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Transfer of Learning

A psychological point of view

* The study of dependency of human conduct, learning or
performance on prior experience.

[ Thorndike and Woodworth, 1901] explored how individuals
would transfer in one context to another context that share similar
characteristics.

»C++ -2 Java
»Maths/Physics > Computer Science/Economics




Transter Learning

In the machine learning community

* The ability of a system to recognize and apply
knowledge and skills learned in previous
domains/tasks to novel tasks/domains, which
share some commonality.

* Given a target domain/task, how to 1dentify the
commonality between the domain/task and
previous domains/tasks, and transfer knowledge
from the previous domains/tasks to the target
one?




Transter Learning

Difterent fields

* Transfer learning for
reinforcement
learning.

[Taylor and Stone, Transfer
Learning for Reinforcement
Learning Domains: A Survey,
JMLR 2009]

* Transfer learning for

classification, and
regression problems.

[Pan and*Yan\ / ANJrvEéP on
Transfer Learning, IEEE
TKDE 2010]




Motivating Example I:

Indoor WiFi localization
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Difference between Domains

Time Period A Time Period B

Device A

Device B




Indoor WikFi Localization
(cont.)

Average Error

Distance
Training Test
5=(-37dbm, .., -77dbm), L=(, 3) ‘ Localization ‘ 5=(-37dbm, .., -77dbm) ~ 1.5 meters
S=(-41dbm, .., -83dbm), L=(1, 4) S=(-41dbm, .., -83dbm)
model
S=(-49dbm, .., -34dbm), L=(9, 10) S=(-49dbm, .., -34dbm)
S=(-61dbm, .., -28dbm), L=(15,22) S=(-61dbm, .., -28dbm)

Device A @' Device A
\ S

~10 meters

Test
S=(-37dbm, .., -77dbm)
S=(-41dbm, .., -83dbm)
S=(-49dbm, .., -34dbm)
S=(-61dbm, .., -28dbm)

Device A
A\




Motivating Example 11:

Sentiment classification

10 hours ago
Edward Priz * replied:

You know, this isnt the first time that "States Rights™ has been
used as a cover for racist policies. In fact, the whole "States
Rights™ thing has become a sort of code for heavy-handed

i ici it? i i sart of contexual

10 hours ago -
RICH HIRTH * replied:

if he has probable cause, and he can document it. This law can

be abused if being Latino is probable cause. Thatis license to
; fac i lica A tha Lo liad faich.

v‘e—un The issue here is probable cause. A police officer can question
o’

2 hours ago
Julia Gomez replied:

The Arizona law is so clearly unconstitutional that | do not think
it will ever reach the point of being enforced. The article did not
say so, butthe Republican governor is afraid of a GOP primary
electorate that is even more reactionary than usual. That is why

she signed the bill, not because she thinks itis legally
defensible.




Difference between Domains
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Electronics

Video Games

(1) Compact; easy to operate;
very good picture quality;
looks sharp!

(2) A very good game! It is
action packed and full of
excitement. I am very much
hooked on this game.

(3) I purchased this unit from
Circuit City and I was very
excited about the quality of the
picture. It is really nice and
sharp.

(4) Very realistic shooting
action and good plots. We
played this and were hooked.

(5) It is also quite blurry in
very dark settings. I will never
buy HP again.

(6) The game is so boring. |
am extremely unhappy and will
probably never buy UbiSoft
again.




Sentiment Classification

Training
e Sentiment
Classifier

You know, this isnt the first time that “States Rights™ has been
used as a coverfor racist polcies. In fact, the whole “States

Rights" thing has become a sort ofcode for heavy-handed
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e
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racist poliies, hasnt t? And t does provide a sort of contertual

link with those heroic days when evil was confronted in places

like Selma and Litte Rock, doesn'tt? Thanks for making that

link explict

Electronics |-t 8 &

Test

10 hours ago
Edward Priz# replied

You know, tis isntthe frstime that“States Rights” has been
used as a cover forracist policies. In fact e whole *States
Rights" thing has become a sortof code for heawy-handed
racist policies, hasntit? And it does provide a sort of contertual
link with those heroic days when el was confronted in places
like Selma and Lite Rock, doesn'it? Thanks for making that
link explicit

Classification
Accuracy

Electronics
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10 hours ago
RICHHIRTH * replied:

wheis  The issue here is probable cause. A police officer can question
ifhe has probable cause, and he can document t This law can
w be abused f being Latino is probable cause. Thatis license to
harass for the police. As long as the law is applied fairly there
should not be a problem. As far as documentation, Most states
have laws that citizens must carry valid state ID, and no one
cares. There is no reason the Executive branch needed to get
involved in whatthe Court should decide.
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Test

10 hours ago
Edward Priz# replied

You know, tis isntthe frstime that“States Rights” has been
used as a cover forracist policies. In fact e whole *States
Rights" thing has become a sortof code for heawy-handed
racist policies, hasntit? And it does provide a sort of contertual
link with those heroic days when el was confronted in places
like Selma and Lite Rock, doesn'it? Thanks for making that
link explicit
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A Major Assumption in
Traditional Machine
Learning

» Training and future (test) data come from the same domain,
which implies

! Represented in the same feature space.

! Follow the same data distribution.




In Real-world Applications

* Training and testing data may come from different domains,
which have:

Different marginal distributions, or different feature spaces:

Different predictive distributions, or different label spaces:

Xs # Xp, or Ps(x) # Pr(x)

Vs # Vr., or fs # fr (Ps(y|z) # Pr(y|x))




How to Build Systems on Each
Domain of Interest

» Build every system from scratch?
1 Time consuming and expensive!

» Reuse common knowledge extracted from existing systems?
! More practical!




The Goal of Transfer Learning

Labeled Training
Transfer Learning Predictive
Algorithms Models
Time Period A
' Target Target
Device A \«O Domain Data Domain Data

Unlabeled Training/with a few
labeled data

Electronics
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Transter Learning v.s. Multi-task
Learning

Transfer learning

—

Source Domain Target Domain

Multi-task learnin
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) U P 4

Target Target Target Target
Domain 1 Domain 2 Domain 3 Domain 4



Transter Learning Settings

Heterogeneous
Transfer Learning

e

eterogeneous | Supervised Transfer
Learning
Transfer Semi-Supervised
Learning Transfer Learning

Unsupervised
F - - = L3
| Homogeneous | Transfer Learning

— —

Transf’r Learning



Transtfer Learning Approaches

Instance-based Feature-based
Approaches Approaches

+

Parameter-based
Approaches




Instance-based Transter
Learning Approaches

Xs

Source and target domains
have a lot of overlapping
features (domains share
the same/similar support)




Instance-based Transfer
Learning Approaches

Case |

Case ll

Given Dg = {Isi, ySi}?zslf Dr = {ITi}?zTP

Learn fp.s.t. Z e(fr(xr,), yr,) is small,

where yr, 1S unknown.

e Vs = Yr.and P(Ys|Xs) = P(Yr|X7r).
® XS ~ XT,

o P(Xs) # P(Xr).

Given Dg = {zg,,ys, } 12,

- S , nr , ,
DT - {l’Ti: yTi}i:l? nr < ng,

Learn fp,s.t. €( fr(zr. ), yr,) 1s small, and

fr has good generalization on unseen 7.

o Vs =r,
but fs # fr (Ps(y|r) # Pr(y|r))




Instance-based Approaches
Case 1

Given a target task,

0* = arg minIE(m,y)NpT[l(ilhZ/a9)]

Polx.
= argminEq p, [Pzt fZil(l,g. 9)]

= arg 111111//PT (P s(x, y)l(l v, 0)) dxdy
s\, Y

(. y)
= arg 111111//PS <PT(ly)l(f1:,y.0)) dxrdy
Ps(z,vy)

P €I,
) [alo winEo ). [ (T, y)g(;zr,y, 9)”

Ps(z,y)




Instance-based Approaches
Case I (cont.)

{Ps(x) # Pr(x), Ps(y|r) = Pr(y|z)} = Ps(x,y) # Pr(z.y)

P
0" = argminE, ,).ps PZEE Z;[(I,y.@)]
. Pr(z)Pr(y|x
= arg minEq ,).pg PZEI;PZ(U: )1(1 Y. 9)]
P
:[arg min K, )~ ps PZEI; (., H)B
Pr(x)
Denote F(xz) = ’
() Po(r)

0* = 119,11111123 xs, )(xs,, ys,,0) + A2(D)




Instance-based Approaches
Case I (cont.)

N Ps(;‘l?) .

o PT('I) 9

How to estimate J(x)
A simple solution is to first estimate Pr(x), Ps(x), respectively,
and calculate PT('I).

Ps(x) x

. .. . Pr(z) .
An alterative solution 18 to estimate PTE ; directly. /
S\

Correcting Sample Selection Bias / Covariate Shift
[Quionero-Candela, etal, Data Shift in Machine Learning, MIT Press 2009]




Instance-based Approaches
Correcting sample selection bias

* Imagine a rejection sampling process, and view
the source domain as samples from the target

domain
Target—0— 00 0—0-0—0-0-0—

lecti
Cetn WD i

Source ————0-9 @ o0 ©




Instance-based Approaches
Correcting sample selection bias (cont.)

* The distribution of the selector variable maps the target onto
the source distribution

/ [Zadrozny, ICML

» Label instances from the source domain with label 1
» Label instances from the target domain with label 0
» Train a binary classifier




Instance-based Approaches
Kernel mean matching (KMM)

Maximum Mean Discrepancy (MMD)

Given Xg = {zgs. }.5,. X = {z7 }.L,. drown from Ps(z) and Pr(x),
1J1 1 2J1 1

respectively,
1 & [
Dist(P(Xs), P(X7)) = ||— ) ®(zg)—— > D(zr
ist(P(Xs), P(Xr)) S; (zs:) T; (v1;) )

[Alex Smola, Arthur Gretton and Kenji Kukumizu, ICML-08 tutorial]




Instance-based Approaches
Kernel mean matching (KMM) (cont.)

[Huang etal., NIPS-06]

nSZj.lS

arg 111111

The required optimization is a simple QP problem




Instance-based Approaches
Direct density ratio estimation

PT(IZI)

Consider 3(z) = Po(z)
S

to be a function, which can be approximated by

Blx) = Z (),

~

then Pr(x) can be approximated by Pr(z) = B(z)Ps(z)

KL divergence loss Least squared loss

, ~ ~ 2
arg min KL[Pr(z)||Pr(z)] arg min / (J () — (.1)) Ps(z)dx
XsUXr

{a)t_, {ac}t_,

[Sugiyama etal., NIPS-07] [Kanamori etal., IMLR-09]




Instance-based Approaches
Case 11

o Vs =r,
but fs # fT (Ps(y|.l’) 7é PT(y|.r))

* Intuition: Part of the labeled data in the source domain can be
reused 1n the target domain after re-weighting based on their

contributions to the classification accuracy of the learning
problem in the target domain




Instance-based Approaches
Case II (cont.)

» TrAdaBoost [Dai etal ICML-07]
For each boosting iteration,

Use the same strategy as AdaBoost to
update the weights of target domain data.

Use a new mechanism to decrease the
weights of misclassified source domain dat




Instance-transfter Approaches

[Wu and Dietterich ICML-04]
[JJiang and C. Zhai, ACL 2007]
[Dai, Yang et al. ICML-07]
Uniform weights Correct the decision boundary by re-weighting
+ + + + N
+
+ @+ + -b’/ + + + N + \/
+
+ o+ +,7 + + +,7
e v
+ 7 - 7 -
.............................................. o, N
LOSS function on the LOSS function of R ......... l ...... — t -
egularization
z.??.‘f%??ﬂ???.??ﬂ.@?‘f? ............ . i source domain data 2
) T erm .
;;";;;.......%......--.....,.”.... ..,.7-7'5‘ ..... .r* ......................... " .
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TrAdaBoost [Dai, Yang et al. ICML-07]

Ny § e Misclassified exampl

He

1 Evaluation with 20NG: 22% -2 8%

1o decrd http://people.csail.mit.edu/jrennie/20Newsgroups/

| of the Mhooraoorrov—crare . orecoer

— decrease the weights
¢ whole the misclassified sour

Source domain target domain i1 data set
bl i labeled data AR data

Classifiers trained on
re-weighted labeled data

Target domain
unlabeled data




Feature-based Transter
Learning Approaches

When source and target
domains only have some
overlapping features. (lots
of features only have
support in either the source

or the target domain)

Xs




Feature-based Transter
Learning Approaches (cont.)

How to learn ¥ ?

» Solution 1: Encode application-specific knowledge to learn the
transformation.

» Solution 2: General approaches to learning the transformation.




Feature-based Approaches

Encode application-specific knowledge

» For instance, sentiment analysis

» Structural Correspondence Learning (SCL) [Biltzer etal.
EMNLP-06]

» Spectral Feature Alignment (SFA) [Pan etal. WWW-10]




Feature-based Approaches

Develop general approaches

Time Period A Time Period B

Device A °

Device B ©




Feature-based Approaches

General approaches

» Learning features by minimizing distance between
distributions in a latent space

» Learning features inspired by multi-task learning
» Learning features via self-taught learning




Learning Features by Minimizing Distan

Between Distributions in A Latent Space
Transfer Component Analysis [Pan eal, IICAI-09, TNN-11]

Latent factors /

OO OO

\.

Temperature Signal Power of APs Building
properties structure




Transfer Component Analysis (con

Common

latent factors
-

Temperature | |Signal Power of APs Building

W structure

Cause the data distributions between domains different




Transfer Component Analysis (con

Noisy
component

Signal Building

properties structure
Principal components




Transfer Component Analysis (con

Learningy by only minimizing distance between
distributions may map the data onto noisy

factors. N
: : : * Pos. source domain data
25k A R & Neg. source domain data |
: § : o Pos. target domain data
ok e e . o Neg. target domain data |




Transfer Component Analysis (con

Main idea: the learned ¢ should map the source
and target domain data to the latent space spanned
by the factors which can reduce domain distance
as well as preserving original data structure.

High level optimization problem

min Dist(p(Xs), o(X71)) + AQ(p)

P

s.t.  constraints on ¢(Xg) and ¢(X7)




Transfer Component Analysis (con

MMD
Dist(9(Xs), ¢(X7)) = ||Eanpr@)[®(0(2))] = Eonpg@)[@(0(2))]|
~ iz O(p(zs,)) — i > O(p(er)) ’
ne 1 nr i1

Assume U = ® o ¢ be a RKHS with kernel k(x;, z;) = ¥(z;) " ¥(z;)

Dist(p(Xs), o(X7)) = tr(KL)

=4 r;,r; € Xg,
K = Kss Ksr R(ns+nr)x(ns+nr) L;; = X —5 r;. r; € Xp.
‘T lKrs Krop| © Y T C |
s LT - otherwise.

\ nsn




Transfer Component Analysis (con

Learning o = (1)learning K [Pan etal., AAAI-08]

(2) low-dimensional reconstructions of X g and X
To njinimize the distance based on K

betwjeen domains .
. . To maximize the
Learning K = min — d :
K>0 ata variance
St K+ Ky — 2K = d3;, V(i j) e NS
To |preserve the local
geQmetric structure K1=0, K > 0.

Low-dimensional constructions of Xg, X7 = PCA on K
' It 1s a SDP problem, expensive!

» It is transductive, cannot generalize on unseen instances!

» PCA is post-processed on the learned kernel matrix, which may
potentially discard useful information.




Transfer Component Analysis (con

To mi
betwe

Decompose K = (KK Y/?)(K~Y?K) < Empirical kernel map

Let W Rs+nT)Xm  \where m < ng + ny.
Resultant parametric

K = (KK—I/ZW)(WTK—I/ZK) kemel

W = K—I/QW = R(n5+-nT)Xm.

Learning ¢ = learning a low-rank matrix 1

nimize the distance

en domains . Reoularizat
min + egularization|
W

S.L. @( HKW :D(__ To maximize the

data variance
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Co-Clustering based Classification (KDD 200

* Co-clustering is applied between features (words) and
target-domain documents

* Word clustering is constrained by the labels of in-domain
(Old) documents

The word clustering part in both domains serve as a bridge

1. Word clustering 2. Co-clustering

Documents
in D,

Documents
in D;

->

1. Label Propagation 2. Label Propagation



Structural Correspondence Learnin

| Blitzer et al. ACL 2007]
* SCL: [Ando and Zhang, JMLR 2005}

* Method

Define pivot features: common in two domains (not
buy)

Find non-pivot features in each domain (repetitive)
Build classifiers through the non-pivot Features

(1) The book is so repetitive that I . @ Shark porta
found myself yelling il steamer .... ITigger mechanism
definitely not bu @ defective.

Book Domain ﬁ Kitchen Domain




SCL

| Blitzer et al. EMNL-06, Blitzer et al. ACL-07, Ando and Zhang JMLR-05]

—m - e - -

Input: labeled source data {(x;,y:)7_, .
unlabeled data from both domains {x; }

Output: predictor f : X — Y
Irl Choose m pivot features. Create m binary I/
\ _ _ prediction problems, pe(x), £=1..m_ |

s TEEEEEEEEEEEEEEEEEmE- ~
(2. Forl{=1tom \

. 1

: Wy = argmin (ZJ L(w - x;,pe(x;))+,
| w D —
| Alfwl[?) |
| |
\__emd /
(3. W=[Wi|...[Wm). [UDVT]=sVDW),
I 0 =Uf.nz :
e e e e e el e e e e i g
II 4. Return f, a predictor trained \|
()
| o1 Ox: s Yt
\ ' t=1 :\

(= b) Transform each vector of pivot

I(\\ on the matrix of

a) Heuristically choose m pivot
features, which is task specific.

feature to a vector of binary
values and then create
corresponding prediction
problem.

Learn parameters of each
prediction problem

Do Eigen Decomposition

parameters and learn the
linear mapping function.

Courtesy of Sinno Pan

Use the learnt mapping function to
construct new features and train
classifiers onto the new representations.




Feature-based Approaches
Self-taught Feature Learning

» Intuition: There exist some high-level features
that can help the target learning task even only a
few labeled data are given

> How to learn high-level features

Sparse coding [Raina etal., 2007]
Deep learning [Glorot etal., 2011]




Parameter-based Transfer
Learning Approaches

Assume f(x) = (0, x) = O r = Z 0;xr;. where 0, € R™.
i=1
Motivation: A well-trained model 65 has learned a

lot of structure. If two tasks are related, this
structure can be transferred to learn 07 .




Parameter-based Approaches
Multi-task Parameter Learning

Assumption:

If tasks are related, they may share similar parameter vectors.
For example, [Evgeniou and Pontil, KDD-04]

C

bmmon part

0s =0 @
> Specific part for individual task
o A\ H{or

{05, 07} = arg min Z Z [z, yp,, 0r) + N6, vs, v7)
te{S,T} i=1




Parameter-based Approaches
Multi-task Parameter Learning (cont.)

A general framework:

1
@ — 9t — - 95
Denote © = [0g, 07], 1©) Z 2 Z

te{S,T} se{ST}

O =argmin Y > Uy, y,.0;) + /\@Jr )\2‘

te{S,T} i=1
> lle?
te{ST}
[Zhang and Yeung, UAI-10] [Agarwal etal, NIPS-10]
_ Ty -1 2
f(©) = u(® %76) fey= > 16— (52)

s.t. X >0andtr(X)=1. te{S.T'}




Relational Transfer Learning
Approaches

» Motivation: If two relational domains (data is non-i.i.d) are
related, they may share some similar relations among objects.
These relations can be used for knowledge transfer across
domains.




Relational Transfer Learning
Approaches (cont.)

Academic domain (source)

Student (B) Professor (A)
Publieg ’ i

cation

Movie domain (target)

WorkedFor

MovieMember MgoyteMember

AdvisedBy (B, A) A Publication (B, T) WorkedFor (A, B) A MovieMember (A,
=> Publication (A, T) => MovieMember (B, M)

N

P1(x, y) NP2 (x,z) =>P2(y, z)
[Davis and Domingos, ICML-09]




Summary

In data level
Heterogeneous

Transfer Learning

Instance-based

. Approaches
Supervised Transfer
Learning Feature-based
Approaches
[ Transf.er Semi-Supervised s
Learning Transfer Learning

Unsupervised -
Transfer Learning

Parameter-based
Approaches

Homogeneous /
Transfer Learning

| In model level |




Some Research Issues in
Transter Learning

»When should transfer learning be applied

» Transfer learning across heterogeneous feature space
or different label spaces

» Active learning meets transfer learning
» Transfer learning meets lifelong learning

» Transfer learning to novel application areas
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Selected Applications
of Transfer Learning

Qiang Yang, Huawei Noah’s Ark Lab
and HKUST
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Part 1. Cross Domain Transfer Learning

for Activity Recognition

Vincent W. Zheng, Derek H. Hu and Qiang Yang. Cross-Domain Activity
Recognition. In Proceedings of the 11th International Conference on
Ubiquitous Computing (Ubicomp-09), Orlando, Florida, USA, Sept.30-Oct.
3, 20009.

Derek Hao Hu, Qiang Yang. Transfer Learning for Activity Recognition via
Sensor Mapping. In Proceedings of the 22nd International Joint Conference

on Artificial Intelligence (1JCAI-11), Barcelona, Spain, July 2011



eHealth Demo

Vour 1P Address © 175.159.119.144
e T Your GPS Address : Hong Kong

Langitude : 114.26560163497925

i?'jif‘,}fﬁéjﬁfﬁlﬁn Langi tUIUiE : i 14,26-5 60163497925
AMipliotiet-G0- M =) . Latitude : 22.335344552993774
: Accelerometer : X 6.25, Y -10.75, Z: 174375

Wik Signal : sMobileMet -69 dBmi(...)

Your IP Address 1 175.159.119.144

Select an activity JRCOIERINEEES

Annotate activity

Sensor data

Turn on auto-logging § Turn off auto-logging

Select a duration JEEIENECIy I EVRIES

Generate Activity Profiling



eHealth demg

Working

Taking Rest

Doing Exercise

Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774
Accelerometer: X 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet 69 dBm (...)
Your activity :

Others

LAERERIERGGE One recent day

Generate Activity Profiling

Activity annotation




eHealth demo

Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774
Accelerometer: X 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet -69 dBm (...)

Your activity :

Turn on auto-loEEing

Auto logging / activity recognition
(service in background)




Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong
Langitude :
Latitude :
Accelerometer :
WiFi Signal :
Your activity :

114.26560163497925
22.335344552993774

X: 6.25, Y: -10.75, Z: 17.4375
sMobileNet 69 dBm (...)

eHealth demo

y

|

our activity : Taking Rest

b

i

Real-time activity recognition



eHealth demo

Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong

Longitude : 114.26560163497925
Latitude : 22.335344552993774
Accelerometer: X 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet 69 dBm (...)
Your activity :

LAERERIERGGE One recent day

Generate Activity Profiling

Activity profiling




eHealt

Your IP Address : 175.159.119.144

Your GPS Address : Hong Kong
Longitude : 114.26560163497925

Latitude : 22,335344552993774
Accelerometer: X 6.25, Y: -10.75, Z: 17.4375
WiFi Signal : sMaobileNet 69 dBm (...)
Your activity :

Yelect & duration

Generate Activity Profiling

e

Activity profiling for health management




Key Problem: Recognizing Acti
Context (Locations)

AR: Activity Recognition via Sensors

Walking? Buying Ticket? Open Door?

ons and

Inferred through AR

Sightseeing

-

N

VA/

GPS and Other
Sensors Sensors
Sensors

~

J ;



1. Cross-Domain Activity Recognition
[Zheng, Hu, Yang: UbiComp-2009, PCM-2011]

« Challenge:
— Some activities without data (partially labeled)

» Cross-domain activity recognition
— Use other activities with available labeled data

« Happen in kitchen & '
« Use cup, pot

Making coffee Making tea

10



Sweeping
Swiftering h
Mopping |[SWeeping -

. Vacuuming
Cleaning Dusting
Making-the-bed -
Sourc? |n dOOr it _] organizing
Domain Disposing-Garbage )
Yaklng-outirash ] Dealing-with-Garbage
Cleaning-:::ur;:;] Cleaning-a-surface
Cleaning miscellaneous —  Cleaning-miscellaneous
\ Cleaning-background — Clean'mg-backgrogg/ —
Gardening
Target Mowing lewn-| S =8 —
Domain 1 Yardwork-miscellaneous — Yardwork-miscellaneous —
ST T T T Washinglaundry - N
:' La u n d ry Griliig sy Washing/Orying-laundry 1}-
: Washing-laundry-background :] iailiog rying aixaley.Lind i :
|  Orying-laundry-background e e R :
: Folding-laundry :
: Putting-away-laundry :| Dealing-with-clothes
1 Ironing :
‘\- __________ Laundry-miscellaneous :_P_“E"_'V."l“_“_"_"‘i‘?.'.’%"‘
—— T e e ‘
Drvlng-dishes} Dealing-with-diches -
Target g Putting-away-dishes §
Domain 2 Loading-dishwasher

loading-dishwasher
Unloadlng-dlshwasher:l o ating tishamtiey :

“.Dishwashing-miscellaneous — _Dishwashing-miscellaneous £

-------------------------------------------------------------

Dishwashing

Cleaning Indoor

Activity
Transfer
Yardwork

ly

Dishwashing

11



System Workflow

Example:
sim(“Make Coffee”,
“Make Tea”) =0.6
<Sensor Reading,
Activity Name>
Example: <SS, “Make
Coffee”>

Example: Pseudo
Training Data: <SS,

imilarity “Make Tea”, 0.6>

Measure

(

Target Domain
Source Domain THE WEB Pseudo Labeled
Labeled Data Data

Weighted SVM
Classifier

12




Calculating Activity Similarities

¢ How similar are two
activities?
o Use Web search
results

o TFIDF: Traditional IR
similarity metrics
(cosine similarity)

o Example

« Mined similarity between
the activity “sweeping”
and “vacuuming”, “making

the bed”, “gardening”

Calculated Similarity
with the activity
"Sweeping"”

13



Datasets: MIT PlacelLab

http://architecture.mit.edu/house n/placelab.html

 MIT PlaceLab Dataset (PLIA2) [Intille et al.
Pervasive 2005]

e Activities: Common household activities

14



Datasets: Intel Research Lab

I | Using the bathroom

2 | Making oatmeal

3 | Making soft-boiled eggs
4 | Preparing orange juice
S

* Intel Research Lab
[Patterson, Fox,
Kautz, Philipose, 5 | Making coffee
ISW(C2005] ? | Making or answering a phone ca

8 | Taking out the trash

— Activities Performed: 9 | Setting the table
11 activities 10 | Eating breakfast

11 | Clearing the table

— Sensors
* RFID Readers & Tags

— Length:

* 10 mornings ’ !o .i\’

Picture excerpted from [Patterson, Fox,
Kautz, Philipose, ISWC2005]. 15




Cross-Domain AR: Performance

Accuracy
with Cross

Domain
Transfer

Baseline
(Random
Guess)

# Activities
(Target
Domain)

# Activities
(Source
Domain)

Supervised

(Upper
bound)

Intel
Research
Lab Dataset

Amsterdam
Dataset

MIT Dataset
(Cleaning to
Laundry)

MIT Dataset
(Cleaning to
Dishwashing)

63.2%

65.8%

58.9%

53.2%

5 6 16.7%
4 3 33.3%
13 8 12.5%
13 7 14.3%

78.3%

72.3%

» Activities in the source domain and the target domain are generated
from ten random trials, mean accuracies are reported.

16



Derek Hao Hu and Qiang Yang, [JCAI
2011

Transferrin
g Across
Feature

Space

Transfer from
Source Domain to
Target Domain

Transferring
Across Label
Space

p(yt |xt) = (2 p(C’|Xt)°p(yt |C)

S



Proposed Approach

* Final goal: Estimate P(¥, X))
—Wehave p(yi|x)= > plelxe)-p(yelc)

cli)el,

— p(yt|xe) = p(c|xt) - p(yt|c) (c =argmaxp(c|xt)) e:

celg
[ Feature Trﬁ {il Transfer }




Experiments

Datasets
— UvA dataset [van Kasteren et al. Ubicomp 2008]
— MIT Placelab (PLIA1) dataset [Intille et al. Ubicomp 2006]
— Intel Research Lab dataset [Patterson et al. ISWC 2005]

Baseline
— Unsupervised Activity Recognition Algorithm [Wyatt et al. 2005]

Different sensors for different datasets

RFID sensor for Intel
A series of different wired Research Lab

sensors for MIT dataset Dataset

State-based sensors
for UvA dataset

s3Il

69 53 59
Il 52

51 68 | 63

[ N
54 61

|

67 Curen t 52 55

192.168.2.xx ]




Experiments:
Different Feature & Label Spaces

K MIT — UvA Acc(Var)
K=5 59.8% (4.2%)
K=10 57.5% (4.1%)
K=15 51.0% (4.8%)

K =20 41.0% (4.1%)
Unsupervised 47.3%(4.1%)

Table 3: Algorithm performance of transferring knowledge

from MIT PLIA1 to UvA dataset

K MIT — Intel Acc(Var)
K=5 060.5% (4.2%)
K=10 61.2% (3.8%)
K=15 53.2% (4.1%)
K =20 42.0% (2.5%)
Unsupervised 42.8%(3.8%)

Table 4: Algorithm performance of transferring knowledge

from MIT PLIAT1 to Intel dataset

* Source: MIT
PLIA1 dataset
Target: UVA
(Intel) datasets



Part 2. Source-Free Transfer Learning

* Source Free Transfer Learning

* Evan Wei Xiang, Sinno Jialin Pan, Weike Pan, Jian Su and
Qiang Yang. Source-Selection-Free Transfer Learning. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI-11), Barcelona, Spain, July 2011.




Source-Selection @&L
Transfer Learning

Evan Xiang, Sinno Pan, Weike Pan,
Jian Su, Qlang Yang

HKUST - [JCAI 2011
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Transfer Learning

Supervised
Learning

Lack of labeled
training data
always happens

Transfer
Learning

When we have
some related
domains

HKUST - lJCAI 2011
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Where are the “right” source data?

.
3 .
.
oo Nu, . .
* ®y . .
: e, % U .
. . % .
. ® .
L . .
= ) &
. LX) .
- ‘s -
. v -
- » & *
. . ~od
. . e .
. - Tgaw
.
S
.

Illlllll"
L}

0T 9 gn

e veg B
X 4

EEEEEEEEEE,

°

L]

o

L ]

g

°
EEEmEEEEEN

)

)

°
Ia_o =

J

4,

.
»

large number of

choices of potential sources to use.

We may have an

ol N gn®

LA ]
o

{8

@

UEEEEEEREYND

L4 o .
u [ ]
] o .
¥ .

¢ o L]
Ne'y @ u
n\i e -
u [ ]
lo. ‘.O ]
. p
] ,.\‘QO "
L] 00 a
- .
[ ] P .
oy LR L]
o 00.0 L
a® B -
n ® . ™
*sannnnnnn?®
hd °

L

a. =)
o
S Pp®
R_o e

24

HKUST - lJCAI 2011



Outline of Source-Selection-Free
Transfer Learning (SSFTL)

< Stage 1: Building base models

< Stage 2: Label Bridging via Laplacian Graph Embedding

< Stage 3: Mapping the target instance using the base
classifiers & the projection matrix

< Stage 4: Learning a matrix W to directly project the
target instance to the latent space

< Stage 5: Making predictions for the incoming test data
using W



SSFTL — Building base models

From the taxonomy of the online information source, we can

“

”a lot of base classification models

HKUST - lJCAI 2011
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SSFTL — Label Bridging via Laplacian
Graph Embedding

Problem . Since the label names
Neighborhood matrix .. deIICIous are usually short and
However, the for label graph Bob &4 ------------ > /\ History sparse, , in order to
of the based classification Ao L 7 uncover the intrinsic
models and the target A ° v relationships between
task can be A the target and source
O M q labels, we turn to
O some
O such as Delicious,

which can help to
bridge different label
sets together.

Projection matrix

m-dimensiona Pe;
‘ A O latent space
‘ AYys: = .
HiysSae
‘ 2 s1 @
‘ ASSA

q
‘ Laplacian Eigenmap
[Belkin & Niyogi,2003]

between labels, e.qg., similar or dissimilar, can be
represented by the between their corresponding prototypes in
the latent space, e.g., close to or far away from each other.

HKUST - lJCAI 2011 27



SSFTL — Mapping the target instance using
the base classifiers & the projection matrix V

Target Instance
“Ipad2 is For each target instance, we can

released in obtain a
March, ...” via aggregating the predictions

from all the base classifiers

‘Avs. 0.1:0.9

‘VS. 0.6:0.4 ‘

.VS e 0.3:.0.7
AVS A 0.2:0.8

'VS ® 0.7:.0.3

Then we can use the
to transform such combined results from
the space to a space

>

Projection matrix

Probability

Label space m

However, do we need to recall the base classifiers during the

The answeris !

HKUST - lJCAI 2011 28



SSFTL — Learning a matrix W to directly
project the target instance to the latent space

Target Domain Projection matrix
l vs. B
Labeled & . Hys @ . 8 .
Unlabeled

Data . VS

ANYSYA

For each target instance, we first aggregate
its prediction on the base label space, and V'FL=V' Z e F%

then project it onto the latent space

l xQ x

Loss on unlabeled data Opu (W) = — ||W X" — V'F‘§||§, X e >|:|

>
2
Loss on labeled data [l d SIS IS Learned Projection matrix
.

HKUST - lJCAI 2011 29




SSFTL — Making predictions for the
incoming test data

Target Domain Learned Projection matrix

D =

The learned projection matrix W can be used

to transform any target instance
W from the space to the space

Q

Incoming
Test Data

2
o= W=, |2

* J—
Projection matrix Y arg m;xxP(ykn) - Z e—|W'a—v, |3
yeYVr

. Therefore, we can make
prediction for any
incoming test data based on the
m

distance to the label prototypes,

HKUST - lJCAI 2011 30



Experiments - Datasets

*»* Building Source Classifiers with Wikipedia
**3M articles, 500K categories (mirror of Aug 2009)
+**50, 000 pairs of categories are sampled for source models

*** Building Label Graph with Delicious
+*800-day historical tagging log (Jan 2005 ~ March 2007)
**50M tagging logs of 200K tags on 5M Web pages
** Benchmark Target Tasks
20 Newsgroups (190 tasks)
*** Google Snippets (28 tasks)

** AOL Web queries (126 tasks)
** AG Reuters corpus (10 tasks)



SSFTL - Building base classifiers
Parallelly using MapReduce

Reduce

O A ol 2:4 .4 2

D

© 4 0 =l 3.3 3 3

2 3
c DDPB
If we need to build 50,000

base classifiers, I't wouid'taxe The training data are replicated n In eacl? bin, the t:-ai.ning .data
about if we run the and assigned to different bins are paired for building binary
training process on base classifiers

Therefore, we distributed the

training process to a cluster
with using
MapReduce, and finished the
training within

These pre-trained source base classifiers are

and for different incoming target tasks.

HKUST - lJCAI 2011 32



Experiments - Results

Table 1: Comparison results under varying numbers of labeled data in the target task (accuracy in %).

Datiigat 0 3 10 20

R FTL| SVM | TSVM |SSFTL| SVM | TSVM | SSFTL| SVM | TSVM | SSFTL
20NG | 50.0 69.8 | 757 || 80.6 | 725 | 81.0 || 81.6 | 79.1 | 83.7 | 84.5 |
Google | 50.0/| 725 | 62.1 | 69.7 || 734 | 645 | 732 || 75.7 | 673 | 73.8 | 803
AOL | 500} 71.0 || 721 | 74.1 || 743 | 73.7 | 768 || 77.7 | 79.2 | 77.8 | 80.7
Reuters| 50.0| 72.7 | 69.7 | 633 || 743 | 759 | 63.7 | 76.9 | 79.5 | 66.7 | 80.1

-Parameter setttings-

Source models:
min Qe (W) + ,\1||W||%, + Mo Q,D.} (W) Unlabeled target data:
w z lambda_2:

HKUST - lJCAI 2011 33



Experiments - Results

Table 2: Comparison results on varying numbers of source
classifiers (accuracy in %).

gt Number of source classifiers for SSFTL
250 | 500 | 1K | 2K || 5K | 10K | 20K
20NG | 76.3 | 78.2 | 80.3 | 82.5 | 84.5 | 85.1 | 85.6
Google | 70.6 | 73.1 | 76.6 | 78.5 | 80.3 | 80.4 | 80.2
AOL 67.6 | 76.6 | 78.0 | 78.8 | 80.7 | 81.2 | 79.1
Reuters| 72.2 | 74.0 | 76.7 | 78.0 | 80.1 | 79.6 | 78.1
For each target instance, we first aggregate .

its prediction on the base label space, and
then project it onto the latent space ) —

-Parameter setttings-

l Mode:
1 . .
Loss on unlabeled data Qpu (W) = —— |[W'X" — V’Flé”i* Labeled target data:

T n—1{ Unlabeled target data:

lambda_2:

HKUST - lJCAI 2011 34



Experiments - Results

Table 3: Comparison results on varying size of unlabeled data
in the target task (accuracy in %).

Dataeci Unlabeled data involved in SSETL
20% | 40% | 60% | 80% || 100%

20NG | 80.5 | 809 | 81.8 | 84.0 | 84.5
Google | 745 | 749 | 76.4 | 77.9 | 80.3
AOL 73.4 | 75.7 | 77.1 | 78.2 || 80.7
Reuters | 75.5 | 77.7 | 77.8 | 78.7 | 80.1

-Parameter setttings-
Mode:

oAt B min Qpe (W) 4+ A ||[W|3 + Ao Qpu (W) Labeled target data:
w E z Source models:

lambda_2:

HKUST - lJCAI 2011 35



Experiments - Results

Table 4: Overall performance of SSFTL under varying values
of A2 (accuracy in %).

Ao of SSFTL
Dataset —4—4501T 0011 01 | T | 10 | 100
20NG | 832 | 84.1 | 845 | 85.3| 84.8 | 83.3 | 79.3
Google | 76.6 | 79.1 || 80.3 | 78.7 | 782 | 77.4 | 74.3
AOL | 783 | 795 | 80.7| 79.1| 78.8 | 763 | 73.4
Reuters| 75.5| 78.2 | 80.1 | 785 | 76.0 | 72.1 | 68.5

Supervised SSFTL

Semi-supervised SSFTL

-Parameter setttings-
Our regression model IR RVNEA AR RIANUIEEDS VRV AN Labeled target data:
w T Unlabeled target data:

Source models:

HKUST - lJCAI 2011 36



Experiments - Results

Table 5: Analysis on weighted and uniform SSFTL under
varying number of labeled data (accuracy in %).

Ditaset Uniform SSFTL Weighted SSFTL

o' | 10 |20 | 30 | 5 | 1O | 20 | 30
20NG |72.8|80.7|81.2|81.9|80.6| 81.6| 84.5| 85.9
Google | 64.1| 67.0|70.8| 77.2|73.4|75.7| 80.3| 81.1
AOL |69.8|71.7(72.1|74.8|74.3|77.7| 80.7| 82.5
Reuters | 69.7|70.3| 75.5|78.8| 74.3|76.9| 80.1| 82.6

For each target instance, we first aggregate f
its prediction on the base label space, and
then project it onto the latent space —

1 v
Loss on unlabeled data Opy (W) = —7 |[W'X" — V’F'§||§~
| | — 7
Our regression model min QD::T (W) + M ||W]|7 + A2 OQpu (W)

—
HKUST - IJCAI 2011 37

-Parameter setttings-
Mode:
Labeled target data:

Source models:
Unlabeled target data:
lambda_2:




Related Works

Table 6: Summary of some related transfer learning works.

Transfer learning methods Scalability | Diff. label
RSP [Shi et al., 2009/ X Vv
EigenTransfer [Dai et al., 2009] X s
MTL-MI [Quadrianto et al., 2010} X V4
DAM [Duan et al., 2009. V4 X
LWE [Gao et al.. 2008 \/ X
SSFTL Vv Vv

HKUST - [JCAI 2011
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Summary

*** Source-Selection-Free Transfer Learning

** When the potential auxiliary data is embedded in very
large online information sources

*** No need for task-specific source-domain data

*** We compile the label sets into a graph Laplacian for
automatic label bridging

“* SSFTL is highly scalable

¢ Processing of the online information source can be done
offline and reused for different tasks.



Heterogeneous Transfer
Learning

Heterogeneous Transfer Learning for Image Clustering
via the Social Web.
Qiang Yang, Yugiang Chen, Gui-Rong Xue, Wenyuan Dai
and Yong Yu.
In Proceedings of the 47th Annual Meeting of the ACL

and the 4th IJCNLP of the AFNLP (ACL-1JCNLP'09),
Sinagpore, Aug 2009, pages 1 -- 9.




HTL Setting: Text to Images

e Source data: labeled or unlabeled
* Target training data: labeled

The apple is the pomaceous fruit
Apple of the apple tree, species Malus
domestica in the rose family
Rosaceae ...

Banana is the common name for a
type of fruit and also the
herbaceous plants of the genus
Musa which produce this commonly
eaten fruit ...

Banana

Testing: Images
Training: Text 41



Y. Zhu, G. Xue, Q. Yang et al. Heterogeneous transfer learning for
image classification. AAAI 2011

Unlabeled Source data

Our Heterogeneous Transfer Learning for Image Classification

Heterogeneous Transfer Learning for Image Clustering (Yang eft. al. 2009)
Self-taught learning (Raina et. al. 2007)

Unlabeled

Auxiliary

Images

Tags swim @ @
A\

Unlabeled | Document 1: Dogument 2:

Auxiliary | |SwiiDin the Grass is
Documents morning green

sports




Current Work on HTL - Clustering

e Coreidea:
— Looking for a latent space Z (cluster center space)

Tags @ ﬁ(e/ |
NG © P(f|2)
Image space@@

Figure 3: Graphical model representation of
aPLSA model.

@Bag-of-featu res



Current Work on HTL - Clustering

Sources used for

Auxiliary co-occurrence data

transferring

Exploit Tags to help

grass

football

target images’
clustering

duck

@Target images




Current Work on HTL - Classification

Sources used for
1® Target images

Auxiliary co-occurrence data

transferring

Y

Document 1 grass s »
How about playing ) .J
the football at night? \

football

Document 2 &
The duck is so cute duck =)
that | cannot leave it.

Document 3 ——

I . . th (0]

SWIm In e \ ‘ ?} oo
morning...... N

Fxploit abundant unlabeled documents to
help target images’ classification



Experiments: # text docs

Accuracy
76 T T T T T T T T T
T4+
720
> —f— HTLIC
O .
® 70l e Ol _
3 === PCA
S TAG
@
g
5 68 .
&
esr _
64 -
62 | 1 1 1 | 1 1 | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of auxiliary unlabled documents

# text docs



Adding documents as if they were
Images (Ying Wei and Yanggiu Song)

e Supervised Alignment and Classification
— Obtain the latent space as Yin’s work, i.e. CMF

— Project both source and target data into the
latent space, as depicted in figure (a)

— Align and classify simultaneously, obtain the

results in figure (b)

Latent
space

Current

(a)

Latent
space

Expected

(b)




Results

 why add documents/

. 92 T - T ' T ' |
not images? e
88 — - ]
— Abundant documents ... — _
but comparably less - ]
] >‘82- ;
labeled images g a0 _

3 784

— The documents added " 7 :
74 < -
may outperform the  _,; ——documents
same number of °1" ]
images added O 10 20 30 40 5 60 70 8 90 100 110

# of documents/images added



accuracy

Results

* Comparison of Algorithm 1/CMF/ViCAD

— CMF can hardly converge after 60 documents
added ' 0 , 2 , 4 , 6 , 8 , 10

92—t : . , 92
90 . 90
88 . 88 - h
86 ] 86 ]
84 ] 84 - ]
82 ] 82 ]
80 ] 80 - ]
78 ] ] '
76 - 1 3 ;Z ] E
74 _' » g 74 J E
72 4 -' 3 72 B
i - ®© ] 4
70 h 70 ]
68 1 68 -] ]
66 - —a— Algorithm 1| 66 -] —a— Algorithm 1/
64 CMF i 64 CMF I
62 —e—VIiCAD h 62 - —e— ViCAD F
60 - 1 60 ] g
400 O 100 200 300 400 500 600 700 800 S 40 0 10 20 30 40 50 & 70 8 90 100

# of documents # of documents



Conclusions

We have seen three applications of Transfer
Learning

— cross-domain sensor-based activity recognition
— social-media source free transfer learning
— Heterogeneous transfer learning
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