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The Hardest Part of Learning | &2
Is Inference

Inference is subroutine of:

e Learning undirected graphical models

e Learning discriminative graphical models

e Learning w/ incomplete data, latent variables
e Bayesian learning

e Deep learning

e Statistical relational learning

o Etc.




Goal: Large Joint Models

e Natural language
e Vision

e Social networks

e Activity recognition
e Bioinformatics

o EtcC.




Example: Friends & Smokers oot

Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family
members, As more people guit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network
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Inference Is the Bottleneck .

e Inference is #P-complete
e It's tough to have #P as a subroutine

e Approximate inference and parameter
optimization interact badly

e An intractable accurate model is
in effect an inaccurate model

e \What can we do about this?



One Solution:
Learn Only Tractable Models

e Pro: Inference problem is solved
e Con: Insufficiently expressive

Recent development:
Expressive tractable models
(theme of this tutorial)
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Why Use Probabilistic Models?

e Correctly handle uncertainty and noise
e Learn with missing data
e Jointly infer multiple variables

Do inference in any direction
t's the standard

Powerful, consistent set of techniques




Probabilistic Models S

e Bayesian networks e Probabilistic grammars
e Markov networks e Exponential family

e Log-linear models e Markov random fields
e Mixture models e Gibbs distributions

e Logistic regression e Boltzmann machines
e Hidden Markov models e Deep architectures

e Cond. random fields e Markov logic

e Max. entropy models o Etc.



Markov Networks

e Undirected graphical models

e Potential functions defined over ¢
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Log-Linear Models
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Representation and Inference |:

Bayesian Networks Markov Networks  Deep Architectures

e Advantage: Compact representation

e Inference: P(Burglar | Alarm) = ??

e Need to sum out Earthquake

e Inference cost exponential in treewidth of graph
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Learning Graphical Models :

e General idea:
Empirical statistics = Predicted statistics

e Requires inference! /

e Approximate inference is very unreliable

e No closed-form solution (except rare cases)
e Hidden variables — No global optimum

e Result: Learning is very hard
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Thin Junction Trees o

[Karger & Srebro, SODA-01; Bach & Jordan, NIPS-02;
Narasimhan & Bilmes, UAI-04; Chechetka & Guestrin, NIPS-07]

e Junction tree: obtained by triangulating
the Markov network

e Inference is exponential in treewidth
(size of largest clique in junction tree)

e Solution: Learn only low-treewidth models
e Problem: Too restricted (treewidth < 3)
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Very Large Mixture Models

[Lowd & Domingos, ICML-05]

e Just learn a naive Bayes mixture model with

lots of components (hundreds or more)

e Inference is linear in model size

(no worse than scanning training set)
e Compared to Bayes net structure learning:

e Comparable data likelihood
e Better query likelihood
e Much faster & more reliable inference

e Problem: Curse of dimensionality
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Efficiently Summable Functions

A function is efficiently summable iff its
sum over any subset of its scope can be
computed in time polynomial in the
cardinality of the subset.
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The Sum-Product Theorem 3

If a function is:

oA sum of efficiently summable functions with
the same scope, or

oA product of efficiently summable functions
with disjoint scopes,

Then it is also efficiently summable.
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Corollary :

Every low-treewidth distribution is efficiently
summable, but not every efficiently
summable distribution has low treewidth.

21



Compactly Representable
Probability Distributions

Graphical Sum-Product
I\r/laopdelf;sa Models

U
Tractable
Models
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Arithmetic Circuits oo
[Darwiche, JACM, 2003]

e Inference consists of sums and products
e Can be represented as an arithmetic circuit
e Complexity of inference = Size of circuit
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Arithmetic Circuit o2

Xy | %2 | P(X)

1 1 0.4
1 0 0.2
0 1 0.1
0 0 0.3

e Rooted DAG of sums and products

e Leaves are indicator variables

e Computes marginals in linear time

e Graphical models can be compiled into ACs
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Learning Bounded-Inference | ::::

Graphical Models [Lowd & D., UAI-08]
e Use standard Bayes net structure learner
(with context-specific independence)

e Key idea: Instead of using representation
complexity as regularizer:

score(M,T) = log P(T|M) — k, n,(M)
(log-likelihood — #parameters)

Use inference complexity:.

score(M,T) = log P(T|M) — k. n.(M)
(log-likelinood — circuit size)
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Learning Bounded-Inference | ::::
Graphical Models (contd.)

e |Incrementally compile circuit as structure
added (splits in decision trees)

e Compared to Bayes nets w/ Gibbs sampling:
e Comparable data likelihood

e Better query likelihood
e Much faster & more reliable inference

e Large treewidth (10’s — 100’s)
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Feature Trees o2
[Gogate, Webb & D., NIPS-10]

e Thin junction tree learners work by repeatedly
finding a subset of variables A such that
P(B,C|A) = P(B|A) P(C|A)
where A,B,C is a partition of the variables

e LEM algorithm: Instead find a feature F s.t.
P(B,C|F) =P(B|F) P(C|F)
and recurse on variables and instances

e Result is a tree of features
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A Feature Tree o

X4A Xg
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Feature Trees (contd.) :

e High treewidth because of context-specific
independence

e More flexible than decision tree CPDs
e PAC-learning guarantees

e Outperforms thin junction trees and other
algorithms for learning Markov networks

e More generally: Feature graphs
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A Univariate Distribution

Is an SPN
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A Product of SPNs over
Disjoint Variables Is an SPN

X




A Weighted Sum of SPNs over| :::
the Same Variables Is an SPN

Sums out a mixture
variable




Recurse Freely . ..
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All Marginals Are Computable
in Linear Time

Evidence Marginalize Evidence Marginalize




All MAP States Are Computable
in Linear Time

max P(X=0,Y=y) =

Evidence Mode Evidence Mode




All MAP States Are Computable
in Linear Time

max P(X=0,Y=y) =

0.4

0.6
Y
1] |y e

Evidence Mode Evidence




Products = Features
Sums = Clusters




Special Cases of SPNs

e Hierachical mixture models

e Thin junction trees
(e.g.: hidden Markov models)

e Non-recursive probabilistic
context-free grammars

e EftcC.




Discriminative SPNs ceec”
[Gens & D., NIPS-12; Best Student Paper Award] ssz

P(Y|X)

H Hidden

Y Query
f(X) Features

(non-negative)

X Evidence




Discriminative Training 3

Ply,x) _
P(x)

Vlog P(y|x) = Vlog

VIOgZP(Y7h7X) o
h

Tractable!
Correct label



Backpropagation o

For each sum child ;:
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Backpropagation o
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Problem: Gradient Diffusion | 2:::
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Solution: Hard Inference
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Hard Gradient 43




Hard Gradient 43
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Empirical Evaluation: e2it

Object Recognition
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CIFAR-10

32x32 pixels
50k training exs.
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STL-10

96x96 pixels

5k training exs.

8k test exs.

100k unlabeled exs.



Feature Extraction o

6Xx6

K-means

Triangle
encoding

N
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[Coates et al., AISTATS 2011]



Architecture :
Classes@®@




CIFAR-10 Results e2it

84%

Accuracy

72% Autoencoder

/w AN
68%
4x4xK

64%

200 400 800 1600 4000
Dictionary Size (K)



STL-10 Results ece:

| -layer Vector Quantization

| -layer Sparse Coding

3-layer Learned Receptive Field

without
unlabeled data

Discriminative SPN

52% 55% 58% 61% 64%



Generative Weight Learning 3T
[Poon & D., UAI-11; Best Paper Award]

e Model joint distribution of all variables

e Algorithm: Online hard EM

e Sum node maintains counts for each child
e For each example

-ind MAP instantiation with current weights
ncrement count for each chosen child

Renormalize to set new weights

e Repeat until convergence
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Empirical Evaluation:
Image Completion

e Datasets: Caltech-101 and Olivetti

e Compared with DBNs, DBMs, PCA and NN

e SPNs reduce MSE by ~1/3

e Orders of magnitude faster than DBNs, DBMs




Architecture o
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Example Completions

Original

PCA

Nearest Neighbor
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Weight Learning:
Summary

Uodate Soft Inference Hard Inference
P (Marginals) (VAP States)
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Structure Learning
[Gens & D., ICML-13; no best paper award]
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Empirical Evaluation :

e 20 varied real-world datasets

e 10s-1000s of variables
e 1000s-100,000s of samples

e Compared with state-of-the-art Bayesian
network and Markov random field learners

e Likelihood: typically comparable
e Query accuracy: much higher
e Inference: orders of magnitude faster
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Tractable Markov Logic
[D. & Webb, AAAI-12]

e Tractable representation for statistical

relational learning

e Three types of weighted rules and facts

e Subclass: Is(Family,SocialuUnit)
Is(Smiths,Family)

e Subpart: Has(Family,Adult,?2)
Has(Smiths,Anna,Adultl)

e Relation: Parent(Family,Adult,Child)
Married(Anna,Bob)
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Restrictions :

e One top class
e One top object (all others are subparts)

e Relations must be among subparts of
some object

e Subclasses are mutually exclusive
e Objects do not share subparts



TML Semantics 13
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Tractability :

Theorem: The partition function of every
TML knowledge base can be computed in
time and space polynomial in the size of
the knowledge base.

Time = Space = O(#Rules X #Objects)
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Why TML Is Tractable

= %

KB structure is isomorphic to Z computation:
*Parts = Products
Classes = Sums



Why TML Is Tractable

America:Society

Smiths:Family

1.2 0.3

Smiths:TraditionalFamily Smiths:OneParentFamily

KB structure is isomorphic to Z computation:
*Parts = Products
Classes = Sums



Why TML Is Tractable

America:Society ca

Smiths:Family

1.2 0.3

Smiths:TraditionalFamily Smiths:OneParentFamily

2.3
Anna:Adult ———(yarried Bob:Adult T - 1 2.3 {’ 0 51 -
Anna ° < Bob

1 1

Married(Anna,Bob) —Married(Anna,Bob)

KB structure is isomorphic to Z computation:
*Parts = Products
Classes = Sums



Expressiveness :

The following can be compactly represented
in TML:

e Junction trees

e Sum-product networks

e Probabilistic context-free grammars
e Probabilistic inheritance hierarchies
e Etc.
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Learning Tractable MLNs :

Alternate between:

e Dividing / aggregating the domain into
subparts

¢ Inducing class hierarchies over similar
subparts
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Other Sum-Product Models 3

e Relational sum-product networks

e Tractable probabilistic knowledge bases
e Tractable probabilistic programs

e Etc.
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What If This Is Not Enough? :

Use variational inference, with the most
expressive tractable representation
available as the approximating family

[Lowd & D., NIPS-10]
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Other Tractable Models

e Symmetry
e Liftable models
e Exchangeable models

e Submodularity

e Determinantal point processes
o EtcC.

e Several papers at ICML-14

e Workshop on Thursday
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Summary :

e Intractable inference is the bane of learning
e [ractable models avoid it
e Standard ones are too limited

e \We have powerful new tractable classes
e Sum-product theorem
e Symmetry
o Etc.
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