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The Hardest Part of Learning 
Is Inference
Inference is subroutine of:
 Learning undirected graphical models
 Learning discriminative graphical models
 Learning w/ incomplete data, latent variables
 Bayesian learning
 Deep learning
 Statistical relational learning
 Etc.
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Goal: Large Joint Models
 Natural language
 Vision
 Social networks
 Activity recognition
 Bioinformatics
 Etc.
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Example: Friends & Smokers



Inference Is the Bottleneck
 Inference is #P-complete
 It’s tough to have #P as a subroutine
 Approximate inference and parameter 

optimization interact badly
 An intractable accurate model is

in effect an inaccurate model
 What can we do about this?
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One Solution:
Learn Only Tractable Models
 Pro: Inference problem is solved
 Con: Insufficiently expressive

Recent development:
Expressive tractable models

(theme of this tutorial)
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Why Use Probabilistic Models?

 Correctly handle uncertainty and noise
 Learn with missing data
 Jointly infer multiple variables
 Do inference in any direction
 It’s the standard
 Powerful, consistent set of techniques

9



Probabilistic Models
 Bayesian networks
 Markov networks
 Log-linear models
 Mixture models
 Logistic regression
 Hidden Markov models
 Cond. random fields
 Max. entropy models

 Probabilistic grammars
 Exponential family
 Markov random fields
 Gibbs distributions
 Boltzmann machines
 Deep architectures
 Markov logic
 Etc.



Markov Networks
 Undirected graphical models
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Representation and Inference
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Earthquake

 Advantage: Compact representation
 Inference:  P(Burglar | Alarm) = ??
 Need to sum out  Earthquake
 Inference cost exponential in treewidth of graph

Bayesian Networks Markov Networks

Burglar

Alarm

Deep Architectures



Learning Graphical Models

 General idea:
Empirical statistics = Predicted statistics

 Requires inference!
 Approximate inference is very unreliable
 No closed-form solution (except rare cases)
 Hidden variables → No global optimum
 Result: Learning is very hard
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Thin Junction Trees
[Karger & Srebro, SODA-01; Bach & Jordan, NIPS-02;
Narasimhan & Bilmes, UAI-04; Chechetka & Guestrin, NIPS-07]

 Junction tree: obtained by triangulating
the Markov network

 Inference is exponential in treewidth
(size of largest clique in junction tree)

 Solution: Learn only low-treewidth models
 Problem: Too restricted (treewidth ≤ 3)
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Very Large Mixture Models
[Lowd & Domingos, ICML-05]

 Just learn a naive Bayes mixture model with 
lots of components (hundreds or more)

 Inference is linear in model size
(no worse than scanning training set)

 Compared to Bayes net structure learning:
 Comparable data likelihood
 Better query likelihood
 Much faster & more reliable inference

 Problem: Curse of dimensionality
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Efficiently Summable Functions

A function is efficiently summable iff its 
sum over any subset of its scope can be 
computed in time polynomial in the 
cardinality of the subset.
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The Sum-Product Theorem

If a function is:
A sum of efficiently summable functions with 
the same scope, or
A product of efficiently summable functions 
with disjoint scopes,
Then it is also efficiently summable.
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Corollary

Every low-treewidth distribution is efficiently 
summable, but not every efficiently 
summable distribution has low treewidth.
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Compactly Representable 
Probability Distributions

Graphical
Models

Sum-Product
Models

Standard
Tractable
Models

Standard
Tractable
Models



Compactly Representable 
Probability Distributions

Graphical
Models

Sum-Product
Models

Standard
Tractable
Models

Standard
Tractable
Models

Linear-time exact inference
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Arithmetic Circuits
[Darwiche, JACM, 2003]

 Inference consists of sums and products
 Can be represented as an arithmetic circuit
 Complexity of inference = Size of circuit
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Arithmetic Circuit
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 Rooted DAG of sums and products
 Leaves are indicator variables
 Computes marginals in linear time
 Graphical models can be compiled into ACs



Learning Bounded-Inference 
Graphical Models [Lowd & D., UAI-08]

 Use standard Bayes net structure learner 
(with context-specific independence)

 Key idea: Instead of using representation 
complexity as regularizer:

Use inference complexity:
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score(M,T) = log P(T|M) – kp np(M)
(log-likelihood – #parameters) 

score(M,T) = log P(T|M) – kc nc(M) 
(log-likelihood – circuit size)



Learning Bounded-Inference 
Graphical Models (contd.)

 Incrementally compile circuit as structure 
added (splits in decision trees)

 Compared to Bayes nets w/ Gibbs sampling:
 Comparable data likelihood
 Better query likelihood
 Much faster & more reliable inference

 Large treewidth (10’s – 100’s)
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Feature Trees
[Gogate, Webb & D., NIPS-10]

 Thin junction tree learners work by repeatedly 
finding a subset of variables A such that 

P(B,C|A) ≈ P(B|A) P(C|A)
where A,B,C is a partition of the variables

 LEM algorithm: Instead find a feature F s.t.
P(B,C|F) ≈P(B|F) P(C|F)

and recurse on variables and instances
 Result is a tree of features
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A Feature Tree
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Feature Trees (contd.)
 High treewidth because of context-specific 

independence
 More flexible than decision tree CPDs
 PAC-learning guarantees
 Outperforms thin junction trees and other 

algorithms for learning Markov networks
 More generally: Feature graphs
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A Univariate Distribution
Is an SPN

X

Gaussian
...

PoissonMultinomial



A Product of SPNs over
Disjoint Variables Is an SPN

X Y



Sums out a mixture 
variable

A Weighted Sum of SPNs over
the Same Variables Is an SPN

X Y X Y

w1 w2



X1 X1 X1X1 X2 X2 X2X2 X3 X3 X3X3 X4 X4 X4X4 X5 X5 X5X5 X6 X6 X6X6

Recurse Freely . . .
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What Does an SPN Mean?

Products = Features
Sums = Clusters



Special Cases of SPNs
 Hierachical mixture models
 Thin junction trees

(e.g.: hidden Markov models)
 Non-recursive probabilistic

context-free grammars
 Etc.



Discriminative SPNs
[Gens & D., NIPS-12; Best Student Paper Award]

Query

Hidden

Y1

0.4
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0.5
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Y1 Y2 Y2

f (X)1 f (X)2 f(X) Features
(non-negative)



Discriminative Training

Best guessCorrect label

Tractable!



Backpropagation
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Problem: Gradient Diffusion



Solution: Hard Inference

Hard Inference
(MAP States)

Soft Inference
(Marginals)



Hard Gradient
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Empirical Evaluation:
Object Recognition

CIFAR-10
32x32 pixels
50k training exs.
10k test exs.

STL-10
96x96 pixels
5k training exs.
8k test exs.
100k unlabeled exs.



Feature Extraction

32x32 27x27xK

Triangle
encoding

K

GxGxK

Max-pooling

K

K-means

6x6

[Coates et al., AISTATS 2011]



Architecture

GxGxK

Mixture +

xParts
+Classes

Location +

WxWxK



SVM

SPN

Pooling

4x4xK

Autoencoder
RBM

CIFAR-10 Results



STL-10 Results

without 
unlabeled data
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Generative Weight Learning
[Poon & D., UAI-11; Best Paper Award]

 Model joint distribution of all variables
 Algorithm: Online hard EM
 Sum node maintains counts for each child
 For each example
 Find MAP instantiation with current weights
 Increment count for each chosen child
 Renormalize to set new weights

 Repeat until convergence



Empirical Evaluation:
Image Completion

 Datasets: Caltech-101 and Olivetti
 Compared with DBNs, DBMs, PCA and NN
 SPNs reduce MSE by ~1/3
 Orders of magnitude faster than DBNs, DBMs
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Architecture
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Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original



Update Soft Inference
(Marginals)

Hard Inference
(MAP States)

Generative 
EM

Generative 
Gradient

Discriminative 
Gradient

Weight Learning:
Summary



Structure Learning
[Gens & D., ICML-13; no best paper award]



Empirical Evaluation
 20 varied real-world datasets
 10s-1000s of variables
 1000s-100,000s of samples

 Compared with state-of-the-art Bayesian 
network and Markov random field learners

 Likelihood: typically comparable
 Query accuracy: much higher
 Inference: orders of magnitude faster
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Tractable Markov Logic
[D. & Webb, AAAI-12]

 Tractable representation for statistical 
relational learning

 Three types of weighted rules and facts
 Subclass: Is(Family,SocialUnit)

Is(Smiths,Family)

 Subpart: Has(Family,Adult,2)
Has(Smiths,Anna,Adult1) 

 Relation: Parent(Family,Adult,Child)
Married(Anna,Bob)
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Restrictions
 One top class
 One top object (all others are subparts)
 Relations must be among subparts of

some object
 Subclasses are mutually exclusive
 Objects do not share subparts



TML Semantics
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Tractability

Theorem: The partition function of every
TML knowledge base can be computed in 
time and space polynomial in the size of
the knowledge base.

Time = Space = O(#Rules X #Objects)
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KB structure is isomorphic to Z computation:
•Parts = Products
•Classes = Sums

Why TML Is Tractable
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Expressiveness

 Junction trees
 Sum-product networks
 Probabilistic context-free grammars
 Probabilistic inheritance hierarchies
 Etc.
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The following can be compactly represented
in TML:



Learning Tractable MLNs
Alternate between:
 Dividing / aggregating the domain into 

subparts
 Inducing class hierarchies over similar 

subparts
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Other Sum-Product Models

 Relational sum-product networks
 Tractable probabilistic knowledge bases
 Tractable probabilistic programs
 Etc.
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What If This Is Not Enough?

74

Use variational inference, with the most 
expressive tractable representation 
available as the approximating family
[Lowd & D., NIPS-10]
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Other Tractable Models

 Symmetry
 Liftable models
 Exchangeable models

 Submodularity
 Determinantal point processes
 Etc.
 Several papers at ICML-14
 Workshop on Thursday
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Summary
 Intractable inference is the bane of learning
 Tractable models avoid it
 Standard ones are too limited
 We have powerful new tractable classes
 Sum-product theorem
 Symmetry
 Etc.
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Expressiveness


