, favor homogeneous chains

v

v

v

v

When the parameter a < 0, favor inhomogeneous chains

29 /123



Log-Linear Models

» Real-valued feature functions f1(X),..., fr(X)

30/123



Log-Linear Models

» Real-valued feature functions f1(X),..., fr(X)

» Real-valued weights wy, ..., wy

k
p(X) = 5 exp (2 wifi<X>)
i=1

30/123



Log-Linear Models

» Real-valued feature functions f1(X),..., fr(X)

» Real-valued weights wy, ..., wy

k
p(X) = %eXp (Z wifi(X)>
i=1
» Equivalent to MRF p(X) = % [ ¢c(Xc) with

Yo(Xe) = exp (we fo(X))

30/123



Example: Ising Model

& (9% (o)

This is an undirected model with x € {0,1}.

1
po(x) = — exp (Z Oszs+ Y Gstms:ct)

seV (s,t)eE

> fs(X) = Ts, fst(X) = TsTt

31/123



Example: Image Denoising

[From Bishop PRML] noisy image argmaxy P(X|Y)

po(X |Y) =

exp Zﬁsajs—F Z Ostx st

seV (s,t)eE

7
es:{c v =1y 20
—C ys:()

32/123



Example: Gaussian Random Field

PX) ~ N 3) = s o (-5 (X -T2 (- )

» Multivariate Gaussian

33/123



Example: Gaussian Random Field

p(X) ~ N(p, %) = W exp <—;(X - - M))

» Multivariate Gaussian

» The n X n covariance matrix X positive semi-definite

33/123



Example: Gaussian Random Field

p(X) ~ N(p, %) = W exp <—;(X ) 'ETNX - M))

» Multivariate Gaussian
» The n X n covariance matrix X positive semi-definite

» Let Q = X! be the precision matrix

33/123



Example: Gaussian Random Field

p(X) ~ N(p, %) = W exp <—;(X - M)Tz_l(X - M))

» Multivariate Gaussian
» The n X n covariance matrix X positive semi-definite
» Let Q = X! be the precision matrix

» x;,x; are conditionally independent given all other variables, if
and only if 2;; =0

33/123



Example: Gaussian Random Field

p(X) ~ N(p, %) = W exp <—;(X - M)Tz_l(X - M))

» Multivariate Gaussian
» The n X n covariance matrix X positive semi-definite
» Let Q = X! be the precision matrix

» x;,x; are conditionally independent given all other variables, if
and only if 2;; =0
» When );; # 0, there is an edge between z;, z;

33/123



Conditional Independence in Markov Random Fields

» Two group of variables A, B are conditionally independent
given another group C, if A, B become disconnected by
removing C and all edges involving C

1_'_'»5 O

34 /123



Outline

Graphical Models

Inference

35/123



Exact Inference

36 /123



Inference by Enumeration

» Let X = (X, Xg, X0) for query, evidence, and other
variables.

37/123



Inference by Enumeration

» Let X = (X, Xg, X0) for query, evidence, and other
variables.

» Goal: P(XQ | XE)

37/123



Inference by Enumeration

» Let X = (X, Xg, X0) for query, evidence, and other
variables.
» Goal: P(Xg | XE)
>
P(Xq, XE) > x, P(Xq, XE, Xo)

P(Xo | Xp) = _
(X | XE) P(Xp) > xg.x0 P(Xo, Xp, X0)

37/123



Inference by Enumeration

v

Let X = (X, XE, X0) for query, evidence, and other
variables.

» Goal: P(XQ | XE)
>

¢ P(Xp)  Yxgxo P(Xo, X5, Xo0)
» Summing exponential number of terms: with k variables in

X0 each taking 7 values, there are 7* terms

37/123



Inference by Enumeration

» Let X = (X, Xg, X0) for query, evidence, and other

variables.
» Goal: P(XQ|XE)
| 2
P(Xo, X P(Xp,Xg, X,
P(Xo | Xp) = (Xq@,Xp)  x, P(Xq,Xg, Xo0)

P(Xp)  Yxuxo P(Xq . XE, Xo)

» Summing exponential number of terms: with k variables in
X0 each taking 7 values, there are 7* terms

» Not covered: Variable elimination and junction tree (aka
clique tree)

37/123



Markov Chain Monte Carlo

38 /123



Markov Chain Monte Carlo

» Forward sampling

39/123



Markov Chain Monte Carlo

» Forward sampling

» Gibbs sampling

39/123



Markov Chain Monte Carlo

» Forward sampling
» Gibbs sampling
» Collapsed Gibbs sampling

39/123



Markov Chain Monte Carlo

v

Forward sampling

v

Gibbs sampling

v

Collapsed Gibbs sampling

v

Not covered: block Gibbs, Metropolis-Hastings, etc.

39/123



Markov Chain Monte Carlo

v

Forward sampling

v

Gibbs sampling

v

Collapsed Gibbs sampling

v

Not covered: block Gibbs, Metropolis-Hastings, etc.

v

Unbiased (after burn-in), but can have high variance

39/123



Monte Carlo Methods

» Consider the inference problem p(Xg = cg | Xg) where
XQUXE - {.’El...l'd}

p(Xg = co | Xp) = / Log—cop (@ | Xp)dg

40 /123



Monte Carlo Methods

» Consider the inference problem p(Xg = cg | Xg) where
XQUXE - {$1...£L’d}

p(Xg = co | Xp) = / Log—cop (@ | Xp)dg

» If we can draw samples $8), . ..xgﬂ) ~p(zg | XEg), an

unbiased estimator is

1

m
p(Xo=cql|Xp)~ Z L e —cq)

40 /123



Monte Carlo Methods

» Consider the inference problem p(Xg = cg | Xg) where
XQUXE - {$1...£L’d}

p(Xg = co | Xp) = / Log—cop (@ | Xp)dg

» If we can draw samples xg), . ..xgﬂ) ~p(zg | XEg), an

unbiased estimator is

1 m
p(Xo=cql|Xp)~ Z Lo —cq)

» The variance of the estimator decreases as O(1/m)

40 /123



Monte Carlo Methods

» Consider the inference problem p(Xg = cg | Xg) where
XQUXE - {$1...£L’d}

p(Xg = co | Xp) = / Log—cop (@ | Xp)dg

» If we can draw samples :ng), . ..xgﬂ) ~p(zg | XEg), an

unbiased estimator is

1 m
p(Xo=cql|Xp)~ 2 Lo —cq)
1=

» The variance of the estimator decreases as O(1/m)

> Inference reduces to sampling from p(z¢q | Xg)

40 /123



Forward Sampling

» Draw X ~ P(X)

41 /123



Forward Sampling

» Draw X ~ P(X)

» Throw away X if it doesn't match the evidence Xg

41 /123



Forward Sampling: Example

P(B)=0.001 P(E)=0.002

P(A | B, E) =095 N S

P(A | B, ~E) = 0.94
/N
O

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P(J|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

To generate a sample X = (B, E, A, J,M):

1. Sample B ~ Ber(0.001): r ~ U(0,1). If (r < 0.001) then
B=1else B=0

42 /123



Forward Sampling: Example

P(B)=0.001 P(E)=0.002

P(A | B, E) =095 N S

P(A | B, ~E) = 0.94
/N
O

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P(J|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

To generate a sample X = (B, E, A, J,M):

1. Sample B ~ Ber(0.001): r ~ U(0,1). If (r < 0.001) then
B=1else B=0

2. Sample E ~ Ber(0.002)

42 /123



Forward Sampling: Example

P(B)=0.001 P(E)=0.002

P(A | B, E) =095 N S

P(A | B, ~E) = 0.94
/N
O

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P(J|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

To generate a sample X = (B, E, A, J,M):

1. Sample B ~ Ber(0.001): r ~ U(0,1). If (r < 0.001) then
B=1else B=0

2. Sample E ~ Ber(0.002)
3. If B=1and E =1, sample A ~ Ber(0.95), and so on

42 /123



Forward Sampling: Example

P(B)=0.001 P(E)=0.002

P(A | B, E) =095 N S

P(A | B, ~E) = 0.94
/N
O

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P(J|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

To generate a sample X = (B, E, A, J,M):

1.

Sample B ~ Ber(0.001): » ~ U(0,1). If (r < 0.001) then
B=1else B=0

2. Sample E ~ Ber(0.002)
3. If B=1and E =1, sample A ~ Ber(0.95), and so on
4. If A=1 sample J ~ Ber(0.9) else J ~ Ber(0.05)

42 /123



Forward Sampling: Example

P(B)=0.001 P(E)=0.002

P(A | B, E) =095 N S

P(A | B, ~E) = 0.94
/N
O

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P(J|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

To generate a sample X = (B, E, A, J,M):

1.

AR

Sample B ~ Ber(0.001): » ~ U(0,1). If (r < 0.001) then
B=1else B=0

Sample E ~ Ber(0.002)

If B=1and E =1, sample A ~ Ber(0.95), and so on
If A= 1 sample J ~ Ber(0.9) else J ~ Ber(0.05)

If A=1sample M ~ Ber(0.7) else M ~ Ber(0.01)

42 /123



Inference with Forward Sampling

» Say the inference task is P(B=1|E=1,M =1)

43 /123



Inference with Forward Sampling

» Say the inference task is P(B=1|E=1,M =1)
» Throw away all samples except those with (E'=1,M = 1)

1m
( _1’E_1M_1 ’Rjaz B(Z)l

where m is the number of surviving samples

43 /123



Inference with Forward Sampling

» Say the inference task is P(B=1|E=1,M =1)
» Throw away all samples except those with (E'=1,M = 1)

1m
( _llE_lM_l ’Rjaz B(Z)l

where m is the number of surviving samples
» Can be highly inefficient (note P(E = 1) tiny)

43 /123



Inference with Forward Sampling

v

Say the inference task is P(B=1|E=1,M =1)
Throw away all samples except those with (E'=1,M = 1)

v

1m
( _llE_lM_l %EZ B(wl

where m is the number of surviving samples
Can be highly inefficient (note P(E = 1) tiny)

v

» Does not work for Markov Random Fields (can’t sample from
P(X))

43 /123



Gibbs Sampling: Example P(B=1|E=1,M =1)

» Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

P(B)=0.001 P(E)=0.002
P(A |B, E) = 0.95 N

P(A | B, ~E) = 0.94
PR
CONNE

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P|A)=09 P(M |A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

44 /123



Gibbs Sampling: Example P(B=1|E=1,M =1)

» Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

» Directly sample from p(zg | XE)

P(B)=0.001 P(E)=0.002
P(A |B, E) = 0.95 N

P(A | B, ~E) = 0.94
PR
CONNE

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P|A)=09 P(M |A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

44 /123



Gibbs Sampling: Example P(B=1|E=1,M =1)

» Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

» Directly sample from p(zg | XE)
» Works for both graphical models

P(B)=0.001 P(E)=0.002

P(A |B, E) = 0.95 N

P(A | B, ~E) = 0.94
PR
CONNE

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P|A)=09 P(M |A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

44 /123



Gibbs Sampling: Example P(B=1|E=1,M =1)

» Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

» Directly sample from p(zg | XE)

» Works for both graphical models
> Initialization:

P(B)=0.001 P(E)=0.002
P(A |B, E) = 0.95 N

P(A | B, ~E) = 0.94
PR
CONNE

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

44 /123



Gibbs Sampling: Example P(B=1|E=1,M =1)

v

Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

v

Directly sample from p(zg | XE)

v

Works for both graphical models

v

Initialization:
» Fix evidence; randomly set other variables

P(B)=0.001 P(E)=0.002
P(A |B, E) = 0.95 N

P(A | B, ~E) = 0.94
PR
CONNE

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

44 /123



Gibbs Sampling: Example P(B=1|E=1,M =1)

v

Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method.

v

Directly sample from p(zg | XE)

v

Works for both graphical models

v

Initialization:

» Fix evidence; randomly set other variables
»eg XO=(B=0,E=1,A=0,J=0,M=1)

P(B)=0.001 P(E)=0.002

P(A |B, E) = 0.95 N

P(A | B, ~E) = 0.94
PR
CONNE

P(A | ~B, E) = 0.29

P(A | B, ~E) = 0.001
P|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

44 /123



Gibbs Sampling

» For each non-evidence variable x;, fixing all other nodes X _;,
resample its value z; ~ P(x; | X_;)

P(B)=0.001 P(E)=0.002
P(A|B,E)=0.95 ~N S

P(A | B, ~E) = 0.94
/N
)

P(A | ~B, E) = 0.29
P(A | B, ~E) = 0.001
P(J|A) =09 P(M | A) =07 45 /123



Gibbs Sampling

» For each non-evidence variable x;, fixing all other nodes X _;,
resample its value z; ~ P(x; | X_;)
» This is equivalent to x; ~ P(z; | MarkovBlanket(z;))

P(B)=0.001 P(E)=0.002
P(A|B,E)=0.95 ~N S

P(A | B, ~E) = 0.94
/N
)

P(A | ~B, E) = 0.29
P(A | B, ~E) = 0.001
P(J|A) =09 P(M | A) =07 45 /123



Gibbs Sampling

» For each non-evidence variable x;, fixing all other nodes X _;,
resample its value z; ~ P(x; | X_;)

» This is equivalent to x; ~ P(z; | MarkovBlanket(z;))

» For a Bayesian network MarkovBlanket(z;) includes z;'s
parents, spouses, and children

P(x; | MarkovBlanket(x;)) o< P(x; | Pa(x;)) H P(y | Pa(y))
yeC(z;)

where Pa(x) are the parents of x, and C(z) the children of x.

P(B)=0.001 P(E)=0.002
P(A|B,E)=0.95 ~N S

P(A | B, ~E) = 0.94
RN
)

P(A | ~B, E) = 0.29
P(A | B, ~E) = 0.001
P(J|A) =09 P(M | A) =07 45 /123



Gibbs Sampling

» For each non-evidence variable x;, fixing all other nodes X _;,
resample its value z; ~ P(x; | X_;)

» This is equivalent to x; ~ P(z; | MarkovBlanket(z;))

» For a Bayesian network MarkovBlanket(z;) includes z;'s
parents, spouses, and children

P(x; | MarkovBlanket(x;)) o< P(x; | Pa(x;)) H P(y | Pa(y))
yeC(z;)

where Pa(x) are the parents of x, and C(z) the children of x.
» For many graphical models the Markov Blanket is small.

P(B)=0.001 P(E)=0.002
P(A |B,E)=0.95 ~N S

P(A | B, ~E) = 0.94
RN
CORNT

P(A | ~B, E) = 0.29
P(A | B, ~E) = 0.001
P(J| A) =09 P(M | A) =07 45/123



Gibbs Sampling

>

For each non-evidence variable z;, fixing all other nodes X _;,
resample its value z; ~ P(x; | X_;)

This is equivalent to x; ~ P(x; | MarkovBlanket(x;))

For a Bayesian network MarkovBlanket(x;) includes x;'s
parents, spouses, and children

P(x; | MarkovBlanket(x;)) o< P(x; | Pa(x;)) H P(y | Pa(y))

yeClx;)

where Pa(x) are the parents of =, and C(z) the children of z.

For many graphical models the Markov Blanket is small.
For example,
B~PB|E=1,A=0)x P(B)P(A=0|B,E=1)

P(B)=0.001 P(E)=0.002
P(A |B,E)=0.95 ~N S

P(A | B, ~E) = 0.94
RN
CORNT

P(A | ~B, E) = 0.29
P(A | B, ~E) = 0.001
PUJ|A)=09 P(M|A)=07

45

123



Gibbs Sampling

» Say we sampled B =1. Then
XO=(B=1,E=1,A=0,J=0,M =1)

P(B)=0.001 P(E)=0.002

P(A|B,E)=0.95 NS
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.20
PA|-B B =0001 _~ ™

)

P|A)=09 P(M |A) =07
P(J|~A)=0.05 P(M | ~A) = 0.01

46 /123



Gibbs Sampling

» Say we sampled B =1. Then
XO=(B=1,E=1,A=0,J=0,M =1)

» Starting from X(), sample
A~PA|B=1,E=1,J=0,M =1) to get X(?

P(B)=0.001 P(E)=0.002

P(A |B, E) = 0.95 N
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.20
PA|-B -B=0001 - ™

)

P|A)=09 P(M |A) =07
P(J|~A)=0.05 P(M | ~A) = 0.01

46 /123



Gibbs Sampling

» Say we sampled B =1. Then
XO=(B=1,E=1,A=0,J=0,M =1)

» Starting from X(), sample
A~PA|B=1,E=1,J=0,M =1) to get X(?

» Move on to J, then repeat B, A,J,B,A,J...

P(B)=0.001 P(E)=0.002

P(A |B, E) = 0.95 N
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.20
PA|-B -B=0001 - ™

)

P|A)=09 P(M |A) =07
P(J|~A)=0.05 P(M | ~A) = 0.01

46 /123



Gibbs Sampling

» Say we sampled B =1. Then
XO=(B=1,E=1,A=0,J=0,M =1)

» Starting from X(), sample
A~PA|B=1,E=1,J=0,M =1) to get X(?

» Move on to J, then repeat B, A,J,B,A,J...

» Keep all samples after burnin. P(B=1|E=1,M =1) is

the fraction of samples with B = 1.

P(B)=0.001 P(E)=0.002

P(A |B, E) =095 N
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.20
PA|-B -B=0001 - ™

)

P|A)=09 P(M | A) =07
P(J|~A) = 0.05 P(M | ~A) = 0.01

46

123



Gibbs Sampling Example 2: The Ising Model

O—w—0)

This is an undirected model with = € {0,1}.

po( —exp (Z@ Ts+ Z QStxsxt)

seV (s,t)EE

47 /123



Gibbs Example 2: The Ising Model
O—a—0)

OO0

» The Markov blanket of x5 is A, B,C, D

48 /123



Gibbs Example 2: The Ising Model
O—a—0)

OO0

» The Markov blanket of x5 is A, B,C, D
> In general for undirected graphical models

p(xs | 2-s) = p(os | TN (s)

N(s) is the neighbors of s.

48 /123



Gibbs Example 2: The Ising Model
O—a—0)

OO0

» The Markov blanket of x5 is A, B,C, D
> In general for undirected graphical models
p(@s | 2—s) = p(@s | T (s))

N(s) is the neighbors of s.
» The Gibbs update is

1

s=1 s)) =
Pls = 11N = o T, + S i) Boa) + 1

48 /123



Gibbs Sampling as a Markov Chain

» A Markov chain is defined by a transition matrix T'(X’ | X)

49 /123



Gibbs Sampling as a Markov Chain

» A Markov chain is defined by a transition matrix T'(X’ | X)

» Certain Markov chains have a stationary distribution 7 such
that m =17

49 /123



Gibbs Sampling as a Markov Chain

» A Markov chain is defined by a transition matrix T'(X’ | X)

» Certain Markov chains have a stationary distribution 7 such
that m =17

» Gibbs sampler is such a Markov chain with
Ti(X_i, o) | (X_i,24)) = p(af | X_;), and stationary
distribution p(zg | XE)

49 /123



Gibbs Sampling as a Markov Chain

v

A Markov chain is defined by a transition matrix 7'(X’ | X)

v

Certain Markov chains have a stationary distribution 7 such
that m =17

v

Gibbs sampler is such a Markov chain with
Ti(X_i, o) | (X_i,24)) = p(af | X_;), and stationary

i

distribution p(zg | XE)

v

But it takes time for the chain to reach stationary distribution
(mix)

49 /123



Gibbs Sampling as a Markov Chain

» A Markov chain is defined by a transition matrix T'(X’ | X)
» Certain Markov chains have a stationary distribution 7 such
that m =17

v

Gibbs sampler is such a Markov chain with
Ti(X_i, o) | (X_i,24)) = p(af | X_;), and stationary
distribution p(zg | XE)

v

But it takes time for the chain to reach stationary distribution
(mix)
» Can be difficult to assert mixing

49 /123



Gibbs Sampling as a Markov Chain

v

A Markov chain is defined by a transition matrix 7'(X’ | X)

» Certain Markov chains have a stationary distribution 7 such
that m =17
» Gibbs sampler is such a Markov chain with

Ti(X_i, o) | (X_i,24)) = p(af | X_;), and stationary
distribution p(zg | XE)

v

But it takes time for the chain to reach stationary distribution
(mix)

» Can be difficult to assert mixing

» In practice “burn in”: discard X(© .. . X (T

49 /123



Gibbs Sampling as a Markov Chain

v

A Markov chain is defined by a transition matrix T'(X' | X)

Certain Markov chains have a stationary distribution 7 such
that m =17

v

v

Gibbs sampler is such a Markov chain with
Ti(X_i, o) | (X_i,24)) = p(af | X_;), and stationary
distribution p(zg | XE)

v

But it takes time for the chain to reach stationary distribution
(mix)
» Can be difficult to assert mixing
» In practice “burn in”: discard X(© .. . X (T
» Use all of X(T*+1) . for inference (they are correlated); Do
not thin

49 /123



Collapsed Gibbs Sampling

> In general, E,[f(X)] ~ L Y™, F(XD) for X ~ p

50/123



Collapsed Gibbs Sampling

> In general, E,[f(X)] ~ L Y™, F(XD) for X ~ p

> Sometimes X = (Y, Z) where E|y has a closed-form

50 /123



Collapsed Gibbs Sampling

> In general, E,[f(X)] ~ L Y™, FIXD) for X0 ~p
> Sometimes X = (Y, Z) where E|y has a closed-form

> If so,
Ep[f(X)] = EppEpzm[f (Y, 2)]

1 & :
E Z IEp(z|y(i)) [f(Y(Z)7 Z)]
i=1

Q

50 /123



Collapsed Gibbs Sampling

> In general, E,[f(X)] ~ L Y™, FIXD) for X0 ~p
> Sometimes X = (Y, Z) where E|y has a closed-form

> If so,
Ep[f(X)] = EppEpzm[f (Y, 2)]

1 & :
E Z IEp(z|y(i)) [f(Y(Z)7 Z)]
i=1

Q

for YO ~ p(Y)

No need to sample Z: it is collapsed

v

50 /123



Collapsed Gibbs Sampling

> In general, E,[f(X)] ~ L Y™, FIXD) for X0 ~p
> Sometimes X = (Y, Z) where E|y has a closed-form

> If so,
Ep[f(X)] = EppEpzm[f (Y, 2)]

1 & :
E Z IEp(z|y(i)) [f(Y(Z)7 Z)]
i=1

Q

for YO ~ p(Y)
No need to sample Z: it is collapsed
Collapsed Gibbs sampler T;((Y_;, v}) | (Y_i,v:)) = p(yi | Y=i)

v

v

50 /123



Collapsed Gibbs Sampling

> In general, E,[f(X)] ~ L Y™, FIXD) for X0 ~p
> Sometimes X = (Y, Z) where E|y has a closed-form
» If so,

Ep[f(X)] = EppEpzm[f (Y, 2)]

1 & :
E Z IEp(z|y(i)) [f(Y(Z)7 Z)]
i=1

Q

for YO ~ p(Y)

No need to sample Z: it is collapsed

Collapsed Gibbs sampler T;((Y_;, v}) | (Y_i,v:)) = p(yi | Y=i)
Note p(y; | Y=i) = [ p(y;, Z | Y-i)dZ

v

v

v

50 /123



Example: Collapsed Gibbs Sampling for LDA

Collapse 0, ¢, Gibbs update:

(W)
_u;]%-ﬁn_”%—a

(_)z]-i—WBn '+ T

Pzi=j|z_iw) x

> n(wlj)_ number of times word w; has been assigned to topic j,

excluding the current position

51/123



Example: Collapsed Gibbs Sampling for LDA

Collapse 8, ¢, Gibbs update:

_”+5n_”+a

(_)z]-i—WBn '+ T

Pzi=j|z_iw) x

> n(wlj)_ number of times word w; has been assigned to topic j,

excluding the current position

(d Z). number of times a word from document d; has been
a55|gned to topic j, excluding the current position

> n_

51/123



Example: Collapsed Gibbs Sampling for LDA

Collapse 8, ¢, Gibbs update:

_”+5n_”+a

(_)z]-i—WBn '+ T

Pzi=j|z_iw) x

(wlj). number of times word w; has been assigned to topic 7,

excluding the current position

> n( Z). number of times a word from document d; has been
a55|gned to topic j, excluding the current position

)

i number of times any word has been assigned to topic j,
excluding the current position

> n

> n_

51/123



Example: Collapsed Gibbs Sampling for LDA

Collapse 8, ¢, Gibbs update:

_”+5n_”+a

(_)z]-i—WBn '+ T

Pzi=j|z_iw) x

> n(wlj) number of times word w; has been assigned to topic j,

excluding the current position

> ( ;)] number of times a word from document d; has been

assigned to topic j, excluding the current position

) . : . .
~4;+ number of times any word has been assigned to topic j,
excluding the current position

. ).

> n

length of document d;, excluding the current position

51/123



Belief Propagation

52 /123



Factor Graph

» For both directed and undirected graphical models

ONNO

luabo

O
ONNO

PA)P(B)P(CIA,B)

53 /123



Factor Graph

» For both directed and undirected graphical models

» Bipartite: edges between a variable node and a factor node

ONNO

luabo

O
ONNO

PA)P(B)P(CIA,B)

53 /123



Factor Graph

» For both directed and undirected graphical models

» Bipartite: edges between a variable node and a factor node

ONNO

luabo

O
ONNO

PA)P(B)P(CIA,B)

» Factors represent computation

53 /123



The Sum-Product Algorithm

» Also known as belief propagation (BP)

54 /123



The Sum-Product Algorithm

» Also known as belief propagation (BP)

» Exact if the graph is a tree; otherwise known as “loopy BP",
approximate

54 /123



The Sum-Product Algorithm

» Also known as belief propagation (BP)

» Exact if the graph is a tree; otherwise known as “loopy BP",
approximate

» The algorithm involves passing messages on the factor graph

54 /123



The Sum-Product Algorithm

v

Also known as belief propagation (BP)

v

Exact if the graph is a tree; otherwise known as “loopy BP",
approximate

v

The algorithm involves passing messages on the factor graph

v

Alternative view: variational approximation (more later)

54 /123



Example: A Simple HMM

» The Hidden Markov Model template (not a graphical model)
1/4 12

SO
P(x| z=1)=(12, /4, 1/4) P(x| z=2)=(V4, 1/2, 1/4)
R G B R G B

m=1 =1/2

55 /123



Example: A Simple HMM

» Observing x1 = R, x2 = G, the directed graphical model

56 /123



Example: A Simple HMM

» Observing x1 = R, x2 = G, the directed graphical model

G

Pz)P(xl z) P(z] 2)P(%l 2)

» Factor graph

56 /123



Messages

> A message is a vector of length K, where K is the number of
values z takes.

57 /123



Messages

> A message is a vector of length K, where K is the number of
values z takes.

» There are two types of messages:

57 /123



Messages

> A message is a vector of length K, where K is the number of
values z takes.
» There are two types of messages:

1. pg_: message from a factor node f to a variable node x
tf—z (1) is the ith element, i =1.. . K.

57 /123



Messages

> A message is a vector of length K, where K is the number of
values z takes.
» There are two types of messages:

1. pg_: message from a factor node f to a variable node x
tf—z (1) is the ith element, i =1.. . K.
2. pg— s message from a variable node x to a factor node f

57 /123



Leaf Messages

» Assume tree factor graph. Pick an arbitrary root, say 2z

P(z)P(x| z) P(z] 2)P(x| 2)
U4 12

O _ O
ONEEBO)

P(x| =1)=(1/2, /4, 1/4) P(x| =2)=(1/4, 1/2, 1/4)
R G B R G B
m=m =12

58 /123



Leaf Messages

» Assume tree factor graph. Pick an arbitrary root, say 2z

» Start messages at leaves.

P(z)P(x| z) P(z] 2)P(x| 2)
U4 12

O _ O
ONEEBO)

P(x| =1)=(1/2, /4, 1/4) P(x| =2)=(1/4, 1/2, 1/4)
R G B R G B
m=m =12

58 /123



Leaf Messages

» Assume tree factor graph. Pick an arbitrary root, say 2z
» Start messages at leaves.

» If a leaf is a factor node f, pus,(x) = f(x)
ppsn(z1=1)=Plz1=1)P(Rlz1=1)=1/2-1/2=1/4

fifismy (21 = 2) = P(21 = 2)P(R|zy = 2) = 1/2-1/4 = 1/8

P(z)P(x| z) P(z] 2)P(x| 2)
U4 12

SO
P(x| z=1)=(U2, 14, 1/4) P(x| z=2)=(U4, /2, 1/4)
R G B R G B

m=m =12

58 /123



Leaf Messages

» Assume tree factor graph. Pick an arbitrary root, say 2z
» Start messages at leaves.

» If a leaf is a factor node f, pus,(x) = f(x)
ppsn(z1=1)=Plz1=1)P(Rlz1=1)=1/2-1/2=1/4

fifismy (21 = 2) = P(21 = 2)P(R|zy = 2) = 1/2-1/4 = 1/8

» If a leaf is a variable node z, i, f(z) =1

P(z)P(x| z) P(z] 2)P(x| 2)
U4 12

SO
P(x| z=1)=(U2, 14, 1/4) P(x| z=2)=(U4, /2, 1/4)
R G B R G B

m=m =12

58 /123



Message from Variable to Factor

» A node (factor or variable) can send out a message if all other
incoming messages have arrived

P()P(x| z) P(z] 2)P(%| z)
14 1/2
SO

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

R G B R G B
m=1 =1/2

59 /123



Message from Variable to Factor

» A node (factor or variable) can send out a message if all other
incoming messages have arrived

» Let x be in factor fs. ne(x)\fs are factors connected to z
excluding fs.

Ha—s £, () = H frf—az(T)
fene(x)\fs
Pz (21 =1) =1/4
e ona(s1 =2) = 18

P(z)P(x| z) P(z] z)P(%| 2)
14 1/2
SO
P(x| Z=1)=(U2, 14, 1/4) P(x | Z=2)=(LU4, 1/2, U4)
R G B R G B

m=1 =1/2 59 /123



Message from Factor to Variable

> Let x be in factor f;. Let the other variables in fs be x1.;.

M
,Ufsﬁx = Z Zfs x xl,--.,xM) H ,Uzm%fs(xm)
1 m=1

Pz)P(x| z7) P(z] 2)P(%l 2)

60 /123



Message from Factor to Variable

> Let x be in factor f;. Let the other variables in fs be x1.;.

M
,Ufsﬁx(x) - Z : 'ZfS(xvxla <o ,.’L’M) H /’Lﬂﬁmﬂfs(xm)
x1 T m=1

> In this example

Mf2—>z2(5) = Z /ﬁz1—>f2 f2 21 =34 , 29 = S)

= 1/4P(z2 = s|lz1 = 1)P(x2 = G|za = s)
+1/8P(z2 = s|z1 = 2)P(x2 = Glz2 = s5)

Pz)P(x| z7) P(z] 2)P(%l 2)

60 /123



Message from Factor to Variable

> Let x be in factor f;. Let the other variables in fs be x1.;.

M
,Ufsﬁx(x) - Z : 'ZfS(xvxla <o ,.’L’M) H /’Lﬂﬁmﬂfs(xm)
x1 T m=1

> In this example

Mf2—>z2(5) = Z /ﬁz1—>f2 f2 21 =34 , 29 = S)

= 1/4P(z2 = s|lz1 = 1)P(x2 = G|za = s)
+1/8P(z2 = s|z1 = 2)P(x2 = Glz2 = s5)

> We get fify—zp(20 = 1) = 1/32, piy_sy(20 =2) =1/8

Pz)P(x| z7) P(z] 2)P(%l 2)

60 /123



Up to Root, Back Down

> The message has reached the root, pass it back down
Hza— fo (22 = 1) =1

Hzo— fa (22 = 2) =1

FH—{o®)
P(z)P(x| z) P(z] z)P(%| 2)
14 1/2
SO
PX| Z=1=(U2, V4 U8)  P(x| z=2)=(1/4, U2, 14)
R G B R G B

m=mn =12

61/123



Keep Passing Down

> e (8) = Zi:l fzys gy (8') f2(21 = 5,22 = &)
=1P(z2 = 1|21 = s)P(z2 = Glz2 = 1)
+1P(2 = 2|21 = 5)P(x2 = G|z = 2).

P(z)P(x| z) P(z] 2)P(%l 2)
U4 12

e
P(x| z=1)=(1/2, 14, 1/4) P(x | z=2)=(1/4, 12, 1/4)
R G B R G B
m=mn =1/2

62 /123



Keep Passing Down

> Hfy—zq (S) = Zg’:l I (5/)f2<21 = S,22 = S/)
=1P(z2 = 1|21 = s)P(z2 = Glz2 = 1)
+ 1P(22 = 2|21 = 5)P(22 = Glz2 = 2).
> We get
Hfo—rz1 (21 = 1) = 7/16
[z (21 = 2) = 3/8

CHo—{o—®
P(z)P(x| z) P(z] z)P(%| )
14 1/2
O
P(x| =1)=(12, 1/4, 1/4) P(x| z=2)=(14, 1/2, 1/4)
R G B R G B

m=mn =1/2

62 /123



From Messages to Marginals

» Once a variable receives all incoming messages, we compute
its marginal as

p@)oc I npoal)

fene(x)

63 /123



From Messages to Marginals

» Once a variable receives all incoming messages, we compute
its marginal as

p@)oc [ wroel@)
fene(x)
» In this example
P(z1|z, @2) o< pposzy - Bfposzy = (%g) ’ (73//186) = (;;gi) =
(63)
P(zo|w1,m2) o ppymszy = (11//382) = (83)

63 /123



From Messages to Marginals

» Once a variable receives all incoming messages, we compute

its marginal as
H ,Ufaz(l')
fene(x)

> In this example
P(z1]21,2) o€ ppy 2y - Pfyszy = (%g) ’ (73//186) = (;;gi) =
(83)
P(zo|w1,m2) o ppymszy = (11//382) = (0%)

» One can also compute the marginal of the set of variables z
involved in a factor f;

p(xs OCfs 1’3 H Mz%f

zene(f)

63 /123



Handling Evidence

» Observing x = v,

64 /123



Handling Evidence

» Observing z = v,
» we can absorb it in the factor (as we did); or

64 /123



Handling Evidence

» Observing z = v,
» we can absorb it in the factor (as we did); or
> set messages fiz— f(x) = 0 for all z # v

64 /123



Handling Evidence

» Observing z = v,
» we can absorb it in the factor (as we did); or
> set messages [tz ¢(z) =0 for all & # v

» Observing Xp,

64 /123



Handling Evidence

» Observing z = v,
» we can absorb it in the factor (as we did); or
> set messages [tz ¢(z) =0 for all & # v

» Observing Xp,

» multiplying the incoming messages to = ¢ Xg gives the joint
(not p(z| Xg)):

fGne(:c)

64 /123



Handling Evidence

» Observing z = v,
» we can absorb it in the factor (as we did); or
> set messages [tz ¢(z) =0 for all & # v

» Observing Xp,

» multiplying the incoming messages to = ¢ Xg gives the joint
(not p(z| Xg)):

fGne(:c)
» The conditional is easily obtained by normalization

p($, XE)

P e X

64 /123



Loopy Belief Propagation

» So far, we assumed a tree graph

65/123



Loopy Belief Propagation

» So far, we assumed a tree graph

» When the factor graph contains loops, pass messages
indefinitely until convergence

65 /123



Loopy Belief Propagation

» So far, we assumed a tree graph

» When the factor graph contains loops, pass messages
indefinitely until convergence

» Loopy BP may not convergence, but “works” in many cases

65 /123



Outline

Graphical Models

Parameter Estimation

66 /123



Parameter Learning

» Assume the graph structure is given

67 /123



Parameter Learning

» Assume the graph structure is given
» Parameters:

67 /123



Parameter Learning

» Assume the graph structure is given
» Parameters:
» 0, in CPDs p(z; | pa(x;),0;) in directed graphical models

p(X) = Hp(xz‘ | Pa(x:), 6:)

67 /123



Parameter Learning

» Assume the graph structure is given
» Parameters:
» 0; in CPDs p(x; | pa(x;),0;) in directed graphical models

p(X) = Hp(xz‘ | Pa(x:), 6:)

» Weights w; in undirected graphical model

k
P(X) = 5 exp (Z wifi<X>>

67 /123



Parameter Learning

» Assume the graph structure is given
» Parameters:
» 0, in CPDs p(z; | pa(x;),0;) in directed graphical models

p(X) = Hp(xz' | Pa(x:), 6:)

» Weights w; in undirected graphical model
1 k
p(X) = - &XP (Zl wlfl(X)>

» Principle: maximum likelihood estimate

67 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed

68 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed
» given X!, ..., X" the MLE is

6 = argmax > logp(X’ |6
e ; gp(X* | 0)

68 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed
» given X!, ..., X" the MLE is

6 = argmax > logp(X’ |6
e ; gp(X* | 0)

> log likelihood factorizes for directed models (easy)

68 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed
» given X!, ..., X" the MLE is

0 = argmax logp(X* |0
g1 ; gp(X* | 6)

> log likelihood factorizes for directed models (easy)
» gradient method for undirected models

68 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed
» given X!, ..., X" the MLE is

0 = argmax logp(X* |0
g1 ; gp(X* | 6)

> log likelihood factorizes for directed models (easy)
» gradient method for undirected models

» partially observed: X = (X,, X}) where X}, unobserved

68 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed
» given X!, ..., X" the MLE is

0 = argmax logp(X* |0
g1 ; gp(X* | 6)

> log likelihood factorizes for directed models (easy)
» gradient method for undirected models

» partially observed: X = (X,, X}) where X}, unobserved
» given X! ..., X", the MLE is

0 = argmax > lo XX, 10
gn > g(ZP( o X | )>

i=1 X,

68 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed
» given X!, ..., X" the MLE is

0 = argmax logp(X* |0
g1 ; gp(X* | 6)

> log likelihood factorizes for directed models (easy)
» gradient method for undirected models

» partially observed: X = (X,, X}) where X}, unobserved
» given X! ..., X", the MLE is

0 = argmax > lo XX, 10
gn > g(ZP( o X | )>

i=1 X,

> log likelihood does not factorize

68 /123



Parameter Learning: Maximum Likelihood Estimate

» fully observed: all dimensions of X are observed
» given X!, ..., X" the MLE is

0 = argmax logp(X* |0
g1 ; gp(X* | 6)

> log likelihood factorizes for directed models (easy)
» gradient method for undirected models

» partially observed: X = (X,, X}) where X}, unobserved
» given X! ..., X", the MLE is

0 = argmaleog (Z p(X2, X, | 9))
L X,
> log likelihood does not factorize

» The EM algorithm finds a local maximum

68 /123



Structure Learning

» Let M be all allowed candidate features

69 /123



Structure Learning

» Let M be all allowed candidate features
» Let M C M be the “active subset”

P(X | M,0) = exp(ZGfZ )

€M

69 /123



Structure Learning

» Let M be all allowed candidate features
» Let M C M be the “active subset”

P(X | M,0) = exp(ZGfZ

€M

» score(M) = maxpIn P(Data | M, 0)

)

69 /123



Structure Learning

Let M be all allowed candidate features
Let M C M be the “active subset”

P(X | M,0) = exp(ZGfZ )

€M

v

v

v

score(M) = maxg In P(Data | M, 0)
The score is always better for larger M — needs regularization
or Bayesian treatment

v

69 /123



Structure Learning

Let M be all allowed candidate features
Let M C M be the “active subset”

P(X | M,0) = exp(ZGfZ )

€M

v

v

v

score(M) = maxg In P(Data | M, 0)
The score is always better for larger M — needs regularization
or Bayesian treatment

v

v

M and @ treated separately; combinatorial search over M

69 /123



Structure Learning for Gaussian Random Fields

» Consider a d-dimensional multivariate Gaussian N, 3)

70 /123



Structure Learning for Gaussian Random Fields

» Consider a d-dimensional multivariate Gaussian N, 3)

» The graphical model has p nodes x1,..., x4

70 /123



Structure Learning for Gaussian Random Fields

» Consider a d-dimensional multivariate Gaussian N, 3)
» The graphical model has p nodes x1,..., x4

» The edge between z;, x; is absent if and only if £;; = 0,
where 0 = ¥7!

70 /123



Structure Learning for Gaussian Random Fields

» Consider a d-dimensional multivariate Gaussian N, 3)
» The graphical model has p nodes x1,..., x4

» The edge between z;, x; is absent if and only if £;; = 0,
where 0 = ¥7!

» Equivalently, z;, z; are conditionally independent given other
variables

70 /123



Example

14 -16 4 -2

-16 32 -8 4

4 -8 8 —4
-2 4 -4 5

> If we know X =

71/123



Example

14 —16 4 -2
16 32 -8 4
4 -8 8 -4
9 4 -4 5
0.1667 0.0833 0.0000 0
0.0833 0.0833 0.0417 0
_ -1 __
> Then @ =%7"=100000 0.0417 0.2500 0.1667
0 0  0.1667 0.3333

> If we know X =

71/123



Example

14 -16 4 -2
-16 32 -8 4
4 -8 8 —4
-2 4 -4 5
0.1667 0.0833 0.0000 0
0.0833 0.0833 0.0417 0
—y-1_
> Then =27"=1 00000 0.0417 02500 0.1667
0 0 0.1667 0.3333
» The corresponding graphical model structure is

&

> If we know X =

71/123



Structure Learning for Gaussian Random Fields

> Let data be X, ... X" ~ N(p, %)

72 /123



Structure Learning for Gaussian Random Fields

> Let data be XV, ... X1 ~ N(u,X)

» The log likelihood is
§log | — 5 370, (XW — ) TQ(XY) — p)

72 /123



Structure Learning for Gaussian Random Fields

» Let data be XV, ... . X" ~ N(p,>)

» The log likelihood is
§log | — 5 370, (XW — ) TQ(XY) — p)

» The maximum likelihood estimate of X is the sample
covariance

S=->(x"-xX)"(x"-X)

1
n =
i

where X is the sample mean

72 /123



Structure Learning for Gaussian Random Fields

» Let data be XV, ... . X" ~ N(p,>)

» The log likelihood is
§log | — 5 370, (XW — ) TQ(XY) — p)

» The maximum likelihood estimate of X is the sample
covariance

S=->(x"-xX)"(x"-X)

i

1
n

where X is the sample mean

» S~!is not a good estimate of €2 when n is small

72 /123



Structure Learning for Gaussian Random Fields

» For centered data, minimize a regularized problem instead:

1 n T .
—log |9 *EE XOTax® 4 x> |yl
i=1 i

73 /123



Structure Learning for Gaussian Random Fields

» For centered data, minimize a regularized problem instead:

1< . .
~log |0 + STxOTax® 4 A3 |0,
i=1 i#j

» Known as GLASSO

73 /123



Outline

Kernel Methods

74 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢
» Feature engineering decides what the features are

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢

» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢

» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly

» Many algorithms actually only use inner products J:Z»Tacj

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢

» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly

» Many algorithms actually only use inner products x,?acj
» Data fully defined by n x n matrix K where K;; = xiij

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢

» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly

» Many algorithms actually only use inner products x,?acj

» Data fully defined by n x n matrix K where K;; = xiij
» We can just give K to these algorithms

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢

» Feature engineering decides what the features are

» Learning algorithms work on z1,...,z, € R? directly
» Many algorithms actually only use inner products x,?acj

» Data fully defined by n x n matrix K where K;; = xiij
» We can just give K to these algorithms

» What if we give any matrix K’ to these algorithms?

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢
» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly
» Many algorithms actually only use inner products x,?acj
» Data fully defined by n x n matrix K where K;; = xiij
» We can just give K to these algorithms
» What if we give any matrix K’ to these algorithms?
» They work if K’ is positive semi-definition (kernel matrix)

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢
» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly

» Many algorithms actually only use inner products x,?acj
» Data fully defined by n x n matrix K where K;; =z, z;
» We can just give K to these algorithms

» What if we give any matrix K’ to these algorithms?
» They work if K’ is positive semi-definition (kernel matrix)
» There are feature vectors ¢(z) € R” such that

Ki; = o(x:) " o(x5)

75 /123



Kernel methods

» Traditionally, an item x is a feature vector in R¢
» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly
» Many algorithms actually only use inner products x,?acj
» Data fully defined by n x n matrix K where K;; =z, z;
» We can just give K to these algorithms
» What if we give any matrix K’ to these algorithms?
» They work if K’ is positive semi-definition (kernel matrix)
» There are feature vectors ¢(z) € R” such that
Ki; = ¢(x:) " o(x5)

» ¢(x) implicit feature engineering

75 /123



Kernel methods

Traditionally, an item x is a feature vector in R¢

» Feature engineering decides what the features are
» Learning algorithms work on z1,...,z, € R? directly

v

Many algorithms actually only use inner products J:,L»Tacj
» Data fully defined by n x n matrix K where K;; =z, z;
» We can just give K to these algorithms
What if we give any matrix K’ to these algorithms?
» They work if K’ is positive semi-definition (kernel matrix)
» There are feature vectors ¢(z) € R” such that
Ki; = ¢(x:) " o(x5)
» ¢(x) implicit feature engineering

Precise definition: Reproducing Kernel Hilbert Space (RKHS)

v

v

v

75 /123



Outline

Kernel Methods
Support Vector Machines

76 /123



The Linearly Separable Case

» x€ R ye{-1,1}

77 /123



The Linearly Separable Case

» x€ R ye{-1,1}
» discriminant function f(z) =w 'z +b

77/123



The Linearly Separable Case

» x€ R ye{-1,1}
» discriminant function f(z) =w 'z +b

» classification rule sign(f(z))

77/123



The Linearly Separable Case

v

reRY ye{-1,1}

discriminant function f(z) = w'z +b

v

v

classification rule sign(f(z))

v

linear decision boundary {z € R? | f(z) = 0} orthogonal to w

77/123



The Linearly Separable Case

» Distance between a correctly classified  and the decision
boundary:

78 /123



The Linearly Separable Case

» Training task: given {(x,y)1.,}, find a decision boundary w,b
to maximize the distance to the closest point

nyi(w' z; + b)
maxmin ———
wb =1 [lwl]

79 /123



The Linearly Separable Case

» Equivalently,

-

max Tw
w,b
st. yi(w 'z +b)>1i=1...n

80/123



The Linearly Separable Case

> Equivalently,
: 1 2
min 3llwll

st yi(w e +0)>1i=1...n

81/123



The Linearly Separable Case

> Equivalently,
: 1 2
min 3llwl

st yi(w e +0)>1i=1...n

» Primal problem, uses feature vectors z; € R¢

81/123



The Linearly Separable Case

> Equivalently,
min %HwH2
w,b

st yi(w e +0)>1i=1...n

» Primal problem, uses feature vectors z; € R¢

» The equivalent dual problem will involve only inner products

T, .
Li Ty

81/123



The Linearly Separable Case

» The dual problem

1 n T n
max  —3 o) GGYYGT Tt ) iy
s.t. a; >01=1...n
n
Zi:l oy, =0

82 /123



The Linearly Separable Case

» The dual problem

1 n T n
max  —3 o) GGYYGT Tt ) iy
s.t. a; >01=1...n
n
Zi:l oy, =0

> d+ 1 primal variables w, b

82 /123



The Linearly Separable Case

» The dual problem

1 n T n
max  —3 o) GGYYGT Tt ) iy
s.t. a; >01=1...n
n
Zi:l oy, =0

> d+ 1 primal variables w, b

» n dual variables « (interesting when d > n)

82 /123



The Linearly Separable Case

To classify a test point x

» primal discriminant function f(z) = w 'z + b

83/123



The Linearly Separable Case

To classify a test point x
» primal discriminant function f(z) = w 'z + b

» dual discriminant function f(z) = Y., oz © +b

83 /123



The Linearly Separable Case

To classify a test point x
» primal discriminant function f(z) = w 'z + b
n

» dual discriminant function f(z) = Y., oz © +b

» another inner-product

83 /123



Support vectors

» The Karush-Kuhn-Tucker complementarity condition:
ai(yi(wTzi+b)—1)=0,i=1...n

84 /123



Support vectors

» The Karush-Kuhn-Tucker complementarity condition:
ai(yi(w z; +0) —1)=0,i=1...n

» yi(w'z; +b) — 1 > 0 (z; outside the margin) = a; = 0 (z;
not support vector)

84 /123



Support vectors

» The Karush-Kuhn-Tucker complementarity condition:
ai(yi(w z; +0) —1)=0,i=1...n

» yi(w'z; +b) — 1 > 0 (z; outside the margin) = a; = 0 (z;
not support vector)

> a; # 0 (x; is support vector) = y;(w'z; +b) =1 (x; on the
margin)

84 /123



The Non-Separable Case

» Relax margin constraints

yi(w 'z +b) >1-¢

85/123



The Non-Separable Case

» Relax margin constraints
-
yi(w z;+0) >1-¢

» Slack variables & > 0

85/123



The Non-Separable Case

» Relax margin constraints
-
yi(w z;+0) >1-¢

» Slack variables & > 0

> Large enough &; allows x; on the wrong side of the decision
boundary

85/123



The Non-Separable Case

» Primal problem

. 1 2
min alwl® + O3 &
st yi(wla; +b)>1—-& i=1...n

& >0

86 /123



The Non-Separable Case

» Dual problem

1 T
max  —5 ) oy GGYYT, T D i
s.t. 0<a<Ci=1l...n
Z?:1 a;y; =0

87 /123



The Non-Separable Case

» Dual problem

1 T
max  —5 ) oy GGYYT, T D i
s.t. 0<a<Ci=1l...n
Z?:1 a;y; =0

» Again, data enter optimization as inner products

87 /123



The Non-Separable Case

» Dual problem

1 1
max  —5 ) oy GGYYT, T D i
s.t. 0<a<Ci=1l...n
Z?:1 a;y; =0

» Again, data enter optimization as inner products
» Support vectors:

87 /123



The Non-Separable Case

» Dual problem

1 1
max  —5 ) oy GGYYT, T D i
s.t. 0<a<Ci=1l...n
Z?:1 oy; =0
» Again, data enter optimization as inner products

» Support vectors:
» a; = 0 = x; not a support vector

87 /123



The Non-Separable Case

» Dual problem

1 1
max  —5 ) oy GGYYT, T D i
s.t. 0<a<Ci=1l...n
Z?:1 a;y; =0

» Again, data enter optimization as inner products
» Support vectors:

» a; = 0 = x; not a support vector
» 0 < q; < C=¢£=0, support vector x; on the margin

87 /123



The Non-Separable Case

» Dual problem

1 1
max  —5 ) oy GGYYT, T D i
s.t. 0<a<Ci=1l...n
Z?:1 a;y; =0

» Again, data enter optimization as inner products

» Support vectors:
» a; = 0 = x; not a support vector
» 0 < q; < C=¢£=0, support vector x; on the margin
» a = C = z; inside the margin if £ <1, or on the wrong side
of the decision boundary if £ > 1

87 /123



The Non-Separable Case

» The discriminant function is

n
fle) = awir] v +b
i—1

88 /123



The Non-Separable Case

» The discriminant function is
n
fle) = awir] v +b
i=1

> Inner product again

88 /123



The Kernel Trick

» SVM dual problem only involves inner products z; z;

89 /123



The Kernel Trick

» SVM dual problem only involves inner products z; z;

> Let K(z;,25) =z ;

89 /123



The Kernel Trick

» SVM dual problem only involves inner products z; z;

> Let K(z;,25) =z ;
T

» Replace z; z; with K (z;, ;) everywhere

89 /123



The Kernel Trick

v

SVM dual problem only involves inner products z; z;

> Let K(z;,25) =z ;
> Replace x] z; with K (z;,z;) everywhere
» Tautology

89 /123



The Kernel Trick

» Instead of K (z;,2;) =z, z;, let K be any positive definite
function

90 /123



The Kernel Trick

» Instead of K (z;,2;) =z, z;, let K be any positive definite
function
» K pd. if Vn,Vz1...x, the matrix

K(z1,z1) ... K(z1,2p)
K, = :
K(zp,x1) ... K(zn, o)

is positive semi-definite.

90 /123



The Kernel Trick

» Instead of K (z;,2;) =z, z;, let K be any positive definite
function

» K pd. if Vn,Vz1...x, the matrix

K(z1,z1) ... K(z1,2p)
K, = :
K(zp,x1) ... K(zn, o)
is positive semi-definite.
» K, positive semi-definite if Vz = (21, ... ,zn)T € R"”,
zTan >0

90 /123



The Kernel Trick

P.d. K examples:

» Linear kernel
T
k(xi, xj) = x; x;

91/123



The Kernel Trick

P.d. K examples:

» Linear kernel
T
k(xi, xj) = x; x;

» Polynomial kernel

k(i zj) = (1+ 2] 2;)

91/123



The Kernel Trick

P.d. K examples:
» Linear kernel
k(xi,xj) = x;rxj
» Polynomial kernel
P TP
k(zi, x5) = (14 2; z5)
» Radial Basis Function (RBF) kernel

|2
B(zi, 7;) = exp (_rm 21| )

202

91/123



The Kernel Trick

» SVM dual problem can use any p.d. K (kernelize)

92 /123



The Kernel Trick

» SVM dual problem can use any p.d. K (kernelize)
» There exists a feature mapping ¢() such that

K (x4, x5) = ¢(xi) " d(x;)

92 /123



The Kernel Trick

» SVM dual problem can use any p.d. K (kernelize)
» There exists a feature mapping ¢() such that

K (x4, x5) = ¢(xi) " d(x;)

» ¢() may not be finite dimensional

92 /123



The Kernel Trick

» SVM dual problem can use any p.d. K (kernelize)
» There exists a feature mapping ¢() such that
K (x5, 25) = ¢(x:) " o ()
» ¢() may not be finite dimensional
» ¢() may not be unique

92 /123



The Kernel Trick

» SVM dual problem can use any p.d. K (kernelize)
» There exists a feature mapping ¢() such that
K (x5, 25) = ¢(x:) " o ()
» ¢() may not be finite dimensional
» ¢() may not be unique

» What does the kernel trick buy us?

92 /123



The Kernel Trick

> T = _1(+)aI2 = O(_)al‘3 = 1(+)

93 /123



The Kernel Trick

> 1 = —1(+), 20 =0(—),x3 = 1(+)
» Not a linearly separable dataset

93 /123



The Kernel Trick

> 1 = —1(+), 20 =0(—),x3 = 1(+)
» Not a linearly separable dataset

» But we can map z to R?

o(z) = (1,V2zx,2%) T

and separate them with a hyperplane

93 /123



The Kernel Trick

v

z1 = —1(+), 22 = 0(=), 23 = 1(+)
Not a linearly separable dataset

v

» But we can map z to R?
o(z) = (1,V2z,2%)"

and separate them with a hyperplane

v

Non-linear decision boundary in the original space

93 /123



The Kernel Trick

> 1 = —1(+),22 = 0(=), 23 = 1(+)
» Not a linearly separable dataset

» But we can map z to R?
o(z) = (1,V2z,2%)"

and separate them with a hyperplane
» Non-linear decision boundary in the original space

» Equivalently, we used a kernel
K (zi,z5) = (@) d(x)) = (1 + wia;)?

in linear SVM without slack variables.

93 /123



Outline

Kernel Methods

Kernel PCA

94 /123



The Kernel Trick is not just for SVMs

Summary of the kernel trick:

» data as inner products

95/123



The Kernel Trick is not just for SVMs

Summary of the kernel trick:
» data as inner products
» p.d. K kernel

95/123



The Kernel Trick is not just for SVMs

Summary of the kernel trick:
» data as inner products
» p.d. K kernel
» induced feature map ¢() such that K (z;,z;) = ¢(x;) " ¢(x;)

95/123



The Kernel Trick is not just for SVMs

Summary of the kernel trick:
» data as inner products
» p.d. K kernel

» induced feature map ¢() such that K (z;,z;) = ¢(x;) " ¢(x;)

» choosing the kernel K equivalent to feature engineering

95 /123



The Kernel Trick is not just for SVMs

Summary of the kernel trick:
» data as inner products
» p.d. K kernel
» induced feature map ¢() such that K (z;,z;) = ¢(x;) " ¢(x;)
» choosing the kernel K equivalent to feature engineering

» many algorithms can be kernelized

95 /123



Principal Component Analysis (PCA)

» Unsupervised learning

96 /123



Principal Component Analysis (PCA)

» Unsupervised learning

» Given 1 ...z, € R? finds directions of maximum spread

96 /123



Principal Component Analysis (PCA)

» Unsupervised learning
» Given 1 ...z, € R? finds directions of maximum spread

» Centering data:
XTi < T; — T

,_1 .
where = 2 3 x;

96 /123



Principal Component Analysis (PCA)

» Unsupervised learning

» Given 1 ...z, € R? finds directions of maximum spread
» Centering data:
Ti— T; — T
= 1 .
where = 2 3 x;
» d x d sample covariance matrix

1 T
K2

96 /123



PCA

» Eigendecomposition

d
C=UAUT =) MNuju]
j=1

97 /123



PCA

» Eigendecomposition
d
C=UAUT =) MNuju]
j=1

» Eigenvalues \; > ... > Ay > 0 the variances

97 /123



PCA

» Eigendecomposition
d
C=UAUT =) MNuju]
j=1

» Eigenvalues \; > ... > Ay > 0 the variances

» Eigenvectors u; ... ug the principal components with
decreasing importance

CUj:)\ju]', jZl...d

97 /123



PCA

» Eigendecomposition
d
_ T _ T
C=UAUT =) Nuju,
j=1
» Eigenvalues \; > ... > Ay > 0 the variances
» Eigenvectors u; ... ug the principal components with

decreasing importance
CUj:)\ju]', jZl...d

> uj...ug orthonormal basis of R, rotated axes

97 /123



PCA

» Dimension reduction: project to the top k£ < d directions

98 /123



PCA

» Dimension reduction: project to the top k£ < d directions

» Uy the first k columns of U = [uy |ug | ... | ug]

98 /123



PCA

» Dimension reduction: project to the top k£ < d directions
» Uy, the first k columns of U = [ug |ug | ... | ug]
» z € R? projected to R¥ by
ui x
U,;rx =

T
ukx

98 /123



PCA

» Dimension reduction: project to the top k£ < d directions
» Uy, the first k columns of U = [ug |ug | ... | ug]
» z € R? projected to R¥ by
ui x
U,;rx =
’U,EJJ

» U minimizes training set fs-error among rank-k projections

n
> llwi = Uy i3
=1

98 /123



PCA

» Dimension reduction: project to the top k£ < d directions
» Uy, the first k columns of U = [ug |ug | ... | ug]
» z € R? projected to R¥ by
ui x
U,;rw =
’U,EJJ

» U minimizes training set fs-error among rank-k projections
n
T, 12
E |z; — Uy il|3
i=1

So far PCA with feature vectors in R?. Next: PCA with inner
products

v

98 /123



PCA with inner products

» Forj=1...d
CUj = )\juj
1 n
;Z.%‘Z.Q?;ru] = /\jUj
=1
i )

i 4
g T = uj
nA; /

i=1

99 /123



PCA with inner products

» Forj=1...d

CUj = Ajuj
R
EE TiT; Uj = /\jUj
=1
n
Z(%—T u;)
Ty = Uy
n)\j

i=1

» Any u; can be written in the form

n
uj =) i
=1

99 /123



PCA with inner products

» Forj=1...d

CUj = )\juj
R
EE TiT; Uj = /\j’le
=1
n
Z(%—T u;)
Ty = Uy
n)\j

i=1

» Any u; can be written in the form

n
Uj: E OéjiCCZ'
=1

» «j; € R, value not obvious (involving u;)

99 /123



PCA with inner products

» n x n matrix K with K;; = 2] 2;

100 /123



PCA with inner products

» n x n matrix K with K;; = 2] 2;

> o = (a1, ... ,ajn)T satisfy the eigenvalue equation

KOtj = n)\jOéj

100 /123



Why?

CUj

z; Cuj
n n
(1 T .
zi | TpTy, QjmTm
k=1 m=1

1 n n
E § T T

k=1m=1
1 n n
— Z Z ajmKikKkm
n k=1m=1
1
*Ki,KOéj
n
1
*KKOAJ'
n
KOéj

assuming n < d and K invertible

Ajug

T L
r; Ajuj, i=1...n

n
T
x; Aj E QjmTm
m=1
n
T
g AjOimT; Tm
m=1

n
> NamKim

m=1

)\jKi.Oéj, 1=1...n

AjKaj
TL)\jOéj

101

123



PCA with inner products
> aj = (aj1,...,05,) satisfy the eigenvalue equation

KOéj = TL)\jOéj

102 /123



PCA with inner products
> aj = (aj1,...,05,) satisfy the eigenvalue equation
KOéj = n)\jaj

» Norm of «; is also fixed:

Ju] = 1
T
ujuj = 1
n
Z ajkxgxmajm =1
k,m=1
n
Z aijkmajm =1
k,m=1
T
ozjKozj = 1
T
Q; nijo; = 1
o .
ol = —
J nA;

102 /123



PCA with inner products

» Compute ayq,. .., qp by solving the eigenvalue equation (k
largest eigenvalues)

103 /123



PCA with inner products

» Compute ayq,. .., qp by solving the eigenvalue equation (k
largest eigenvalues)

» Project (new) point x to top k < n directions

T n T T
uy @ Yooz x a) K,

T n T T
Uy, T Do Qi T a Ky

where K, = (K(z1,2),...,K(zn,2))" and K(z;,2) = z/

103 /123



Kernel PCA

Perhaps replacing K;; = z; z; with any kernel K (z;,2;)?
» Equivalently, we are doing standard PCA in ¢(x) space

104 /123



Kernel PCA

Perhaps replacing K;; = z; z; with any kernel K (z;,2;)?
» Equivalently, we are doing standard PCA in ¢(x) space
» But... is the training set centered > " ; ¢(z;) = 07

104 /123



Kernel PCA

Perhaps replacing K;; = z; z; with any kernel K (z;,2;)?
» Equivalently, we are doing standard PCA in ¢(x) space
» But... is the training set centered > " ; ¢(z;) = 07
> Need to center K

104 /123



Centering the kernel for training

¢(zi) = o(zi) -

n T
S @) ) = (o)~ ¢<wk>) <¢<xj)i2¢<xk))
1

k= k=1
1 ¢ 1 ¢ 1<
K, = Kij_; Kjk_ﬁZKik‘Fﬁ Z Kim
k=1 k=1 kym=1

Finding «; by solving the eigenvalue problem

, —_— . .
K'aj =n\ja;

105 /123



Projecting (new) point = with centering

» New point z needs to be centered ¢/(x) = ¢(z) — > | d(x;)

106 /123



Projecting (new) point = with centering

» New point z needs to be centered ¢/(x) = ¢(z) — > | d(x;)

» Note x not involved in computing the training set mean

106 /123



Projecting (new) point = with centering

» New point z needs to be centered ¢/(x) = ¢(z) — > | d(x;)
» Note x not involved in computing the training set mean

» Recall j-th projection is ajTKg’C

106 /123



Projecting (new) point = with centering

» New point z needs to be centered ¢/(x) = ¢(z) — > | d(x;)

» Note x not involved in computing the training set mean

v

Recall j-th projection is ajTKg’C
K! = (K'(z1,%),..., K (2,,2))"

v

106 /123



Projecting (new) point = with centering

» New point z needs to be centered ¢/(x) = ¢(z) — > | d(x;)

» Note x not involved in computing the training set mean

v

Recall j-th projection is ajTKg’C
K! = (K'(z1,%),..., K (2,,2))"

v

106 /123



Projecting (new) point = with centering

» New point z needs to be centered ¢/(x) = ¢(z) — > | d(x;)
» Note x not involved in computing the training set mean

» Recall j-th projection is ajTKg’C

» K! = (K'(x1,2),...,K'(2n,2)) "

K/(J:hx) = -sz ZK Tk, T 772K’Lk+ Z Kim

k,m=1

106 /123



Outline

Kernel Methods

Reproducing Kernel Hilbert Spaces

107 /123



Norm

Let F be a vector space over R. A function || - ||z : F +— Rx>pis a
norm if

> |[fll7 = 0iff f =0 (separation)

108 /123



Norm

Let F be a vector space over R. A function || - ||z : F +— Rx>pis a
norm if

> |[fll7 = 0iff f =0 (separation)

> Jlafllx = lal | £+ (positive homogeneity)

108 /123



Norm

Let F be a vector space over R. A function || - ||z : F +— Rx>pis a
norm if

> |[fll7 = 0iff f =0 (separation)
> |lafllF = |al|||f|l7 (positive homogeneity)
> ||lf +gll= < |Ifll= + llgll= (triangle inequality)

108 /123



Norm

Example

» Let 41 be a positive measure on X C R and p > 1

109 /123



Norm

Example
» Let 41 be a positive measure on X C R and p > 1
> Let Ly(X,pu) = {f : X = R measurable | [, | f(z)|Pdu < oo}

109 /123



Norm

Example
» Let 41 be a positive measure on X C R and p > 1
> Let Ly(X,pu) = {f : X = R measurable | [, | f(z)|Pdu < oo}

> | fllp = (fX \f(x)\pdu)% is a norm

109 /123



Cauchy sequence

A sequence {f,}5°, of elements of a normed vector space
(F, |l - lx) is a Cauchy sequence if:

> Ve > 0,IN

110 /123



Cauchy sequence

A sequence {f,}5°, of elements of a normed vector space
(F, |l - lx) is a Cauchy sequence if:

> Ve > 0,IN
> Vn,mzN,an—mef<e

110 /123



Convergent sequence

A sequence {f,}°°; of elements of a normed vector space
(F,| - ||7) converges to f € F if:

> Ve > 0,3IN

111 /123



Convergent sequence

A sequence {f,}°°; of elements of a normed vector space
(F,| - ||7) converges to f € F if:

> Ve > 0,3IN
» Vn> N, ||fn— fllr<e

111 /123



Convergent sequence

A sequence {f,}°°; of elements of a normed vector space
(F,| - ||7) converges to f € F if:

> Ve > 0,3IN
> Vn > N, | fo— fllFr <e
> f must be in F

111 /123



Cauchy may not converge

» Convergent = Cauchy

112 /123



Cauchy may not converge

» Convergent = Cauchy

» Cauchy may not converge (in F)

112 /123



Cauchy may not converge

» Convergent = Cauchy
» Cauchy may not converge (in F)

» Example: C[0, 1] bounded continuous functions on [0, 1]

112 /123



Cauchy may not converge

v

Convergent = Cauchy

v

Cauchy may not converge (in F)

v

Example: C[0, 1] bounded continuous functions on [0, 1]

1A=y £y

v

112 /123



Cauchy may not converge

v

Convergent = Cauchy

v

Cauchy may not converge (in F)

v

Example: C[0, 1] bounded continuous functions on [0, 1]

1A=y £y

fa(z) =0 for z € [0, 5 — L], 1 otherwise

v

v

112 /123



Cauchy may not converge

v

Convergent = Cauchy

v

Cauchy may not converge (in F)

v

Example: C[0, 1] bounded continuous functions on [0, 1]

171 =\/Jo £(w)da
fa(z) =0 for z € [0, 5 — L], 1 otherwise
{fn(z)} is Cauchy, but not convergent (limit ¢ C[0, 1])

v

v

v

112 /123



Banach space

» One may complete the vector space by adding the limits of all
Cauchy sequences

113 /123



Banach space

» One may complete the vector space by adding the limits of all
Cauchy sequences

» A Banach space is a complete normed space

113 /123



Banach space

» One may complete the vector space by adding the limits of all
Cauchy sequences

» A Banach space is a complete normed space

» Example:
Lp(X, ) = {f: X — R measurable | [ |f(z)|Pdp < oo}

1
with norm || f|l, = ([ |f(z)[Pdu)? is a Banach space

113 /123



Inner product

» Let F be a vector space over R. A function
(-,)r: F x F Ris an inner product if

114 /123



Inner product

» Let F be a vector space over R. A function
(-,)r: F x F Ris an inner product if

» (afi +bf2,9)F = alfr,9)F +b(f2,9)F

114 /123



Inner product

» Let F be a vector space over R. A function
(-,)r: F x F Ris an inner product if

» (afi +bf2,9)F = alfr,9)F +b(f2,9)F
» (Lo Fr=(9,f)F

114 /123



Inner product

» Let F be a vector space over R. A function
(-,)F: F x F— Ris an inner product if

» (afi +bf2,9)F = alfr,9)F +b(f2,9)F
> <fvg>.7:: <gaf>.7:
> (f, f)7 = 0 with 0 iff f =0

114 /123



Inner product

» Let F be a vector space over R. A function
(-,)F: F x F— Ris an inner product if

» (afi +bf2,9)F = alfr,9)F +b(f2,9)F
> <fvg>.7:: <gaf>.7:
> (f, f)7 = 0 with 0 iff f =0

» An inner product space is a normed space with || f|| = \/(f, f)

114 /123



Hilbert space

> A Hilbert space is a complete inner product space, i.e. a
Banach space with an inner product

115 /123



Hilbert space

> A Hilbert space is a complete inner product space, i.e. a
Banach space with an inner product

» Example: Lo(X, 1) is a Hilbert space with inner product

(f.9) = /X F(@)g(x)dp

115 /123



Linear functional

» Let F,G be normed vector spaces over R

116 /123



Linear functional

» Let F,G be normed vector spaces over R
» A function A : F +— G is a linear operator iff

116 /123



Linear functional

» Let F,G be normed vector spaces over R
» A function A : F +— G is a linear operator iff
» A(af) =dA(f),Vae R, f e F

116 /123



Linear functional

» Let F,G be normed vector spaces over R

» A function A : F +— G is a linear operator iff
» A(af) =dA(f),Vae R, f e F
> A(f1+ f2) = A(f1) + A(f2), Vfi,fa € F

116 /123



Linear functional

» Let F,G be normed vector spaces over R
» A function A : F +— G is a linear operator iff
» Alaf) =dA(f),Vae R, f € F
» A(f1+ f2) = A(f1) + A(f2), Vi, fa € F
» When G =R, A is a linear functional

116 /123



Linear functional

v

Let F,G be normed vector spaces over R

A function A : F +— G is a linear operator iff
» Alaf) =dA(f),Vae R, f € F
> A(f1+ f2) = A(f1) + A(f2), Vfi,fa € F

When G = R, A is a linear functional
Example: For a fixed h € F,

An(f) = (i F

v

v

v

is a linear functional

116 /123



Continuity

» A:F — G is continuous at fy € F, if for every € > 0, 39 s.t.

|f = folr <0 = [[Af — Afollg < e

117 /123



Continuity

» A:F — G is continuous at fy € F, if for every € > 0, 39 s.t.

|f = folr <0 = [[Af — Afollg < e

» A is continuous on F if it is continuous at all f € F

117 /123



Riesz representation

In a Hilbert space F, all continuous linear functionals are of the
form (-, g)r, for some g € F.

118 /123



Evaluation functional

> Let X be a non-empty set

119 /123



Evaluation functional

> Let X be a non-empty set
> Let H be a Hilbert space of functions f : X — R

119 /123



Evaluation functional

> Let X be a non-empty set
> Let H be a Hilbert space of functions f : X — R
» For a fixed x € X the functional . : H — R defined as

is the Dirac evaluation functional at =

119 /123



Evaluation functional

> Let X be a non-empty set
> Let H be a Hilbert space of functions f : X — R
» For a fixed x € X the functional . : H — R defined as

is the Dirac evaluation functional at =

> ¢, is linear:

oz(af+bg) = (af +bg)(x) = af(x)+bg(x) = ads(f)+bdz(g)

119 /123



Evaluation functional

> Let X be a non-empty set
> Let H be a Hilbert space of functions f : X — R
» For a fixed x € X the functional . : H — R defined as

is the Dirac evaluation functional at =

> ¢, is linear:

oz(af+bg) = (af +bg)(x) = af(x)+bg(x) = ads(f)+bdz(g)

» |s §, continuous?

119 /123



Evaluation functional

> Let X be a non-empty set
> Let H be a Hilbert space of functions f : X — R
» For a fixed x € X the functional . : H — R defined as

is the Dirac evaluation functional at =

> ¢, is linear:

oz(af+bg) = (af +bg)(x) = af(x)+bg(x) = ads(f)+bdz(g)

» |s §, continuous?

> ... Not necessarily

119 /123



Reproducing Kernel Hilbert Space

> A Hilbert space H of functions f : X — R defined on a
non-empty set X’ is a Reproducing Kernel Hilbert Space
(RKHS) if 4, is continuous for all 2 € X

120 /123



Reproducing Kernel Hilbert Space

> A Hilbert space H of functions f : X — R defined on a
non-empty set X' is a Reproducing Kernel Hilbert Space
(RKHS) if 4, is continuous for all 2 € X

> The reproducing kernel of H is a function k : X x X — R if it
satisfies

120 /123



Reproducing Kernel Hilbert Space

> A Hilbert space H of functions f : X — R defined on a
non-empty set X' is a Reproducing Kernel Hilbert Space
(RKHS) if 4, is continuous for all 2 € X

> The reproducing kernel of H is a function k : X x X — R if it
satisfies

» k(x) e H,Vx e X

120 /123



Reproducing Kernel Hilbert Space

> A Hilbert space H of functions f : X — R defined on a
non-empty set X' is a Reproducing Kernel Hilbert Space
(RKHS) if 4, is continuous for all 2 € X

> The reproducing kernel of H is a function k : X x X — R if it
satisfies

» k(x) e H,Vx e X
» (f k(- z))y = f(z),Vf € H,xz € X (reproducing)

120 /123



Reproducing Kernel Hilbert Space

> A Hilbert space H of functions f : X — R defined on a
non-empty set X' is a Reproducing Kernel Hilbert Space
(RKHS) if 4, is continuous for all 2 € X

> The reproducing kernel of H is a function k : X x X — R if it
satisfies

» k(x) e H,Vx e X
> <f,]€(,.’£)>’;—[ = f(l'),Vf EH,xeX (reproducing)

» Obviously,
(EC,y), k(x))n = k(z,y)

120 /123



Reproducing Kernel Hilbert Space

v

A Hilbert space H of functions f : X — R defined on a
non-empty set X' is a Reproducing Kernel Hilbert Space
(RKHS) if 4, is continuous for all 2 € X
The reproducing kernel of H is a function k: X x X — R if it
satisfies

» k(x) e H,Vx e X

» (f k(- z))y = f(z),Vf € H,xz € X (reproducing)

Obviously,

v

v

k() k(2))n = k(z,y)

H is an RKHS (i.e. its evaluation functionals ¢, are
continuous) iff H has a reproducing kernel

v

120 /123



Positive definiteness

» A symmetric function h : X x X — R is positive definite if
Vn,Va € R",Vzy...x2, € X,

a'Ha >0

where H is the n x n matrix with H;; = h(z;, x;)

121 /123



Positive definiteness

» A symmetric function h : X x X — R is positive definite if
Vn,Va € R",Vzy...x2, € X,

a'Ha >0

where H is the n x n matrix with H;; = h(z;, x;)

» Reproducing kernels are positive definite

121 /123



Positive definiteness

» A symmetric function h : X x X — R is positive definite if
Vn,Va € R",Vzy...x2, € X,

a'Ha >0

where H is the n x n matrix with H;; = h(z;, x;)
» Reproducing kernels are positive definite

> Let k£ : X x X — R be positive definite. There is a unique
RKHS H = {f : X — R} with reproducing kernel k
[Moore-Aronszajn]

121 /123



Representer Theorem

> Let X be a non-empty set

122 /123



Representer Theorem

> Let X be a non-empty set
> Let k be a positive definite kernel on X x X

122 /123



Representer Theorem

> Let X be a non-empty set
> Let k be a positive definite kernel on X x X
> Let Hj be the corresponding RKHS

122 /123



Representer Theorem

> Let X be a non-empty set

> Let k be a positive definite kernel on X x X

> Let Hj be the corresponding RKHS

> Let training data be (z1,y1) ... (Tn,yn) € X xR

122 /123



Representer Theorem

> Let X be a non-empty set

> Let k be a positive definite kernel on X x X

> Let Hj be the corresponding RKHS

> Let training data be (z1,y1) ... (Tn,yn) € X xR

> Let the regularizer function Q2 : R>o — R be strictly
monotonically increasing

122 /123



Representer Theorem

> Let X be a non-empty set

> Let k be a positive definite kernel on X x X

> Let Hj be the corresponding RKHS

> Let training data be (z1,y1) ... (Tn,yn) € X xR

> Let the regularizer function Q2 : R>o — R be strictly
monotonically increasing

> Let the empirical risk function R be arbitrary

122 /123



Representer Theorem

> Let X be a non-empty set

> Let k be a positive definite kernel on X x X

> Let Hj be the corresponding RKHS

> Let training data be (z1,y1) ... (Tn,yn) € X xR

> Let the regularizer function Q2 : R>o — R be strictly
monotonically increasing

> Let the empirical risk function R be arbitrary

> Any minimizer

argmin R((z1,y1, f(1)), -, (T, Yn, [ (2))) + Q| £])
feH

admits the form

122 /123



References

Graphical Models
» Koller & Friedman, Probabilistic Graphical Models. MIT 2009

Kernel Methods

123 /123



References

Graphical Models
» Koller & Friedman, Probabilistic Graphical Models. MIT 2009

» Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

Kernel Methods

123 /123



References

Graphical Models
» Koller & Friedman, Probabilistic Graphical Models. MIT 2009

» Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

» Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

123 /123



References

Graphical Models
» Koller & Friedman, Probabilistic Graphical Models. MIT 2009

» Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

» Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

» Scholkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

123 /123



References

Graphical Models
» Koller & Friedman, Probabilistic Graphical Models. MIT 2009

» Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

» Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

» Scholkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

» Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

123 /123



References

Graphical Models
» Koller & Friedman, Probabilistic Graphical Models. MIT 2009

» Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

» Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Kernel Methods

» Scholkopf & Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT
2001

» Shawe-Taylor & Cristianini, Kernel Methods for Pattern
Analysis. Cambridge 2004

» Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online
notes 2014

123 /123



	Graphical Models
	Probabilistic Inference
	Directed vs. Undirected Graphical Models
	Inference
	Parameter Estimation

	Kernel Methods
	Support Vector Machines
	Kernel PCA
	Reproducing Kernel Hilbert Spaces


