Machine Learning
meets Networks



ML & Networks

Machine Learning has rich history and
methods for analyzing ...

... tabular data

... textual data Bag of
... time series & streams features
... market baskets

What about relations and dependencies?



Network: A First Class Citizen

Tabulardata: = =, .~ Time series:
attributes TR network

Networks allow for modeling
dependencies between parts!

J skovec (@jure) Stanford University, MLSS 2014



Networks

...are a general
modeling language for
complex data



Networks: Social

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Jure Leskovec (@jure) Stanford University, MLSS 2014



Networks: Communication
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Graph of the Internet (Autonomous Systems)
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Networks: Media

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]

Jure Leskovec (@jure) Stanford University, MLSS 2014




Networks: Infrastructure
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Networks: Information

Chemistry

Math; Physics

Social Sciences

~ = A
overlap 4 overlap
with with
right side leftside

Medical
Specialties

Humanities

Earth Sciences

Citation networks and Maps of science
[Borner et al., 2012]
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Networks: Knowledge
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Networks: Organizations
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Networks: Economy
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Networks: Brain

Human brain has between

10-100 billion neurons
[Sporns, 2011]

Jure Leskovec (@jure) Stanford University, MLSS 2014



Networks: Biology
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But Jure,
why should | care
about networks?



Networks: Why Now?
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Transformation of Humanity

Online friendships Corporate e-mail communication”
[Ugander-Karrer-Backstrom-Marlow, ‘11] [Adamic-Adar, ‘05]

Web: a Social and a Technological network
Profound transformation of humanity:

How knowledge is produced and shared

How people interact and communicate

Jure Leskovec (@jure) Stanford University, MLSS 2014 17



The Internet/Web turned
CS into a natural science

The first computational artifact that
was never designed, and hence must

be approached by the scientific method:
* Measurements
 Experiments
* Falsifiable theories
 Specialized applied mathematics



... and a social science

The Internet/Web cannot be studied in
isolation from the complex social system
it enables and serves

Web is an ideal test bed for sociological
analysis and experimentation



Networks: Impact
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Google

Market cap:
S366 billion

(1y ago it was 250b)

Cisco

Market cap:
S130 billion

(1y ago it was 100b)

Facebook

Market cap:
S165 billion

(1y ago it was 50b)
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Networks: Impact

Intelligence and fighting (cyber)
terrorism
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Networks: Impact

Predicting epidemics

Worst case scenario
Calibration up 1o May &
Average number of cases

Real cases as of May 24, 2009
Fraction of max number of cases per call

May 24, 2009
< 1% < 1%
1% - 105 1% - 1086

B 10% - 50% | 10% - 500
50% - 75% 3 B 50 - 100%

B 55 - 100% Py " GLEaMviz.org B 7o - 100%

Jure Leskovec (@jure) Stanford University, MLSS 2014

Fraction of max number of cases per cell

o &3 GLiaMyiz.org

Predicted
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Why Networks? Why Now?

Universal language for describing data

Networks from science, nature, and technology
are more similar than one would expect

Shared vocabulary between fields

Computer Science, Social science, Physics,
Economics, Statistics, Biology

Data availability (/computational challenges)
Web/mobile, bio, health, and medical
Impact!

Social networking, Social media, Drug design

Jure Leskovec (@jure) Stanford University, MLSS 2014



Network!

Jure Leskovec (@jure) Stanford University, MLSS 2014

24



Network!

Jure Leskovec (@jure) Stanford University, MLSS 2014
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Working Network Data

Network data brings several core machine
learning methodologies into play

Working with network data is messy

Not just “wiring diagrams” but also dynamics
and (meta)-data (features, attributes)

Computational challenges

Large scale network data
Algorithmic models as vocabulary for
expressing complex scientific questions

Social science, physics, biology

Jure Leskovec (@jure) Stanford University, MLSS 2014 26



Tools for Networks

Stanford Network Analysis Platform (SNAP)

is a general purpose, high-performance
system for analysis and manipulation of
large networks

http://snap.stanford.edu

Scales to massive networks with hundreds of
millions of nodes and billions of edges

SNAP software L.
Snap.py for Python, SNAP C++ ) _SNAP. .

Tutorial on how to use SNAP:
http://snap.stanford.edu/proj/snap-icwsm

J skovec (@jure) Stanford University, MLSS 2014


http://snap.stanford.edu/
http://snap.stanford.edu/proj/snap-icwsm

Snap.py Resources

Prebuilt packages for Mac OS X, Windows, Linux
http://snap.stanford.edu/snappy/index.html

Snap.py documentation:

http://shap.stanford.edu/snappy/doc/index.html|
Quick Introduction, Tutorial, Reference Manual

SNAP user mailing list
http://eroups.google.com/group/snap-discuss

Developer resources
Software available as open source under BSD license
GitHub repository

https: //glthub com/snap stanford/snap- python

e) Stanford University, MLSS 2014



http://snap.stanford.edu/snappy/index.html
http://snap.stanford.edu/snappy/doc/index.html
http://groups.google.com/group/snap-discuss
http://groups.google.com/group/snap-discuss
http://groups.google.com/group/snap-discuss
http://groups.google.com/group/snap-discuss
http://groups.google.com/group/snap-discuss
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https://github.com/snap-stanford/snap-python
https://github.com/snap-stanford/snap-python
https://github.com/snap-stanford/snap-python
https://github.com/snap-stanford/snap-python
https://github.com/snap-stanford/snap-python
https://github.com/snap-stanford/snap-python

SNAP C++ Resources

Prebuilt packages for Mac OS X, Windows, Linux
http://snap.stanford.edu/snap/download.html

SNAP documentation
http://snhap.stanford.edu/snap/doc.html

Quick Introduction, User Reference Manual

SNAP user mailing list
http://groups.google.com/group/snap-discuss

Developer resources
Software available as open source under BSD license
GitHub repository
https://github.com/snap-stanford/snap
SNAP C++ Programming Guide

Jure Leskovec (@jure) Stanford University, MLSS 2014 29
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Network Data

Stanford Large Network Dataset Collection
http://snap.stanford.edu/data

Over 70 different networks and communities

Social networks: online social networks, edges
represent interactions between people

Twitter and Memetracker: Memetracker phrases,
links and 467 million Tweets

Citation networks: nodes represent papers, edges
represent citations

Collaboration networks: nodes represent scientists,
edges represent collaborations

Amazon networks : nodes represent products and
edges link commonly co-purchased products

Jure Leskovec (@jure) Stanford University, MLSS 2014 30



http://snap.stanford.edu/data

Books & Courses

Want to learn more about networks?

Social and Information Networks lectures:
http://cs224w.stanford.edu
Mining Massive Datasets lectures:

http://cs246.stanford.edu
Books (fee PDFs):

Mining Massive Datasets
http://infolab.stanford.edu/~ullman/mmds.html

Networks, Crowds and Markets

http://www.cs.cornell.edu/home/kleinber/networks-book

Jure Leskovec (@jure) Stanford University, MLSS 2014 31


http://cs224w.stanford.edu/
http://cs246.stanford.edu/
http://infolab.stanford.edu/%7Eullman/mmds.html
http://www.cs.cornell.edu/home/kleinber/networks-book

Networks: 3 problems
1) Community detection
2) Link & Attribute prediction

3) Social media



ldentifying Structure

Can we identify
node groups?
(communities,

modules, clusters)

“ ¢
Q. , ST . 1 \ ° .' =
\ 'Y
® . - [ ] > » 1 [ ]
¢ [ [ 55 » °
P 4 . ¥ o V- S o
° ‘e e ®
() L ; ®
* -+ < ¢ * "Nodes: Football Teams
® ®

. Edges: Games played_

Jure Leskovec (@jure) Stanford University, MLSS 2014



NCAA Football Network

L =SS Nodes: Football Teams
© Edges: Games played_

Jure Leskovec (@jure) Stanford University, MLSS 2014



Facebook Network

Can we identify
social communities?

WSl Nodes: Facebook Users
VIS Edges: Friendships

Jure Leskovec (@jur®) Stanford University, MLSS 2014 35



Facebook Network

Social communities
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Nodes: Facebook Users
Edges: Friendships
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rotein-Protein Interactions

Can we identify
functional modules?

S o DA\ Nodes: Proteins
Edges: Physical interactions

Jure Leskovec (@jure) Stanford Usiversity, MLSS 2014



Protein-Protein Interactions

o g
¥, ‘.3‘:?%' Nodes: Proteins
% “i  Edges: Physical interactions

Jure Leskovec (@jure) Stanford University, MLSS 2014



Community Detection

Input:

A network

Output:

Community memberships of nodes

DA

Cluster nodes based on network connectivity

with the hope to identify sets of objects with
common function, role or property.

J skovec (@jure) Stanford University, MLSS 2014




Why is it important?

Community detection is a fundamental
problem in network analysis allowing for:

Discovering unknown roles of proteins
[Krogan et al. ‘06]

Identifying module boundaries [Ahn et al. “11]
Detecting missing links [Kim, L. “12]

Observing political factions in the
blogosphere [Adamic, Glance "05]

Identifying functional modules [Palla et al. ‘05]

J skovec (@jure) Stanford University, MLSS 2014



Why is it hard?

Modeling: Communities form complex
structures: Non-overlapping, overlapping,
hierarchically nested

Computation: Many formulations lead to
intractable problems

For 100k node networks many methods take
days to run

Evaluation: Lack of ground-truth

Research relies on anecdotal manual
Inspection



Non-overlapping Communities

O @ ® 0O 00eO0oe oo

Jure Leskovec (@jure) Stanford University, MLSS 2014

Mid American
Big East
Atlantic Coast
SEC
Conference USA
Big 12

Western Athletic
Pacific 10
Mountain West
Big 10

Sun Belt

Independents

42



Non-overlapping Communities

Nodes
000000000000

Nodes
> 00000000000

Network djacency matrix

Methods for non-overlapping communities...
Spectral clustering , Modularity
, Block models ) e
...define communities as well-separable clusters

Jure Leskovec (@jure) Stanford University, MLSS 2014 43



What if communities overlap?




Overlapping Community Detection

Many methods for overlapping communities:

Mixed membership stochastic block models
[Airoldi, Blei, Feinberg, Xing, "'08]

Link clustering [Ahn et al. “10] [Evans et al. ‘09]
Cligue percolation [Palla et al. ‘05]

Cligue expansion [Lee et al. “10]

Bayesian matrix factorization [Psorakis et al. “11]

What do these methods assume
about community overlaps?




Overlapping Communities

Existing methods assume that edge
probability decreases with the number
of shared communities

0.8
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k, Number of shared communities

Jure Leskovec (@jure) Stanford University, MLSS 2014 46



Overlapping Communities

Existing methods assume that edge
probability decreases with the number
of shared communities

&0

Network

Nodes
(cNoNoNoN-NoNoN- Mo NoNoNo]

=

Adjacency matrix

Nodes
cNoNoJoNoNoNoNoNoNoNoNo]

J skovec (@jure) Stanford University, MLSS 2014



Community Overlaps

More communities U and V share

the more likely they are linked

=> Community overlaps are denser

P(k), Edge probability

0.8

0.7 |

0.6 |

0.5 |

0.4 r

0.3 |

0.2 |

2 3 4 5 6 7
k, Number of shared communities

Jure Leskovec (@jure) Stanford University, MLSS 2014
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Community Overlaps

More communities U and V share
the more likely they are linked
=> Community overlaps are denser

New paradigm: Communities as “tiles”

jure) Stanford



From Networks to Communities

What we have:




Community-Affiliation Graph

Communities, C pA. Pg

Memberships, M

Nodes,V © @ © © ‘

Community Affiliations Network
Generative model: How is a network
generated from community affiliations?

Later, we detect communities by fitting the model
Model parameters B(V, C, M, {p.}) :

Nodes V, Communities C, Memberships M
Each community ¢ has a single probability p_

Jure Leskovec (@jure) Stanford University, MLSS 2014




AGM: Generative Process

Communities, C pA. Pg

Memberships, M

Nodes,V @ ©@ © © ‘

Community Affiliations Network
AGM generates the network:

Nodes in community ¢ connect to each
other with probability p..:

Puv)=1- []@l-p)

Provably generates power-law degree distributions and other
real World networkJoatterns [Lattanzi, Sivakumar, ‘09]

Stanford sity, MLSS 2014 52



[ICDM‘12]

AGM Generates Networks

P: Pz Pc

A Pev-i- TIe-p)
Model ﬁ%\
AL VA
{ |l | |




licdm “12]

AGM: Modeling Flexibility

AGM can express a
variety of community

structures: (/I?\ /?I\
Non-overlapping,

Overlapping, Nested

A B

B A B
A C

Jure Leskovec (@jure) Stanford University, MLSS 2014 54



Detecting Communities

Detecting communities with AGM:

= el

Given a graph G, find the model B by
maximizing the model likelihood:

alr : = —
gmaxP(G;B)= || P(i.j) ] [@-PG. 1))
(1,))eE (1,))eE o
Model B has 3 parts: PG, j)=1- []@-mp.)
1) Affiliation graph M et
2) Number of communities C
3) Parametersp,

skovec (@jure) Stanford University, MLSS 2014



[wsdm ‘13]

“Relaxing” AGM

“Relax” the AGM: Memberships have
strengths

F, 4: The membership strength of node u
to community A (F,4 = 0: no membership)

J skovec (@jure) Stanford University, MLSS 2014



BigCLAM Model

Prob. of nodes linking is proportional to
the strengths of shared memberships:
P(u,v) =1—exp(—F, - FY)

Now, given a network, we estimate F
(F)= ) log(l—exp(—F.F ))— » F.,F
(u,v)EE (u,v)&E

Non-negative matrix factorization:

Update F,, for node u while fixing the
memberships of all other nodes

Updating takes linear time in the degree of u

J skovec (@jure) Stanford University, MLSS 2014



BigCLAM Model

Apply block coordinate gradient ascent

exp( FMFT)
[(F,) = E, E,
Vi e%; ) 1 —exp(—F,F}l) Z

Step size: backtracking line search

Project F,, back to a non-negative vector
Pure gradient ascent is slow! However:

> F,= ZF Fo— Y F)

vEN (u) vEN (u)
By caching F,, a gradlent step takes linear time in
the degre%repﬁfo u

kovec (@jure) Stanford University, MLSS 2014



BigClam: Scalability

Time (Sec.)

10000

8000

6000

4000 L|nk Clusterlng
Cllque Percolation

MMSB

2000 BigCLAM

Parallel BlgCLAM

0 100
Number of nodes (x 103)

200

BigCLAM takes 5min for 300k node networks

Other methods take 10 days
Can process networks with 100M edges!

Jure Leskovec (@jure) Stanford University, MLSS 2014
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Results on a Facebook Network

- Ground-truth

. _ Link Clustering

Stochastic Block Model (MMSB) Clique Percolation

Jure Leskovec (@jure) Stanford University, MLSS 2014 60



BigClam: Does it work?

Summer

High school ! :
iInternship

[ ] \\
;\ Stanford

Stanford -
e« * \ basketball

squash
"‘M_H = o
a4

94% accuracy

Jure Leskovec (@jure) Stanford University, MLSS 2014 61



Extensions: Beyond Clusters

Cohesive

Undirected



Predator-prey Communities

e

ho

63
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Extension: Organizing Friends

CS department fri
RN Sy

college frlends“\ o
N

‘alters’ v;

highschool friends

Discover circles and why they exist



Node Features

__—11,0,0,0,0,1,0,0] \

1,0,0,0,0,1,0,1]

- 130,0}110?1,(}?[]]

Went to Stanford

Born in 19584
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Model of Social Circles

Circles arise due to a specific reason
For a set of circles c model edge prob.:

p(x,y) < exp(2; 0 - Pi(x,y))
Y(x,y) ... edge feature vector describing (x,y)

O.... circle specific weight vector

Example:
17 Works at MSR 1.4
1| Studied at CMU 0.5
0 From UK 0
¢(x,y) = |0|Bornin London Hc =10
0 Is catholic 0
0| Likes SciFi 0.3
L1d. . Studied. CS. .o 1.1




[TKDD ‘14]

Extensions: Social Circles

How well do we recover human circles?
Social circles of a particular person:

people with PhDs Germans

living in S.F. or Stanford who went to school in 1997

LLI_._i_u.. - lIJ

User feature User feature User feature

Americans W

Importance

(]
O
C
©
+—
s_
@)
o
£

Importance

Jure Leskovec (@jure) Stanford University, MLSS 2014 67



Further Questions

Interesting research directions:
Community detection in dynamic networks

Communities merge, split, are born, and die
Detecting communities of different
structural types

Cohesive vs. bipartite communities
Robustness/significance of communities

Which communities in a network are
“significant”?
Scaling to massive networks



Networks: 3 problems
1) Community detection
2) Link & Attribute prediction

3) Social media



o e

OW COME YOU 0
HAVEN'T FRIENDED

T~

What links will occur nEXt?[LibenNoweII, Kleinberg ‘03]

Networks + many other features:
Location, School, Job, Hobbies, Interests, etc.

Jure Leskovec (@jure) Stanford University, MLSS 2014 70



Modeling Links in Networks

Nodes in networks have rich attributes:

About Me

GOAL: Develop a model of linksin a
network that considers node attributes

How do the node attributes form a network?

J skovec (@jure) Stanford University, MLSS 2014
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Approach: Node attributes

Each node has a set of categorical attributes
Gender: Male, Female
Home country: US, Canada, Russia, etc.
How do node attributes influence link
formation?

Example: MSN Instant Messenger

v’s gender
y . 5 N FEMALE | MALE
2; FEMALE |o.3 0.7

Chatting network 2 MALE 0.7 0.3

Link probability

Jure Leskovec (@jure) Stanford University, MLSS 2014 72
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Link-Affinity Matrix

Let the values of the i-th attribute for node
u and v be a;(u) and a;(v)

a;(u) and a;(v) can take values {0, ---,d; — 1}
Question: How can we capture the

influence of the attributes on link
formation?

Insight: Attribute link-affinity matrix ©®

a(v) =0 aq)=1

a;(u) =0 0[0,1]

P(u,v) = 0[a;(u), a;(v)]

ww=1 | ©[1,0] | O[1,1]

Each entry captures the affinity of a link
between two nodes associated with the
attributes of them

Jure Leskovec (@jure) Stanford University, MLSS 2014
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Attribute Interactions

MAG modeling flexibility:

Homophily : love of the same
e.g., political views, hobbies ﬂ

Heterophily : love of the opposite |o2
e.g., genders

Core-periphery : love of the core 0.5
e.g. extrovert personalities 0.5 | 02

ool

J skovec (@jure) Stanford University, MLSS 2014
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From Attributes to Links

How do we combine the effects of multiple
attributes?

We multiply the probabilities from all
attributes

a(u) = 0
a(v) = | 1

Node
attributes
+

b1 a, | B> Attribute
@i — matrices
Bi| VY1 || Bz2| 72
P(u, ‘U) = aq X X V3 X Oy Link

probability



[Internet Math. '12]

Multiplicative Attribute Graph

The MAG model M(n,l, A, 5)
A network contains n nodes

Each node has I categorical attributes

A = [a;(u)] represents the i-th attribute of node
u

Each attribute can take d; different values
Each attribute has a d; X d; link-affinity matrix
0;
Edge probability between nodes u and v

l

Pv) = | |0ifaw), a)

i=1
anford Univers

J skovec (@jure) St d ity, MLSS 2014



Fitting the MAG model

Find model parameters from the data

Salirs
° ° AN # ; ¢
[ ] Vé ,‘F Vs A /;')ﬁ
e

Links of the network

Estimate:
Latent node attributes
Link-affinity matrices
Formulate as a
maximum likelihood problem g — &21°

Solve it using variational EM i

Jure Leskovec (@jure) Stanford University, MLSS 2014 77



Fitting MAG to Data

Latent Network Link Network
Node Structure Affinity
Features ' D R

oD . RQ Do.1

= Rlo1 [08 \
it Q f Heterophily R . <

M F
(0] (o]
L cm..n}mo-z
F {09 [02
1 (0]

Core-periphery
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Fitting the MAG model

Edge probability:

P(u,v) = [li-1 0;[a;(w), a; ()]
Network likelihood:
P(G|A,0) =
HGuv=1 P(u,v) - H(;w,=o 1—-P(u,v)
G ... graph adjacency matrix
A ... matrix of node attributes
0... link-affinity matrices
Want to solve:
argmae PG14,0)

kovec (@jure) Stanf ersity, MLSS 2014



Variational EM

M-step:
Gradient method

Node
attribute
estimation

P(A|G,©)

E-step:

Variational inference

Jure Leskovec (@jure) Stanford University, MLSS 2014

\VileYe [
parameter
estimation

®
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Predictive Tasks in Networks

Predictive tasks: e
Predict missing links  § :

> ?

Predict future friends 12121

Features

Predicting node feature values

Infer user profile features

Nodes

Features

Node classification

Predict users from China

Nodes

Jure Leskovec (@jure) Stanford University, MLSS 2014 81
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Beyond Static Attributes

Dynamic network attributes:
Location and social networks

Examples:
Location-based online social networks

Foursquare, Yelp, Brightkite, Gowalla

Cell phones



Modeling Mobility

Goal: Model and

predict human

mobility patterns

Observation:

Low location entropy at night/morning

Location Entropy

1.6

1
0.8

1.4
(Wi

0.6

Brightkite-«+- , o

Cellphones

Higher entropy over the weekend
3 ingredients of the model:

Spatial, Temporal, Social

Jure Leskovec (@jure) Stanford University, MLSS 2014
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Modeling Mobility

W2
AT o
Iyle 0" :':;" Iy,
. -/ I M “'..-'
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&
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¥nols = TwiniPeaks & = Moe Valloy

LS _;'.'E_.l.-
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L's Lamwia

Spatial model:

Temporal model:
Home vs. Work Location

Mobility Home vs. Work

Jure Leskovec (@jure) Stanford University, MLSS 2014 84



Example User

>
o =
E S
= o
S o
Q
0.2}
0 D) ———
0 10 20
Time of Day (hours)
1 1 IJ < 1T 1

0.5

S
B
“

0 0.5 1
3 pm 6 pm
Jure Leskovec (@jure) Stanford University, MLSS 2014
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Weekend Mobility

Social network plays particularly
important role on weekends

Include social network
into the model

Prob. that user visits
location X depends on:
Distance(X, F)

Time since a friend
was at location F

Sa Su

F = Friend’s last known location

Jure Leskovec (@jure) Stanford University, MLSS 2014
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Mobility: Results

Cellphones: Whenever user receives or

makes a call predict her location
8 0.007 | | |
< 0.0065 |-
£ 0.006 | R S -
= 0.0055 T RW ]
= 0.005 PMI’E uuuuuuuuuuuuuu _
= 0.0045 - SS MM ——
LL| O . 004 B ur e
O 0.0035 fomnamnsnasgiisidiiine” _
% 000882-_——-—'——'_'—_'—{' Our model
o 0.002

M Tu W Th F Sa Su

Day of Week

Jure Leskovec (@jure) Stanford Univers



Networks: 3 problems
1) Community detection
2) Link & Attribute prediction

3) Social media



RT @birdnextome
chirp! chirp! << Lol
Heunnybirdnoises

Jure Leskovec (@jure) Stanford University, MLSS 2014 89



Diffusion in Networks

Obscure

Information tech story
flows from a node L

. Small tec
to node like " blog
an epidemic (_Engadget
HOW does Slashdot Wired
information

. BBC NYT CNN

transmitted .

by mainstream
media interact with social networks?

Jure Leskovec (@jure) Stanford University, MLSS 2014 90



Information Flows through Links

Information spreads over
the links of the network

J eskovec (@jure) Stanford University, MLSS 2014



Diffusion in Online Media

%
%

TechCrunch  °

engadget

Since August 2008 we have been collecting
30M articles/day: 6B articles, 20TB of data
Challenge:

How to track information as it spreads?

Jure Leskovec (@jure) Stanford University, MLSS 2014 92



Meme-tracking

Goal: Trace textual phrases that spread

through many news articles
Challenge 1: Phrases mutate!

sl

| that remains open

we have a discovery - we
have observed a new
particle consistent with a
higgs boson. but which
one? that remains open

f

consistent with a higgs
boson

-l

we have a discovery. we
have observed a new
particle that is consistent
with a higgs boson

we have observed a new
particle that is consistent

T

with a higgs boson

we have a discovery

[that is] consistent with a rad

we have observed a new
particle consistent with a
higgs boson

we have indeed
discovered a particle
consistent with the higgs
boson

higgs boson

|

how the discovery of the
higgs boson could break
physics

consistent with the higgs

boson

Mutations of a meme about the Higgs boson particle.

Jure Leskovec (@jure) Stanford University, MLSS 2014
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[KDD ‘og]

Finding Mutational Variants

Goal: Find mutational variants of a phrase

Objective:
In a DAG of approx. phrase inclusion,
delete min total edge weight Nodes are phrases
such that doos vt weights

each component >
has a single “sink”

Jure Leskovec (@jure) Stanford University, MLSS 2014
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Memes over Time

Frequency of Cluster

3500 i went to a number of
women's groups and said, this storm is
- ‘can you help us find folks?’ dangerous and it's
Auue the evidence shows and they brought us whole  well, governor, we also  critical to follow the
beyond any doubt that binders full of women have fewer horses and  advice of local

bayonets because the  emergency officials.
nature of our military's  if people are told to
changed. we have evacuate, they need

2500 the u.s. postal service
pro cycling team ran the
most sophisticated,

2000 professionalized and _ these things called to do it
successful doping with all due respect, thats a \ aircraft carriers, where A
program that sport has bunch of malarkey ... not a planes land on them \

single thing he said was
accurate

ever seen

1000

500

103 106 107 10/ 1041 1013 1045 10417 1049 10/21  10/23  10/25  10/2T  10/28  10/31

Visualization of 1 month of data from October 2012

Browse all 4 years of data at
http://snap.stanford.edu/nifty

Jure Leskovec (@jure) Stanford University, MLSS 2014 95
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[KDD '10]

Inferring Diffusion Networks

Challenge 3: Information network is hidden
Goal: Infer the information diffusion network

There is a hidden network, and
We only see times when nodes get “infected”

info: (a,1), (c,2), (b,3), (e,4)
info: (c,1), (a,4), (b,5), (d,6)

skovec (@jure) Stanford



Inferring Networks

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Process Viruses propagate Recommendations and
through the network influence propagate
We observe We only observe when We only observe when
people get sick people buy products
It’s hidden But NOT who infected But NOT who influenced
them them

Can we infer the underlying network?
Yes, convex optimization problem!

Jure Leskovec (@jure) Stanford University, MLSS 2014 97
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News Diffusion Network

5,000 news sites: .

@ Blogs
@ Mainstream media

Jure Leskovec (@jure) Stanford University, MLSS 2014 98
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News Diffusion Network

.techdln.‘.*m

Qrap'ﬁSthree.blogspm.nm
fcha. evelvethottub.co
@it org Bikiality.com .h:wsh~9t=:r:rlt=:sherm"ngsmt-*:'::#h Eha.c 8L ww.techdirt

®soccain) logspgl.com .jle.am
'britanniaradi:::-.blogspot.com .deadspin com
Qezebel.t: n . '
\ orum.dvdtalk.com
.ashmgtc:nmcnthly.com .epolit[r:,alcarnivaf.blcgs‘ ':f.ct.awker.com
.n_ ®oxxet.com
inkprogress.org ffirgtonpast.com
| N A M
Cinle.wardpress oo Q. guardia I.co.uk @ ..o08 blogspot.com
mericanpowerblog:blogsp®t.com
Q)J.ogs.abcne*-.-vs.com rchile.salongsem %heedcontent o,
: Q-da blogspot.eom
q’rollfeblogs.com y-PIogsp .alc:n.cr n .echchu-::k com Q]izmou R.com
Qemocraticunderg.'r and.com | ﬂg};stiq,m M

lenews.com
.hekevinpipa com
gngad

..-Jashlngtcn posticom Qee kingalpha.cam get.com

® pple.wowgoldir.com

QEws.cnet.com
& otaku.com

® Blogs ..gizmodc:.com

@ Mainstream media o cums
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Information in Networks

Observe times when nodes adopt the
information

Potential
node-to-node External

spread Influence

How did the
Information
“lump” ?

Jure Leskovec (@jure) Stanford University, MLSS 2014 100
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Exposures and Adoptions

Exposure: When a node sees a
contagion, whether from a neighbor’s

adoption or elsewhere

Adoption: The node posts the contagion
for her neighbors to see



[KDD '12]

Network & External Exposures

External

ﬁ ﬁ & & /infl\uenc/e h /
R—R
2 R

Two sources of exposures:

R

Exposures from the network

External exposures

J eskovec (@jure) Stanford University, MLSS 2014



Why is it important?

Why separating network
effects from the
external influence?

Detecting external events
Estimating information virality
Building better models of diffusion

Better targeting and influence maximization



Why is it hard?

Why is modeling external influence hard?
External sources are unobservable
Amount of external influence varies over time

External influence can be confused with
network influence

/O\') Tech The post occurred both
CiPhone 5 hones rumor due to external and

Owo\ \ network effects!

Y o Posts the
i rumor

eskovec (@jure) Stanford University, MLSS 2014 104




Towards the Model

Model the arrival of

external exposures Neighbors
External using event profile
source
@
o

Model the prob.
of adoption using
the adoption curve

Jure Leskovec (@jure) Stanford University,



Adoption Curves

From exposures to adoptions
Exposure: Node is exposed to information
Adoption: The node acts on the information

° )- €I
Adoption curve: n(z) = PLos - exp (l — —)
P2 P2
§ P1
o 0o

# exposures

Jure Leskovec (@jure) Stanford University, MLSS 2014 106



Modeling External Influence

Assume an external source generating
exposures uniformly across the network

Event profile

any user receiving an ]

A t) =P .
ext () external exposure at time t
For each t; we have a separate parameter A, (t;)

Jure Leskovec (@jure) Stanford University, MLSS 2014 107



Putting it all together

Infected Neighbors

e

lInternal Exposures |

External Influence
Event Profile

Time

User receives
external exposures
by the event profile

P(Exposure)

External Exposures

Each neighbor
that posts the contagion
also creates an exposure

With each exposure, the adoption curve
Is sampled: Does the user adopt the
contagion?

Jure Leskovec (@jure) Stanford University, MLSS 2014 108



Objective Function

Prob. that user i adopted contagion
' (t) = P( i has adopted contagion by t)

n

— Z P( 7 has n exposuresatt) x |1 — H 1 —n(k)

n=1 _ k=1 _

At least one exposure
lead to adoption

Wh ere: Total internal Total external
. exposures \ / exXpoSUres

( T
P( i has n exposures att ) ~ (f/(h) ( ””( )J; Aca(t) -dt)

T

\( A t/dt—n
> (l zm‘( )_T': fll‘( ) (H)

Jure Leskovec (@jure) Stanford University, MLSS 2014 109




Model Inference Task

External Influence

G ive n. _Event Profile
% K(ﬁxt(t)
Network G 3\/

Time

Node adoption

Infected Neighbors

e

lInternal Exposures |

Exposure Curve

External Exposures

n(x)

times (i, t) of a

contagion
Goal: Infer

(1) External event profile

(2) Adoption curve

P(Infection)

Exposures

such that observed adoption times fit best

Jure Leskovec (@jure) Stanford University, MLSS 2014
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[KDD '12]

Results: Different Topics

Complete data from Jan 2011: 3 billion tweets

k at

Duration % Ext.
max P(k) max P(k) hours Exposures
Politics (25) 0.0007 +/- 0.0001 | 4.59 +/-0.76 : /-16.66 | 47.38 F/- 6.12
World (824) 0.0013 +/- 0.0000 I 2.97 H-0.10 3.54 }/- 2.94 26.07 +/-1.19
Entertamn. (117) 0.0015 +/-0.0002 | 3.52 +/-0.28 | 89.89 +/- 16.13
Sports (24) 0.0010 +/-0.0003 | 4.76 +/-0.83 | 87.85 +/-38.03
Health (81) 0.0016 +/- 0.0002 | 3.25 +/- 0.30 | 100.09 +/- 17.57
Tech. (226) 0.0013 +/- 0.0001 [[3.00 +]-0.16 | _83.05 +/- 8.73
Business (298) 0.0015 +/- 0.0001 | 3.18 7/-0.16 | [49.61/-514 | 2207 +/- 1.79
Science (106) 0.0012 +/-0.0002 | 4.06 +/-0.30 | 13528 +/-16.19 | 20.53 +/-2.78
Travel (16) 0.0005 +/- 0.0001 I 2.33 H-0.29 | 151.73 +/-39.70 | 39.99 +/- 6.60
Art (32) 0.0006 +/- 0.0001 | 5.26 +/-0.66 | 188.55 +/-48.17 | 27.54 +/-5.30
Edu. (31) 0.0009 +/- 0.0001 | 3.77 +/-0.51 | 130.53 +/-38.63 | 21.45 +/-6.40
£
More details: S. Myers, C. Zhu, J. Leskovec: Information T
diffusion and external influence in networks, KDD 2012. P2

Jure Leskovec (@jure) Stanford University, MLSS 2014
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ow about Interactions
between cascades?

Jure Leskovec (@jure) Stanford University, MLSS 2014 112
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Contagion Interactions

So far we considered contagions as
independently propagating

How do contagions interact?

Does being exposed
to blue change the
probability of
talking about

red contagion?




i} . [ICDM *12]
Modeling Interactions

Goal: Model interaction between
many contagions spreading over the
network simultaneously

Some contagions may help each
other in adoption

Others may compete for attention



i} . [ICDM *12]
Modeling Interactions

User is reading posts on Twitter:
User examines posts one by one
Currently she is examining post X

How does the probability of reposting X
depend on what she has seen in the past?

Examining now...

4
— | Y5 Y X —
N N L N N N
— —1 U2 = U1 o Yo HH —
N2 A I | A | I BN
Infection?

Time

P(post X | exposed to X, Y;, Yy, Yg) =72




[ICDM *12]

What's the goal?

Given:

For a single user:
. . User retweets
Exposure and infection events e

>

time
Goal: Infer tweet topic memberships
and topic interactions
M reinforces B

But B suppresses B

Jure Leskovec (@jure) Stanford University, MLSS 2014 116



The Model .

Goal: Model P(post X | exp. X, Y, Y, Y5)
Assume exposures are independent:

oy PPy X
p (XI 1Y), izl) _ . ({E;;};fﬁl)l )

_ K
- P(Xl) — }:[1 P(X|Yk)

How many parameters? K - w? 1!
K ... history size

W ... number of posts

J skovec (@jure) Stanford University, MLSS 2014
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The Model

Goal: Model P(post X | exp. X, Y, Y,, Y3)
First, assume:
P(X = u;lYy = u;) = P(X = uy) + AM (u,u i),

cont.
Prior irﬁection Interactlon term
prob. (still has w? entries!)
" e oM,
Next, assume “topics™:

Agirﬁ U,—, U T YMJ t- Aff’b’ist( Cf") . M?tsf"

Each contaglon U; has a vector M,
Entry M. models how much u; belongs to topic s

gl?tst(s t) ... change in infection prob. given that u; is

on topic s and exposure k-steps ago was on topic t

Jure Leskovec (@jure) Stanford University, MLSS 2014 118



The Model I

Goal: Model P(post X | exp. X, Y, Y,, Y3)
First, assume:
P(X = u;lYy = u;) = P(X = uy) + AM (u,u i),

cont.
- .Y
Prior infection Interactlon term
prob. (still has w? entries!)

Next, assume “topics”:
Agirﬁ U,—, U T YMJ t- Afiﬁet CS) . M?tsf"

— —

AR = M| x [a§)

cont. clust

| x[ ™7 ]

Jure Leskovec (@jure) Stanford University, MLSS 2014 119



The Model .

So we arrive to the full model:
P(X = u;|Yy = u;) =P(X = uy)

+ y: Y: M.+ - Ag@ M
t S

And then the adoption probability is:
K

1
K _
P(X{Yk zf1) - P(X)K-1 HP(X‘Y"“)
k=1




[ICDM *12]

Inferring the Model

Model parameters:
A® ... topic interaction matrix
M; ¢ ... topic membership vector
P(X) ... Prior infection prob.

Maximize data likelihood:
arg max HP(XlX, Y; ...Ye) 1_[ 1-PX|X,Y;..Yx)

P(x),M,A
XER X€&R

R ... posts X that resulted in retweets
Solve using stochastic coordinate ascent:
Alternate between optimizing A and M

Jure Leskovec (@jure) Stanford University, MLSS 2014



Dataset: Twitter

Data from Twitter
Complete data from Jan 2011: 3 billion tweets

All URLs tweeted by at least 50 users: 191k
Task:

Predict whether a user will post URL X
Train on 90% of the data, test on 10%

Baselines: P(X = |V, = u;) =
Infection Probability (IP): = P(X = ;)
IP + Node bias (NB): = P(X = w) 4+

Exposure curve (EC): = P(X| # times exposed to X)

Jure Leskovec (@jure) Stanford University, MLSS 2



Predicting Retweets

Task: Predict a retweet given the context

Model Name Log-Like. | max F| | Area under PR
IP -335,550.39 0.0150 0.0157
UB -338.821.54 0.0112 0.0123
EC -338.,367.86 0.0181 0.0250
Our Model - With Prior
IMM K=1 -313,843.93 0.0412 0.0515
IMM K=2 -299.,884.86 0.0465 0.1238
IMM K=3 -299,352.32 0.0380 0.0926
IMM K=4 -315,319.54 0.0321 0.0804
IMM K=5 -352,687.54 0.0386 0.0924
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How do Tweets Interact?

How P(post X| exposed Y) changes if ...
X and Y are similar/different in content?
Y is highly viral (Prob. reshare is high)?

Y is not viral: P(X)>P(Y) *‘ E" ~ Observations:

e If Y is not viral,
[ this boost X
| e If Y is highly viral,
this kills X
| BUT:
Only if Y and X are
— of high content
similarity Y helps X

-0.2 -0.1 0 0.1 0.2 0.3

Relative change in infection prob.
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How do Tweets Interact?

How P(post X| exposed Y) changes if ...

X and Y are similar/different in content?

Y is highly viral (Prob. reshare is high)?

Y is not viral: P(X)>P(Y) - - Observations:
o . e If Y is not viral,
Y is viral: P(X)<P(Y) - B - this boost X
C : e If Y is highly viral,
Y is viral, Low text sim 4 —= L this kills X
. . . BUT:
Y is viral, High text sim - = F oniyif Y and X are
Y is not viral, Low text sim - | of high content
similarity Y helps X
Y is not viral, High text sim - —— =
| | | |
02  -0.1 0 0.1 0.2 0.3

Relative change in infection prob.
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Further Questions

Today: Messages arriving through networks from
real-time sources requires new ways of thinking
about information dynamics and consumption

Predictive models of information diffusion

Where is the information going to spread?
What will go viral?
User personalization

New models of how users consume information
Connections to mutation of information:

How does attitude and sentiment change in different
parts of the network?

How does information change in different parts of the
network?
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What's beyond?

Networks are a natural language
for reasoning about problems spanning
society, technology and information
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Conclusion & Reflections

Only recently has large scale network
data become available
Opportunity for large scale analyses
Benefits of working with massive data

Observe “invisible” patterns
Lots of interesting networks questions

both in CS as well as in general science

Need scalable algorithms & models



Network Data & Code

Research on networks is both algorithmic
and empirical

Need to network data:

Stanford Large Network Dataset Collection
Over 60 large online networks with metadata
http://snap.stanford.edu/data

SNAP: Stanford Network Analysis Platform

A general purpose, high .
performance system for dynamic ® o
network manipulation and analysis )

Can process 1B nodes, 10B edges . SNAP- .
®

http://snap.stanford.edu
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Networks — implicit for millenia —
are finally becoming visible

Models based on algorithmic ideas
will be crucial in understanding
these developments



e THANKS!
Y Data + Code:
0 http://snap.stanford.edu

NY Twitter: @jure

Eve Online: Exodus developser CCP putiisher CCP e < e ; @ GameWallpapers.com hosted by JTLnet.com




Tools for Networks

Stanford Network Analysis Platform (SNAP)

is a general purpose, high-performance
system for analysis and manipulation of
large networks

http://snap.stanford.edu

Scales to massive networks with hundreds of
millions of nodes and billions of edges

SNAP software L.
Snap.py for Python, SNAP C++ ) _SNAP. .

Tutorial on how to use SNAP:
http://snap.stanford.edu/proj/snap-icwsm
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Snap.py Resources

Prebuilt packages for Mac OS X, Windows, Linux
http://snap.stanford.edu/snappy/index.html

Snap.py documentation:

http://shap.stanford.edu/snappy/doc/index.html|
Quick Introduction, Tutorial, Reference Manual

SNAP user mailing list
http://eroups.google.com/group/snap-discuss

Developer resources
Software available as open source under BSD license
GitHub repository

https: //glthub com/snap stanford/snap-python
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SNAP C++ Resources

Prebuilt packages for Mac OS X, Windows, Linux
http://snap.stanford.edu/snap/download.html

SNAP documentation
http://snhap.stanford.edu/snap/doc.html

Quick Introduction, User Reference Manual

SNAP user mailing list
http://groups.google.com/group/snap-discuss

Developer resources
Software available as open source under BSD license
GitHub repository
https://github.com/snap-stanford/snap
SNAP C++ Programming Guide
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Network Data

Stanford Large Network Dataset Collection
http://snap.stanford.edu/data

Over 70 different networks and communities

Social networks: online social networks, edges
represent interactions between people

Twitter and Memetracker: Memetracker phrases,
links and 467 million Tweets

Citation networks: nodes represent papers, edges
represent citations

Collaboration networks: nodes represent scientists,
edges represent collaborations

Amazon networks : nodes represent products and
edges link commonly co-purchased products

Jure Leskovec (@jure) Stanford University, MLSS 2014 136



http://snap.stanford.edu/data

Books & Courses

Want to learn more about networks?

Social and Information Networks lectures:
http://cs224w.stanford.edu
Mining Massive Datasets lectures:

http://cs246.stanford.edu
Books (fee PDFs):

Mining Massive Datasets
http://infolab.stanford.edu/~ullman/mmds.html

Networks, Crowds and Markets

http://www.cs.cornell.edu/home/kleinber/networks-book
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