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Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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Deep Learning Models that support
inferences and discover structure at
multiple levels.

I\/Iostly Unlabeled

* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.



Deep Boltzmann Machine

Sanskrit Model P(image)
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25,000 characters from 50
alphabets around the world.

* 3,000 hidden variables

» 784 observed variables
(28 by 28 images)

* Over 2 million parameters

Bernoulli Markov Random Field



Deep Boltzmann Machine

Conditional
Simulation

P(image|partial image) Bernoulli Markov Random Field



Deep Boltzmann Machine

Conditional
Simulation

Why so difficult?
28

o

928X28 possible images!

P(image|partial image) Bernoulli Markov Random Field



Deep Generative Model

Model P(document) Reuters dataset: 804,414
newswire stories: unsupervised
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Convolutinal Deep Models
for Image Recognition

C1 Layer C2 Layer
Input Image X P2 Layer Output Labels
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Convolutions Max Pooling Convolutions Max Pooling
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Feature Extraction ®(x)

* Learning multiple layers of representation.

(LeCun, 1992)



Learning Feature Representations
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Learning Feature Representations
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How is computer perception done?

Input Low-level Learning
Data = features = Algorithm

Object
detection =) - )
Image Low-level
vision features
Audio 5
classification E :
[ ]
Audio Low-level Speaker
audio features identification

Slide Credit: Honglak Lee



Computer vision features
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Audio features
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Audio features
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Feature Learning: Can we learn ==
meaningful features from
unlabeled, partially labeled data? s

Flux ZCR Rolloff



Talk Roadmap
Part 1: Deep Networks

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Advanced Deep Models.

* Deep Boltzmann Machines
* Learning Structured and Robust Models
 Multimodal Learning



Restricted Boltzmann Machines
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Image visible variables

Bipartite o ndirected bipartite graphical model
Structure

‘\b * Stochastic binary visible variables:
v € {0,1}”

* Stochastic binary hidden variables:
hc{0,1}"

The energy of the joint configuration:
E(V, h; (9) = — Z W,L-jvihj — Z b@-vi — Z ajhj
1] 7 7

6 = {W,a,b} model parameters.



Restricted Boltzmann Machines

hidden variables
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/"", \b Py(v,h) = 1 exp (— E(v,h;0))
Pair-wise Unary
—— A A

Z(0)
1 D F D F
PQ(V, h) = Z(@) exp Z Z Wij’qu;hj + Z ”Uibi + Z hjaj
1=1 7j=1

i=1 j=1

Et'fjg:free Probability of the joint configuration is
given by the Boltzmann distribution:

Z(0) = Zexp (— E(v,h;0))

Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

Bipartite . . .
structure  Restricted: No interaction between

hidden variables

e
AN

e )

Inferring the distribution over the
hidden variables is easy:

P(blv) = [T PbsIv) Pl = 1) = o
N J 1 + exp( Zz'Ww i i)

Image visible variables

Factorizes: Easy to compute
Similarly:

P(vlh) = HP(Uq;|h) P(v; = 1]h) = 1

1+ eXp(— Zj Wijhj — bz)

Markov random fields, Boltzmann machines, log-linear models.



Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features
1 S —

Most hidden
New Image: p(h7f 1]v) P(h29l= 1}v) variables are off
J(x) _ 1 Logistic Function: Suitable for

I+exp(—=2)  modeling binary images

Represent:E as  P(h|v) =0, 0, 0.82, 0, 0, 0.99, 0, 0 ... |



Model Learning

hidden variables

i

;

visible variables

1
Py(v) = E10) D exp [VTWh +a'h+b'v
h

Given a set of i.i.d. training examples
D ={v) v® . v(N1, wewanttolearn
model parameters § = {W, a, b}.

Image

Maximize (penalized) log-likelihood objective:

N
1 A
L(0) = = " log Po(v(™) — L[WIJ3

n=1
|\ J

Y
Regularization



Model Learning

hidden variables

() ()
‘\\\\\/\‘ﬂ\\\/// Maximize (penalized) log-likelihood objective:
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Image visible variables

1 & oy A ,
L(9)=NzlogPe(v ) =~ IWllE

n=1

Regularization

Derivative of the log-likelihood:

OL(O) 1 <~ 8 )T T ) 2\

2

= Ep,,..Vikj] — Ep,[vihj] — ﬁWiﬂ'



Model Learning

hidden variables

I\\\\\\‘IK\\/// Derivative of the log-likelihood:
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Image  visible variables v.,h
Easy to /
compute exactly
Difficult to compute:
Paata(v,h;0) = P(h|v;0)Paata(V) exponentially many
1 configurations.
Pdata(v) — A7 5(V — V(n))
N Zn: Use MCMC

Approximate maximum likelihood learning



Approximate Learning
* An approximation to the gradient of the log-likelihood objective:
OL(0)
oW,

=Ep, .. [vih;] —Ep,]

v;h
szh Pg V h
v.,h

* Replace the average over all possible input configurations by samples.

* Run MCMC chain (Gibbs sampling) starting from the observed
examples.

(. Initialize v0=v )
e Sample h® from P(h | v°)
* For t=1:T
- Sample vt from P(v | ht1)
- Sample ht from P(h | v)

\_ J




Approximate ML Learning for RBMs

Run Markov chain (alternating Gibbs Sampling):
P(h|v)

hOO\ QO OO
v OOO OOO OOO

Data T=infinity

I Equilibrium

Distribution
1

- 1 + eXp(— Zz Wijvz- — CLj)

P(vlh) = HP(Uz'|h) P(v; = 1|h) = 1 + exp(— Zl. Wijh; — b;)




Contrastive Divergence

A quick way to learn RBM:
e Start with a training vector

P(h|v) on the visible units.

h OO OQ e Update all the hidden units

in parallel.

e Update the all the visible

N /A
v OOO OOO units in parallel to get 2

‘reconstruction”.
Data Reconstructed Data
P(v|h) e Update the hidden units

again.

Update model parameters:

AW,; = Ep,,,, [vih;] — Ep, [vih;]

Implementation: ~10 lines of Matlab code.



RBMs for Real-valued Data

hidden variables Pair-wise Unary
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D D F
PQ(V|h) :HPQ(”UZ"h) :HN (bi—i‘ZWijhj,O'?)
Image visible variables 1=1 1=1 j=1

Gaussian-Bernoulli RBM:

 Stochastic real-valued visible variables v € RP.
* Stochastic binary hidden variables h € {0, 1}*.

* Bipartite connections.



RBMs for Real-valued Data

hidden variables Pair-wise Unary

‘\\\"/\‘ﬂ\\'// Py(v,h) = : exp i i Wijhj—> + (i fi)Q + i a;h;
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Image visible variables

AS b= (Wa.b)
D D F

Pg(V|h) = HPO(UZ|h) o HN b; + ZWijhj,O'iQ
i=1 i=1 =1

Learned features (out of 10,000)

4 million unlabelled images




RBMs for Real-valued Data

hidden variables Pair-wise Unary

‘\\\"/\‘ﬂ\\'// Py(v,h) = : exp i i Wijhj—> + (i fi)Q + i a;h;
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Image visible variables

AS b= (Wa.b)
D D F

Pg(V|h) = HPO(UZ|h) o HN b; + ZWijhj,O'iQ
i=1 i=1 =1

Learned features (out of 10,000)

4 million unlabelled images




RBMs for Word Counts

h OOOOJ Pair-wise Unary
v 1 | —— A
@ 6T Po(v,h) =z exp ( :;Z‘Wj; vih; +2k21 kbk+;h]%)
@0 O B
@ O IOK 0 ={W,a,b}
| k F k
v %B 81 Pt = 1y = 2 U i R

S oxn (1« S 1)

— ])—>
Replicated Softmax Model: undirected topic model:

e Stochastic 1-of-K visible variables.
» Stochastic binary hidden variables h € {0,1}*".

* Bipartite connections.
(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)



RBMs for Word Counts

h {OOOO’ Pair-wise Unary
A A
W s \ 1 . \ r—‘ ™\ i
© O [0 b=z e Jng vihy +szkbk+zhg%
@ O O 1=1 k:zl =1 1=1 k=1 j=1
© 0O Ok 0 = {W.a,b}
CXp (bz’ + Zj:l thij)
v @O Ql Py(vf = 1|h) = — — -
—]—> Zq:l exXp (bi + Zj:l thij)
A REUTERS -
250 AP Associated Press Learned features: topics”’
WIKIPEDIA
russian clinton computer | trade stock
Reuters dataset: russia house system country wall
804,414 unlabeled :> moscow | president | product import street
newswire stories yeltsin bill software world point
Bag-of-Words soviet congress develop economy | dow

|



Collaborative Filtering

1
Pg(V,h) = Z(@) exp (ZWE’Uch + be?)f + Zajhj)
J

ijk ik

Binary hidden: user preferences

Learned features: 'genre”

Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
The People vs. Larry Flynt Con Air
Multinomial visible: user ratings Canadian Bacon Men in Black II
La Dolce Vita Men in Black
Netflix dataset:
480,189 users |:> Friday the 13th Scary Movie
17.770 movies The Texas Chainsaw Massacre Naked Gun
’ Children of the Corn Hot Shots!
Over 100 million ratings Child's Play American Pie
The Return of Michael Myers Police Academy

NETELIY
State-of-the-art performance
on the Netflix dataset.

(Salakhutdinov, Mnih, Hinton, ICML 2007)



Different Data Modalities

* Binary/Gaussian/Softmax RBMs: All have binary hidden
variables but use them to model different kinds of data.

hidden variables h ‘O O O O’
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Product of Experts

The joint distribution is given by:

1
Py(v,h) = Z0) exp (Z Wijvihj + Z biv; + Z a;h;)
ij { J

Marginalizing over hidden variables:

Pg (V) =

government
auhority
power
empire
putin

A Product of Experts

N
1
Z Py(v,h) = Z00) H exp(b;v;) H 6—# exp(a; + Z Wijvz-)>
h i j :
clinton bribery oil stock
house corruption barrel wall
president dishonesty | exxon street
bill putin putin point
congress fraud drill dow

n »n

Topics “government”, “corruption” and
”0il” can combine to give very high
Putin probability to a word “Putin”.

(Salakhutdinov & Hinton, NIPS 2010)



Pg (V, h) =

government
auhority
power
empire
putin

clint
hou
pres
bill

con;

Product of Experts

The joint distribution is given by:

Reuters dataset

duct of Experts

Replicated

LDA 50-D

Softmax 50-D

J

tations allow the

0.001 0.006 0.051 0.4

"corruption” and
16 6.4 256 100

Recall (%) ve very high

“Putin”.



Multiple Application Domains

Natural Images
Text/Documents

Collaborative Filtering / Matrix Factorization
Video

Motion Capture
Speech Perception

Same learning algorithm --
multiple input domains.

Limitations on the types of structure that can be
represented by a single layer of low-level features!



Talk Roadmap
Part 1: Deep Networks

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Advanced Deep Models.

* Deep Boltzmann Machines
* Learning Structured and Robust Models
 Multimodal Learning



Deep Belief Network

* Probabilistic Generative model.

e Contains multiple layers of nonlinear
representation.

* Fast, greedy layer-wise pretraining
algorithm.

* Inferring the states of the latent
variables in highest layers is easy.



Deep Belief Network

4/
RIS

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

Internal representations capture
higher-order statistical structure

Higher-level features:
" Combination of edges

Low-level features:
Edges

W

'/ié‘!\i";‘/y#
gV oNike
b «!,,. e

Built from unlabeled inputs.

.' Input: Pixels

Image

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

Visible Layer V ()



Deep Belief Network

The joint probability
distribution factorizes:

Deep Belief Network

1 2 3
. RBM P(v,h* h" h°)
= P(v|h!')P(h'|h*)P(h?, h?)
I\ J U J
Y Y
Sigmoid Sigmoid Belief RBM
Belief Network
Network
P(h? h3) = E (vlv3) exp [h?' W?h?]

1
hilh?)  P(hj =1|h?) =
i 1+ exp (— > Wfkh%>

1
P(vih!) = T P(v; /0! P(v; = 1|h") =
() = [ Plun -~y




Deep Belief Network

Approximate Generative

Inference A A Process
Q(h3h?) P(h* h®)

\ 4
Q(thl)T P(h'[h?)

\ 4

fx
P(v|h')
h'|v
Q(h*[v) |




DBN Layer-wise Training

* Learn an RBM with an input

layer v and a hidden layer h.




DBN Layer-wise Training

* Learn an RBM with an input
layer v and a hidden layer h.

 Treat inferred values

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

* Learn and freeze 2" layer
RBM.




 Treat inferred values

DBN Layer-wise Training

* Learn an RBM with an input
layer v and a hidden layer h.

Unsupervised Feature Learning.

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

* Learn and freeze 2" layer

o Q)

* Proceed to the next layer.

Q(h'|v) T




* Treat inferred values ;

DBN Layer-wise Training

* Learn an RBM with an input

layer v and a hidden layer h. Unsupervised Feature Learning.

|
Q(h'|v) = P(h'|v) asthedata |
for training 2"9-layer RBM. ;
|
|
|

N>

S
{ X
\ /

e Learn and freeze 2" layer h? () )
RBM. (Layerwise pretraining \v&iéli
. proced iMproves variational .”‘:’.\‘.
_lower bound ) ‘\’4’“\"/4 Wi
Q(h'|v) |

e
o



Why this Pre-training Works?

* Greedy pre-training improves variational lower bound!

HOQP OGSO

K] \.{/4
1 wi /I ~\
* For any approximating Qb |V)T / \‘\

5
distribution Q(h*|v) oo o0 U v
log Py(v) = > Py(v,h')
hl

X

N\ X7

>3 " Q(h'fv) llog P(h') +log P(v|h1)] +H(Q(h'|v))



Why this Pre-training Works?

Greedy training improves variational lower bound.

RBM and 2-layer DBN are equivalent

when W2 — '

The lower bound is tight and
the log-likelihood improves by
greedy training.

Q(h'|v)

For any approximating
distribution Q(h'|v)

. 1
log Pp(v) = %:PO(V’ h’) Train 2"d-layer RBM

> " Q(h'|v) llog P(h') 4+ log P(v|h')| + H(Q(h'|v))



Supervised Learning with DBNs

* If we have access to label information, we can train the joint

e Discriminative fine-tuning:

generative model by maximizing the joint log-likelihood of data
and labels

log P(y, V)

* Use DBN to initialize a
multilayer neural network.

e Maximize the conditional
distribution:

log P(y|v)




Sampling from DBNs

* To sample from the DBN model:
P(v,h', h?* h?)= P(v|h!)P(h'|h?)P(h?, h?)

* Sample h? using alternating Gibbs sampling from RBM.
e Sample lower layers using sigmoid belief network.

Gibbs chain




Learned Features

15t-layer features 2nd_layer features




Learning Part-based Representation

, Faces
Convolutional DBN

Groups of parts.

Object Parts

Trained on face images.

Lee et.al., ICML 2009



Learning Part-based Representation

Elephants Chairs

Lee et.al., ICML 2009



Learning Part-based Representation

third layer ed from 4 cbject categories

Groups of parts.

Class-specific object
parts

Trained from multiple
classes (cars, faces,

motorbikes, airplanes).
Lee et.al., ICML 2009




Deep Autoencoders

RBM

RBM

J RBM

Pretraining

Decoder

Unrolling

“‘: s

J

2000
Tw,u,

Fine-tuning



Deep Autoencoders

* We used 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract
30-D real-valued codes for Olivetti face patches.

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.



Information Retrieval

European Communit ) -

Energy Markets - . .° "." ’
- i i’ .. Disasters and
©.7s¢  Accidents

.-‘ :?
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e

Leading N 3 YR '-"'."-:h Legal/Judicial
Economic - & ; ; K\
Indicators . v N
. lé"‘
A nte/ Government
ccounts Borrowings
Earnings

* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the

training set. _ _ _
(Hinton and Salakhutdinov, Science 2006)



Semantic Hashing

European Community ogo;g;g,saa

Monetary/ECONOMIC o986 .0 8o ® o c
i 9° om‘%ﬁ g .x0

Address Space

® \ Semantically
K Similar
. Documents

.....

Semantic

Hashing
Function \

Document

* Learn to map documents into semantic 20-D binary codes.

Disasters and
Accidents

v
.vv

v
Government
Borrowing

Accounts/Earnings

* Retrieve similar documents stored at the nearby addresses with no

search at all.

(Salakhutdinov and Hinton, SIGIR 2007)



Searching Large Image Database using
Binary Codes

* Map images into binary codes for fast retrieval.
Input image 30-RBM

* Small Codes, Torralba, Fergus, Weiss, CVPR 2008

* Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008

* Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
* Norouzi and Fleet, ICML 2011,



Talk Roadmap
Part 1: Deep Networks

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Advanced Deep Models.

* Deep Boltzmann Machines
e Learning Structured and Robust Models
* Multimodal Learning



Deep Boltzmann Machines
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Deep Boltzmann Machines

Learn simpler representations,

! : then compose more complex ones
Higher-level features:
.‘ Combination of edges

,‘3 ’ Low-level features:
kﬁ/ﬁ\}y/ Edges

g“?‘i’?f‘?q.‘\. Built from unlabeled inputs.
IONJT

4

i
A
L

Image

Input: Pixels




DBNSs vs. DBMs

Deep Belief Network Deep Boltzmann Machine

DBNs are hybrid models:
* Inference in DBNs is problematic due to explaining away.
* Only greedy pretrainig, no joint optimization over all layers.
* Approximate inference is feed-forward: no bottom-up and top-down.

Introduce a new class of models called Deep Boltzmann Machines.



Mathematical Formulation

P*(v) 1 Trrrlnl 17 11721.2 2T 11731.3
P = = —— W-h h™ W-“h h“ W-h
(V) Z(0) Z(0) hl%;hg exp [V — +

Deep Boltzmann Machine 0 = {W', W?* W?>} model parameters

* Dependencies between hidden variables.
* All connections are undirected.

* Bottom-up and Top-down:

P(h? = 1|h',h?) = J(Z Y Wﬁljh}n)
k m

7 ™~

Top-down Bottom-up

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio et.al.), Deep Belief Nets (Hinton et.al.)



Approximate Learning

1

Py(v,h™ h® h®) = 0

exp [vTW(l)h(l) L hO ' WWOR® L h@ T R®)

(Approximate) Maximum Likelihood:

0log Py(v)
oW1

T T
=Ep,, [vh! | —Ep,[vh! ]

ata

* Both expectations are intractable!

N
Pda,ta(v) — % Z (S(V — Vn)\ NOt faCtOrIa| any more'



Approximate Learning

1

Py(v,h™ h® h®) = Z0

exp [VTWu)h(l) O TR h(2)TW(3)h(3)]

(Approximate) Maximum Likelihood:

0log Py(v)

T T
S [vh' | —Ep,[vh! ]

:EPd

ata




Approximate Learning

1
Z(0)

Py(v.h @ h® n®) = Lo [VTWmh(l) hO TR h<2>TW<3>h<3>]

(Approximate) Maximum Likelihood:

0log Py(v) T
oW1 ‘ S

Variational Stochastic
Inference Approximation

(MCMC-based)
(v,h') :data (v)

N
Pda,ta(v) — % Z (5(V — Vn)\ NOt faCtOFIa| any moreI




Previous Work

Many approaches for learning Boltzmann machines have been
proposed over the last 20 years:

 Hinton and Sejnowski (1983),

* Peterson and Anderson (1987) _ .
* Galland (1991) Real-world applications — thousands

* Kappen and Rodriguez (1998) of hidden and observed variables

 Lawrence, Bishop, and Jordan (1998) ith milli £ t
« Tanaka (1998) wIith millions or parameters.

* Welling and Hinton (2002)
* Zhu and Liu (2002)

* Welling and Teh (2003)

* Yasuda and Tanaka (2009)

Many of the previous approaches were not successful for learning
general Boltzmann machines with hidden variables.

Algorithms based on Contrastive Divergence, Score Matching, Pseudo-
Likelihood, Composite Likelihood, MCMC-MLE, Piecewise Learning, cannot
handle multiple layers of hidden variables.



New Learning Algorithm

Posterior Inference Simulate from the Model

Unconditional
Approximate Approximate the m
conditional joint distribution

Pyata(h|v) Proder(h, v) 23




New Learning Algorithm

Posterior Inference Simulate from the Model

Approximate Approximate the
conditional joint distribution

Pdata(h|v> Pmodel(ha V)

l l

EPdata [Vh—l—] EP e VhT

Data- Data-independe
depend. J/

Y
Match /

O
o\ > 4 v




New Learning Algorithm

Posterior Inference Simulate from the Model

/AL
Markov Chain
[I\/Iean-FieId] Monte Carlo )

L B4 : ul
EPdata [Vh—l—] odel L
Da
de|

Dafta-dep
‘\0 Data-inde




Variational Inference

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)

Approximate intractable distribution p,(h|v) with simpler, tractable
distribution @, (h|v):
log Pp(v) > log Pp(v .
0 (Approximate) Maximum Likelihood:\
— p

0log Py(v) T
Lo Epy,[vht )~ Ep,[vh! ]
Mean-l|| /

Q(z)
P(x)

KL(QIP) = [ Q) log Sde

Variational
\ Inference
Variational | — -
lower bound w.r.t. variational WP = o[ S w2+ ngmugv

parameters 4 .

. . J
No-nllnear f|?<ed- O — g ( Sow M;(f))
point equations: '™ i



Stochastic Approximation

Time t=1

X1 Tgl (X1 %Xo)
Update ¢, and x, sequentially, where x = {v, h', h?}
* Generate x; ~ Ty, (x4 x;_1) by simulating from a Markov chain

that leaves Py, invariant (e.g. Gibbs or M-H sampler)

* Update 6, by replacing intractable Ep, [VhT] with a point
estimate [v;h, |

In practice we simulate several Markov chains in parallel.

Robbins and Monro, Ann. Math. Stats, 1954
L. Younes, Probability Theory 1989



Learning Algorithm

Update rule decomposes:

m m T
Oi1 = 0; + (Epdm[th] —— v 'h{™ )Pet vh']

|\ \ g
" Y
/ True gradient X Perturbation term ¢;

Almost surdfanvatdenaaduarantees as learngRCHNACQy — 0

Inferenceproplem: High-dimensional data:

. \ ]y multimodal.
Learning can scale to

millions of examples

Connections to ﬁmmmwmmapﬂ(e MCMC.

[ Fast Inference
— |




Good Generative Model?

Handwritten Characters



Good Generative Model?

Handwritten Characters
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Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters
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Good Generative Model?

MNIST Handwritten Digit Dataset
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Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm ' Error Learning Algorithm I Error I
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



Generative Model of 3-D Objects

\C [==| K
K| P
ARBACEE
N |2 | o
W TR
H ||

24,000 examples, 5 object categories, 5 different objects within each
category, 6 lightning conditions, 9 elevations, 18 azimuths.



3-D object Recognition

NORB Dataset: 24,000 examples

Pattern
Completion

Learning Algorithm Error '
Logistic regression 22.5%
K-NN (LeCun 2004) 18.92%
SVM (Bengio & LeCun 2007) 11.6%
Deep Belief Net (Nair & Hinton 9.0%
2009)

DBM 7.2%

L o -
& 5 -




Learning Hierarchical Representations

Deep Boltzmann Machines:
Learning H g Y e
. Need more structured
In Features)
ofedges. | and robust models |~

* Performs well in many application domains
* Fast Inference: fraction of a second
* Learning scales to millions of examples



Talk Roadmap
Part 1: Deep Networks

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Advanced Deep Models.

* Deep Boltzmann Machines
e Learning Structured and Robust Models
* Multimodal Learning



Face Recognition

Yale B Extended Face Dataset
4 subsets of increasing illumination variations

Subset 1

Due to extreme illumination variations, deep models
perform quite poorly on this dataset.



Deep Lambertian Model

Consider More Structured Models: undirected + directed models.

cooco 8~ ©o000

43 + 3 _

OOOOOO] OOOOOO . % Deep
3 Undirected
- S
"EEE =

J

\ l / } Directed

E Observed

Image

Combines the elegant properties of the Lambertian model with the
Gaussian DBM model.

(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)



Lambertian Reflectance Model

* A simple model of the image formation process.

I = a x |f||d] cos(8)
/ \ TN me

Image Light  Surface
albedo source normal

viewer

e
AL

......

uuuu
)

 Albedo -- diffuse reflectivity of a surface, material
dependent, illumination independent.

 Surface normal -- perpendicular to the tangent ,
plane at a point on the surface.

* Images with different illumination can be generated by varying light
directions



Deep Lambertian Model

3""
‘e F =
\ l / Image  Surface |jght
B albedo normals source
\ N | 7

Ob d -
"eTYE P(vl]a,N,?) H N(vz\az ZTE),02)

Image
repixels

acRP NeRPX3 ¢cR3



Deep Lambertian Model

Transfer Learning

Albedo DBM:

1/ Pretrained using

Toronto Face Database

CEISEI]

a ~ GDBM(a)

Image  Surface |jght
albedo normals source

A

Ob d - —
"eTYE P(v|a,N,/) = H N(vi\ai(ﬁjﬁ N

Image
repixels

Inference: Variational Inference.
acRP NeRPX3 ¢cR3

Learning: Stochastic Approximation



Yale B Extended Face Dataset

» 38 subjects, ~ 45 images of varying illuminations per subject,
divided into 4 subsets of increasing illumination variations.

» 28 subjects for training, and 10 for testing.



Face Relighting

One Test Image

Inferred
Observed 3|phedo Face Relighting




Recognition Results

Recognition as function of the number of training images for
10 test subjects.

Yaﬁ'eB[What about dealing with |
occlusions or structured

J

Test Error

One-Shot | | | | | |
.- 0 1 2 3 4 S 6 / 8
RECOgn |t|0 n Number of training images



Robust Boltzmann Machines

e Build more structured models that can deal with occlusions or

structured noise.

Inferred

log P(v,v,s,h,g) ~

Inferred
Binary Mask Truth

Observed |
Image

(Tang et. Al,, ICML 2012, Tang et. al. CVPR 2012)



Robust Boltzmann Machines

e Build more structured models that can deal with occlusions or

structured noise.
h log P(v,v,s,h,g) ~

COOOJ0

1 (’Ui—bi)Q
Uﬁ ﬁw ~5 2, 3 +vWh

1

1Epixels
\ | J L J
Y Y
S Gaussian RBM, modeling Binary RBM
clean faces modeling occlusions
1
~ \2
—5 d "~ visi(vi — ;)
rEpixels /
s R 4
\ V / Binary pixel-wise Gaussian noise model
Mask

Observed
Image (Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)




Robust Boltzmann Machines

e Build more structured models that can deal with occlusions or

structured no'se
e | log P(v,v,s,h, g) ~

g
[OOOOO] )
Uﬁ ﬁw -5 > (” b)) TWh+sTUg
zEplxels i
! J \ J
Y Y

S \Vs Gaussian RBM, modeling Binary RBM
clean faces modeling occlusions
& p 1 [ L\2

[ P(v|h, g) is a heavy-tailed distribution }
4 /

Binary pixel-wise Gaussian noise model
Mask

& -

Inference: Variational Inference.
Learning: Stochastic Approximation



Recognition Results on
AR Face Database

Internal states of
RoBM during
learning.

Inferred
A

.40 50 # of iterations



Inferred

A

Recognition Results on
AR Face Database

009999988 i

”999%99@99
e m

¥ “ “ 'H"B “ "o

Learning Algorithm Sunglasses Scarf
Inference on the

BRBY ooev | o [0
RBM 61.7% 32.9%
.-.. Eigenfaces 66.9% 38.6%
Initial LDA 56.1% 27.0%
# of iteratior | Pixel 51.3% 17.5%




Transfer Learning

N
)
—
O

“segway”’

0V

ae/
e
Y =
H 7 ¢

5t & glgl):
Ni &Mk S

HE T
o

Mé‘b

How can we learn a novel concept — a high dimensional

statistical object — from few examples.



Supervised Learning

Motorcycle

Test:

0



Transfer Learning

Background Knowledge

/I\/Iillions of unlabeled images\ Learn to Transfer
o -y E— Knowledge

Learn novel concept
from one example

e | B L4 Test: ‘;,
(PR A NG What is this? &
Elephant Tractor




An Example

Structure in classes!

e b
F 4

Leopard
000

Slide Credit: Nitish Srivastava



Hierarchical-Deep Models

(Salakhutdinov, Tenenbaum, Torralba, NIPS 2011, PAMI 2013)
One Shot Learning

HD Models: Integrate
hierarchical Bayesian models
with deep models.

-T— Super- category

e

Hierarchical Bayes:

* Learn hierarchies of categories for
sharing abstract knowledge.

Deep Models:

* Learn hierarchies of features.
* Unsupervised feature learning — no need
to rely on human-crafted input features.



Hierarchical-Deep Models

(Salakhutdinov, Tenenbaum, Torralba, NIPS 2011, PAMI 2013)

) H _
Tree hierarchy of
ad G classes is learned
ugnimal” 7 ~ NCRP (Nested Chinese Restaurant Process)
animat = o G3) “vehicle” prior: a nonparametric prior over tree
structures
&) Bm @ @ @
= ~ o h3|z ~ HDP (Hierarchical Dirichlet Process) prior:
@; G G \@§ \@ a nonparametric prior allowing categories to
share higher-level features, or parts.
E||(| @] || @] ||| ||
ol ol v|h® ~ DBM Deep Boltzmann Machine
horse| | cow car van truck

Enforce approximate global consistency

through many local constraints.
23 |
Ll 000000 & Incorporate prior knowledge to
£ 3 deal with occlusions, corrupted or missing data.

OCOO00OJ

Images, Handwritten characters,
Motion capture datasets.



CIFAR Object Recognition

(Salakhutdinov, Tenenbaum, Torralba, NIPS 2011, PAMI 2013)

Learned high-level
.| features

) H .
Tree hierarchy of
ad Gy classes is learned

o ° »”
animal .
G oy G?) “vehicle”

DBM generic
features

features

horse| | cow car van truck

10000

Lower-level
generic features




CIFAR Object Recognition

(Salakhutdinov, Tenenbaum, Torralba, NIPS 2011, PAMI 2013)

classes is learned learned high-level features features.

“animal” 2
Gy | Gj) “vehicle” —

v Tree hierarchy of Each image is made up of
(7)) GO

G G, \@*? Each higher-level feature is made up
Higher- evel of lower-level features.
@
features @ 18|}
G [ @
horse| | cow car van truck
4 million Images
TOOOOMN 05 PFIA4E
Lower-level
generic features | A4




Learning Category Hierarchy

The model learns how to share the knowledge across many visual
categories.

“slobal” Learned super-

class hierarchy
“aquatic
animal”

turtle shark ray apﬁge pear A/\ .E-baby an Basic level
class

e o

Learned higher-level
class-sensitive features

dolphin

Learned low-level
generic features



Learning from 3 Examples

Given only 3 Examples Willow Tree Rocket

*® | &l

Generated Samples




Handwritten Character Recognition

N

&
“alphabet 1”

.Mu.ﬁq.ﬂ“.nht'..ﬂ”.ﬂﬂ.@ﬂ__

EeErTETEE /

T g o B T U5 ge

Y = VT =

*+ 3
OOO000

level features

+ 3
000000

25,000

characters




Simulating New Characters

Real data within super class

Super

uper
class 1 class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

uper Super
class 1 class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

uper
class 1

Super
class 2

o0

New class

Simulated new characters




Simulating New Characters

Real data within super class

vy
™
N
N
N

Super
class 2

o0

New class

FFNRWFF
FVYPFPPFPP
X ANNNMYN N
FrRFEMR R
F¥IFFFTA
EV VIV & &V v WV

uper
class 1

YIRS AR VLY,
NN IN o
N NNKNFN x

B
=
B
B
B
£

Clasg’2

Clads 1

Simulated new characters




Simulating New Characters

Real data within super class

uper
class 1

Super
class 2

o0

New class

%
=
}.
\
c
L
-
"
oy
"
-
L
&

Simulated new characters




Simulating New Characters

Real data within super class
T o e oy Yo o3Il
goegZ o oy T U gV gIm
H“TE’ZTE O o YO gOov X I
i T e o vuwgdvIr
e Tes oS T §ad v m

g v EF IR ooy Yo Vo vEs T
QQ Voo T E Toy TUYY ovE ™

New class

uper
class 1

Super
class 2

Simulated new characters

e
o
-
M
.
T
o

1939878
S G I e B B



Motion Capture

walk Drunken Walk 41

N
20 i

Sexy Walk




14

a0
35
30
257
207

Motion Capture

\lﬁunken Walk

The same model can be applled to \

speech, text, video, or any other

high-dimensional data.

QOO0

(ele]ele)

QOO0

(elelel®

QOO0

ﬁ)ooo

2 OOOO0

l

\i)OOO

0.9
0.8
0.7

0.3 .’ :
* Input space distance
— (no hierarchy)
0.1
0% -
0 0.102 0304 0506 07 08 09 1

HDP-DBM

false alarm rate




Talk Roadmap
Part 1: Deep Networks

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Advanced Deep Models.

* Deep Boltzmann Machines
e Learning Structured and Robust Models
 Multimodal Learning



Data — Collection of Modalities

 Multimedia content on the web -
image + text + audio.

e Product recommefhickr, L Tube

Google

car, :
automobile :

o R .r B 3 nlir:f_ighd

amazon

sunset, :
pacificocean, i
bakerbeach,
seashore, ocealg'l

Touch sensors %

" f ﬁ\
ston Audio



Multi-Modal Input

Improve Classification

pentax, k10d, kangarooisland
southaustralia, sa australia ﬁ SEA / NOT SEA

australiansealion 300mm

-

Fill in Missing Modalities
beach, sea, surf,
strand, shore, wave,

ﬁ seascape, sand,

ocean, waves

Retrieve data from one modality when queried using data from
another modality

beach, sea, surf,
strand, shore, wave,
seascape, sand,
ocean, waves




Building a Probabilistic Model

* Learn a joint density model:

P (ha Vimagey Vtext) .

* h: “fused” representation for
classification, retrieval.

P (h|Vimagea Vtext)

\.

bakerbeach,
seashore, ocean

~\

sunset, pacificocean,

J

Viext



Building a Probabilistic Model

* Learn a joint density model:

P (ha Vimagey Vtext) .

* h: “fused” representation for

classification, retrieval.

e Generate data from

conditional distributions

for

- Image Annotation

A

P (ha Viext ‘Vimage)

° . N
Missing
Data
§ J

Viext



Building a Probabilistic Model

* Learn a joint density model:

P(h.v: vV
P (havimageyvtext)- ( ) lmage’ text)

* h: “fused” representation for
classification, retrieval.

* Generate data from h
conditional distributions ﬁ %

for
(e
. : H sunset, paciticocean,
- Image Annotation Missing bakerbeach.
- Image Retrieval Data 5 seashore, ocean )

Vimage Viext



Challenges - |

Text
Very different input

( ) .
sunset, pacificocean, representations

bakerbeach, seashore,

ocean * Images — real-valued, dense
. Y,
i  Text — discrete, sparse
Sparse rre
pars | | _ Difficult to learn

cross-modal features
from low-level
representations.




Challenges - I

Text

pentax, k10d,

pentaxda50200, . ..
kangarooisland, sa, Noisy and missing data

australiansealion

mickikrimmel,
mickipedia,
headshot

< no text>

unseulpixel,
naturey, crap




Challenges - I

Text Text generated by the model

pentax, k10d,
pentaxda50200,
kangarooisland, sa,
australiansealion

beach, sea, surf, strand,
shore, wave, seascape,
sand, ocean, waves

mickikrimmel, portrait, girl, woman, lady,
mickipedia, blonde, pretty, gorgeous,
headshot expression, model

night, notte, traffic, light,

< ho text> lights, parking, darkness,
lowlight, nacht, glow
unseulpixel fall, autumn, trees, leaves,

foliage, forest, woods,
branches, path

naturey, crap




A Simple Multimodal Model

* Use a joint binary hidden layer.

* Problem: Inputs have very different statistical
properties.

e Difficult to learn cross-modal features.

h (OOO0000000000U

/ '\

Real-valued OOOO0
COOO0
COOO0

Vimage Vtext

1-of-K

CEEEE
00000
00000




Multimodal DBM

h (COOO00O0O0O000000O0

Gaussian model
Replicated Softmax

Dense, real-valued 00000 % 8 8 Word
image features OOO000O % 8 8 counts
OOOQO0 © Q9O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012)



Multimodal DBM

[©O000000000000
h' ©OO000 OO0O000)

Gaussian model
Replicated Softmax

Dense, real-valued 00000 % 8 8 Word
image features OOO000O % 8 8 counts
OOOQO0 @© Q9O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012)



Multimodal DBM

h? (0O000000000000

h? ©O0000) (elelel0l0l0)
h' ©O0O000 (elelolel0l0)

Gaussian model
Replicated Softmax

Dense, real-valued 00000 % 8 8 Word
image features OOO000O % 8 8 counts
OOOQO0 @© Q9O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012)



Multimodal DBM

h? (0O000000000000

Bottom-up
+ h?2
Top-down

{

h' COOO0O0]

Gaussian model ﬁ ¢

ﬁ Replicated Softmax

Dense, real-valued CO0OO0) % 8 8 Word
image features OOO000O % 8 8 counts
OOO0OQ0] @ O ©
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012)



Multimodal DBM

* [OO000000000000
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-
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Z P(vt

h(lt)

> p(vm,h(lm)|h(2m)))( ,h(”)lh(2®
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1 jl
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E W,g;ﬂh ot + Z W (26)p,

Gaussian Imag; Pathway
ROR + 3 wEIRPIR® 13 wempEm) h,(f))
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Replicated Softmax Text Pathway

.

Joint 37 Layer

.

/ooooo) /
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012)



Text Generated from Images

Given Generated Given Generated

insect, butterfly, insects,
bug, butterflies,
lepidoptera

dog, cat, pet, kitten, pup
ginger, tongue, kitty, dog
furry

graffiti, streetart, stencil,
sticker, urbanart, graff,
sanfrancisco

sea, france, boat, mer,
beach, river, bretagne,
plage, brittany

portrait, child, kid,
ritratto, kids, children,
boy, cute, boys, italy

canada, nature,
sunrise, ontario, fog,
mist, bc, morning




Text Generated from Images

Given Generated

portrait, women, army, soldier,
mother, postcard, soldiers

obama, barackobama, election,
politics, president, hope, change,
sanfrancisco, convention, rally

water, glass, beer, bottle,
drink, wine, bubbles, splash,
drops, drop




Given

water, red,
sunset

nature, flower,
red, green

blue, green,
yellow, colors

chocolate, cake

Images from Text

Retrieved




MIR-Flickr Dataset

* 1 million images along with user-assigned tags.

nikon, abigfave,
sculpture, beauty, d80 goldstaraward, d80, vegan
stone nikond80

anawesomeshot, nikon, green, light, white, yel!ow, sky, geptagged,
theperfectp.ho'tographer, ohotoshop, apple, d70 abstra'ct, lines, bus, rgflectlon, C|.eIo,
flash, damniwishidtakenthat, graphic bilbao, reflejo

spiritofphotography
Huiskes et. al.



Data and Architecture

~ 12 Million parameters

* Image features: Gist,
SIFT, MPEG-7 descriptors -

3857-dims.
1024 1024
ﬁ ﬁ e 200 most frequent tags.
1024 1024 < 25K |abeled subset (15K
ﬁ training, 10K testing)

* 38 classes - sky, tree,
baby, car, cloud ...

(e]e]e]0]0)

o)

3857 2000




Results

* Multimodal Inputs Mean Average Precision
™\ /

Learning Algorithm I (MAP) l Precision@50
Random 0.124 0.124 Similar
LDA [Huiskes et. al.] 0.492 0.754 | ) Features,
SVM [Huiskes et. al.] 0.475 0.758 > 15K 'a?e'eo'

examples
DBM-Labelled 0.526 0791 | P




Results

 Multimodal Inputs Mean Average Precision

/
Learning Algorithm I (MAP) l Precision@50
Random 0.124 0.124 Similar
LDA [Huiskes et. al.] 0.492 0.754 | ) Features,
SVM [Huiskes et. al.] 0.475 0.758 > 15K labeled

examples

DBM-Labelled 0.526 0.791
DBM-Unlablled+Dropout 0.641 0.888 +1 Million

AN unlabelled
MKL [Guillaumin et. al.] 0.623 N

N

State-of-the-art

* Multiple Kernel Learning uses 37,152 image features, compared
to our model that uses 3,857 features.



Video and Audio

Cuave Dataset




Multi-Modal Models

Text & Language

,fw REUTERS D
AP Associated Press

WIKIPEDIA
The Free Encyclopedia

Laser scans

Speech & "'?; =
Audio %

We series

! W:»’Amm ,mm:m::“m data
One of Key Challenges:

Develop learning systems that come
Inference

closer to displaying human like intelligence



Summary

e Efficient learning algorithms for Hierarchical Models. Learning more
adaptive, robust, and structured representations.

Text & image retrieval / Dealing with Learning a Category
Object recognition missing/occluded data Hierarchy

+3 43 ‘
/E\
+ 3 +3

Kd

P
HE COEH ¥o8

Object Detection
Multimodal Data =

!'.:” “Eom e i sunset, pacific ocean, | i I :
S AE et 0 U Pl L :
5i% nop= === i beach,seashore SR STY PN

e Hierarchical models can improve current state-of-the art in
many application domains:

» Object recognition and detection, text and image retrieval, handwritten
character and speech recognition, and others.



Thank you

Code for learning RBMs, DBNs, and DBMs is available at:
http://www.utstat.toronto.edu/~rsalakhu/

Demo: http://deeplearning.cs.toronto.edu/



Generating Text from Images

Samples drawn after
every 50 steps of
Gibbs updates

l

Sample at step O
wool wool

blume blume
closeup closeup
locomotive locomotive
sun sun

deleted delete3
negative negative
sardegna sardegna
S5photosaday S5photosaday
nb nb

T ——



Images from Text

Step 0

Sample drawn after
every 50 steps of
Gibbs sampling

Sample at step 0

automobile




Convolutinal Deep Models
for Image Recognition

motor scooter

mite

conta ner S

mite container ship motor scooter leapard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

— z ' -

p
- -
. -

il .
grille mushroom cherry adagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

(Krizhevsky et. al., NIPS 2012)



