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CONTEXT: Data increasingly massive, high-dimensional...

U.S. COMMERCE'S ORTNER SAYS YEN UNDERVALUED

* * Commerce Dept. undersecretary of economic a®airs Robert Ortner said that
* * he believed the dollar at current levels was fairly priced against most European
currencies.

In a wide ranging address sponsored by the Export-Import Bank, Ortner,
the bank’s senior economist also said he believed that the yen was undervalued
and could go up by 10 or 15 pct.

"1 do not regard the dollar as undervalued at this point against the yen,"

he said.
?? On the other hand, Ortner said that he thought that “the yen is still a

little bit undervalued,” and "could go up another 10 or 15 pct."
In addition, Ortner, who said he was speaking personally, said he thought

1 M IXe I S 0:20 - that the dollar against most European currencies was " fairly priced.”
- Ortner said his analysis of the various exchange rate values was based on
such economic particulars as wage rate di®erentiations.
level o®.
- - Turning to Brazil and Mexico, Ortner made it clear that it would be
De_nolsln 1B VOXeIS almost impossible for those countries to earn enough foreign exchange to pay
l |Ser data the service on their debts. He said the best way to deal with this was to use

the policies outlined in Treasury Secretary James Baker's debt initiative.

- *J. * * Ortner said there had been littleimpact on U.S. trade de cit by the decline
)* of the dollar because at the time of the Plaza Accord, the dollar was extremely

I eOS Vi overvalued and that the “rst 15 pct decline had little impact.
He said there were indications now that the trade de cit was beginning to

Super-resolution Streaming J 1B users Web data
Recognition... Tracking Clustering [}

Stabilization... Classification Indexing
Collaborative filtering... Ranking

Search...

How to extract low-dim structures from such high-dim data?



CONTEXT: Data increasingly massive, high-dimensional...

.
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Recognition Surveillance Search and Ranking Bioinformatics

The curse of dimensionality:
...Increasingly demand inference with limited samples for very high-
dimensional data.

The blessing of dimensionality:
... real data highly concentrate on low-dimensional, sparse, or degenerate
structures in the high-dimensional space.



CONTEXT: Low dimensional structures in visual data
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Visual data exhibit low-dimensional structures due to rich
local regularities, global symmetries, repetitive patterns, or
redundant sampling.



CONTEXT: But life is not so easy...

Real application data often contain missing observations, corruptions,
or subject to unknown deformation or misalignment.

Classical methods (e.g., PCA, least square regression) break down...

In their place: Sparse representations, robust PCA, and many others




Two Low-Dimensional Representations

Sparse Representation

Underdetermined system

y = Ax

Corrupted Observations

sparse

ﬁﬁéh

Robust PCA

Low-rank Structures Sparse Structures

Vast number of candidate applications



Overview

+ Partl: Motivation, Theory, Applications

+ PartIl: Efficient Convex Algorithms

+ Part Ill: Non-Convex Alternatives



Part I. Motivation, Theory, Applications



Sparse Representations

+ Linear generative model:

— noise
m-dimensional /'y AX+E
observations / \
matrix of n unknown sparse

basis vectors coefficients
or features

+ Objective: Estimate the sparse X assuming N >> M

|
| |
-5 =s = || underdetermined
2 e V|| system
y A



Example

4 1 4 1 1 6
y=|-5] A=-2 1 4 2 -3
3 3 3 2 -2 1
non-sparse sparse
Want to find an X that solves T4 0
y = AX -1 0
X=| 3 X, =| 2
5 0
__2_ __1_

Sparse representations reflect low-dimensional structure



Sinusoid and Spikes Example

A = [ DFT basis ]

Observed Signal (y)
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Sinusoid and Spikes Example

A = [ DFT basis + identity]

Observed Signal (y)
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Signal Acquisition

- -
-
5 ' ]

yi = [, z(u) exp(=2mjk(t;) u)du

: ; o 3 Image to be sensed
Observations are Fourier coefficients! 5



Signal Acquisition

ol - |

- -

Fq

A few Fourier ; T

coefficients Wavelet coefficients: z — W

[Lustig, Donoho + Pauly ‘10] ... brain image — Lustig ‘12



Signal Acquisition

mostly zero

N - [
i

A few Fourier - T
coefficients

Wavelet coefficients

[Lustig, Donoho + Pauly ‘10] ... brain image — Lustig ‘12



Compression - JPEG
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[Wallace 91]



Compression — Learned Dictionary

X

A Learned dictionary o|

(Patches of) ...

: : » coefficients
input image £

See [Elad+Bryt '08], [Horev et. Al,, “12] ... Image: [Aharon+Elad ‘05]



Representing Faces under Different Lighting
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Face Recognition

Generative model for faces, given a database
of images from K subjects

o T e _ |
— s % | -
Ll |
m B B n m
Test image coefficients corruption,
Combined occlusion
training
dictionary

[W., Yang, Ganesh, Sastry, Ma "09]



Face Recognition

-3
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One large underdetermined system: y = A'x’

Sparse Representation:
Given a sparse feasible solution Yy =~ ®'X’

Location of large nonzeros in X should reveal identity

[Wright et al., PAMI 2009]



Prevalence of Sparse Representations

Underdetermined system I _ ™ ..* ] g al |-
y=Az s re

Signal acquisition Face Recognition
%ﬁt:

x* uses just a few
training faces.
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” contains just a few  x* uses just a few !

significant wavelet dictionary elements. e* corrects a few
coefficients. grosSs errors.
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Optimization

+ Ideal (noiseless) case:

min|x| st y=Ax

o

x|, = IpiggZ\xi\p = # of nonzero elementsin x

+ Approximate case:

minfy - AX], + 4[],



Uniqueness

Theorem (Gorodnitsky+Rao '97) .
Suppose y = Axg, and let k = ||xgllo. If null(A) contains
no 2k-sparse vectors, xg 18 the unique optimal solution to

minimize ||x|o subject to y = Ax.




Difficulties

Forward model is linear, the inverse problem is difficult:

1. Combinatorial number of local minima (NP-hard)

2. Objective is discontinuous

H__ —

minimize [Zie=wwszrl 10 Az = y.

e T —
INTRACTABLE

Computationally tractable approximate methods are
needed ...




Replace £, Norm with Convex £, Norm

+ Ideal (noiseless) case:
min||x| s.t. y =®x
X
°
I, = 2lx]

+ Approximate case: minHy — (DXHE + ﬂ'qul
X

Tightest convex
relaxation over
unit ball




Why might this work?

minimize ||x||; subject to Az =y.

R" {z| Az =y}




Advantages of £, Substitution

+ Many fast efficient algorithms (more on this later ...)

[Bertsekas, 2003; Yang et al., 2012]
. Many performance guarantees:

X, = argmin|ly—AXx|, + A|X

+ A|IX

U

N DN
o

arg minjly — Ax

[Candés et al., 2006; Donoho, 2006]



Dictionary Correlation Structure

Low Correlation: Easy
A'A

2 4 B g

10 12 14 16 18 20

Examples:
A ncory ~  1id N(0,1) entries
A random rows of DFT

(uncor) 7

High Correlation: Hard

ux] [a7] E= ]

10

12

14

16

18

20

block
diagonal

arbitrary



Example
A =la,a,,a,,a,] x, =[0021]

Sparse Generative Solution Minimum £; Norm Solution

_ 1 1 1
y_Za1+Za2+Za4

-3
I, =

Require conditions to disallow correlated basis
vectors in a restricted space




Mutual Coherence

i,
+ Mutual coherence:  u(A) = max :
7 Ha|HZHaJH2

+ Measures maximum (off-diagonal) correlation among
dictionary columns.




Noiseless Analysis of £,

Theorem

Assume

< Hoo

Then X, Is the unique solution to

min[x| st y=Ax,=Ax

[Donoho and Elad, 2003]




Noisy Analysis of £,

Theorem

Assume Y =AX,+¢& with

1 1
dosp <2t

Then X = argmxionH1 st. y—-Ax|, <p

4p° _
1= A aa], -1

)A(_XOHE =

satisfies

[Donoho et al., 2006]

Many stronger results are possible with added assumptions
[Candes and Tao, 2005; Candes, 2008]




Motivating Example: Face Recognition with
Occlusions
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Motivating Example: Face Recognition with
Occlusions

« & & = W

v

Racognifon rate (%)

Recognition rate

=~ Algotithm 1
—@— PCA+ NN
= ICA1+NN
= | NM* + NN
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0 10 20 30 40 50 60 70 80 90

Percent occluded (%)



Robust PCA

Observation Matrix Low-rank Structures Sparse Component




Basic Observation Model

Y = X+E+7

<SS m X <

mxn observation matrix, m<n
low rank approximation AB'
large sparse errors
Gaussian errors




Classical PCA

min —HY X||" + rank[X ]

+ Simple closed-form solution via SVD.

+ Limitation: Assumes E = 0, I.e., no significant outliers,
otherwise the estimate will be poor.



Robust PCA

nQ'En;HY X ~ . +rank[X ]+ —HEHO

+ Note: 1/n factor ensures both penalty terms scale between 0 and m
(i.e., balanced).

+ Problems:
1. Non-convex, NP-hard optimization

2. Solution may be non-unique



Convex Relaxation
[Candes et al. 2011]

rank(X) = #{o;(X) #0}.  ||Ello = #{Ei; #0}.
W W
1 X[« = 22, 0i(X). 1E] = Z-;:;;' |Eijl.

Solve: min =Y - X —E[F +[X
X,E A F

1
-+l

+ Problem: Provable recovery guarantees exist, but must still
resolve non-unigueness ISsues.



Non-Uniqueness Issues

Some very sparse matrices are also low-rank:

"N KN N

_l’J _]'U _]-J'J

Can we recover X that are incoherent with the standard basis?

Certain sparse error patterns E make recovering X impossible:
- L -
' l T
X

E =e¢e;v” Y=X+F
Can we correct E whose support is not adversarial?
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Non-Uniqueness Issues

Some very sparse matrices are also low-rank:

"N KN N

_l’J _]'U _]-J'J

Can we recover X that are incoherent with the standard basis?

Certain sparse error patterns E make recovering X impossible:
- L -
' l T
X

E =e¢e;v” Y=X+F
Can we correct E whose support is not adversarial?




Resolving Ambiguity with Incoherence Conditions

Can we recover X that are incoherent with the standard basis ﬁﬂm
almost all errors E?

Incoherence condition on singular vectors, singular values arbitrary:

max; [|U;||* < ur/m.
max; |Vi|* < ur/n.

not too cross-correlated: || UV™| o < \/ur/mn

Singular vectors of X not too spiky: {

Uniform model on error support, signs and magnitudes arbitrary:

support(E) ~ uni ([.,,,_] X ['n-])

I{JTH,'”,

Incoherence condition: [Candes + Recht ‘08]



Main Result — Correct Recovery

Theorem
If X,eR™", n>m has rank
r<p il
" ullog(n)]

and E, has Bernoulli support with error probability & < p.nm,
then with very high probability

. 1
X0, By} = argr)r(l’lEnHXH*+ﬁHEH1 st.Y=X+E

and the minimizer is unique

% ¥ ¥ ¥ » m

“Convex optimization recovers matrices of rank O(I 2 ))
L] L O n

from errors corrupting O (mn) entries” J

[Candes, Li, Ma, Wright; 2009]



A Suite of Models and Theoretical Guarantees

For robust recovery of a family of low-dimensional structures:

Zhou et. al. ‘09] Spatially contiguous sparse errors via MRF

Bach "10] — structured relaxations from submodular functions

Negahbant+Yu+Wainwright "10] — geometric analysis of recovery

[
[
[

» [Becker+Candes+Grant "10] — algorithmic templates
[XutCaramanis+5anghavi ‘11] column sparse errors L, | norm
[

Recht+Parillo+Chandrasekaran+Wilsky "11] — compressive sensing of various structures

* [Candes+Recht '11] - compressive sensing of decomposable structures

XY =argmin || X|ls st. Pg(X)=Po(X")

[McCoy+Tropp’11] = decomposition of sparse and low-rank structures

(XY, X3) = argmin || Xy ||y + A Xz @) s.t. Xq + Xo = X7 + X7

«  [W+Ganesh+Min+Ma, I&I'13] — superposition of decomposable structures

(X7, X)) = argmin 3o N | Xl sy st P2, Xi) = Po(X2; X7)

Take home message: Let the data and application tell you the structure..,



Applications — Low rank structures in visual data
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Visual data exhibit low-dimensional structures
due to rich local regularities, global symmetries,
repetitive patterns, or redundant sampling.




Sensing or Imaging of Low-Rank and Sparse Structures

Basic Decomposition:

corrupted data Low-rank Structures Sparse Structures

+

Generalization to visual data: add nonlinear deformation 7?7

mE
PR B

= i




Real Face Images from the Internet: Low-Rank Structures?

*48 images collected from internet



Robust Alignment of Multiple (Face) Images

D — corrupted & misaligned A — aligned low-rank I — sparse errors
observation images

-~ Bh -

Problem: GivenDoT = Ay + Ej, recover 7, Ay and E).

~

Parametric deformations Low-rank component  Sparse component
(rigid, affine, projective...)

Objective: Robust Alignment via Low-rank and Sparse (RASL) Decomposition
l« + A||E||1 subj A+ F=Dor

min |[A

Solution: Iteratively solving the linearized convex program:

Elly subj A+ E=Dom,+J At

. + Al

min ||A



RASL: Detected Faces

Input: faces from a face detector ( D)

Average

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL: Faces Aligned

Output: ahgned faces (D oT)

Average

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL: Faces Cleaned as the Low-Rank Component

Output: clean low-rank faces (A)

‘H’?’?"EEJ!&

Average

E

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL: Sparse Errors of the Face Images

Output: sparse error images (F)

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11




RASL: Video Stabilization and Enhancement

Original video ( D) Aligned video (D o 7) Low-rank part ( A) Sparse part (£)

"""
- |
~|I

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



Reconstructing 3D Geometry and Structures

D — deformed observation A — low-rank structures FE — sparse errors

BT T AT 4R 4b:
eI
dec‘fwdr+dr+"r+“r+':
Nt
'L‘r+"r‘f"‘r+"r*"r+:

=  $EeeN T
SENFNFNFNFN
F
PAPATATATAS
PN PR SR S N 4

Problem: GivenD o1 = Ay + Ej, recover 7, Ay and Ej simultaneously.

Low-rank component Sparse component
(regular patterns...) (occlusion, corruption, foreground...)

Parametric deformations
(affine, projective, radial distortion, 3D shape...)



Transform Invariant Low-rank Textures (TILT)

D — deformed observation A - low-rank structures FE — sparse errors

BT T AT T4
15058505070
F-Jr‘fvdt'+‘r+"r+‘!r+'l
$$ 5 4
'L‘r+"r+‘v+"r+"r+:
=  $Ee e T
P PR PP P s
$ 88 8
FAPRIAININS
PR 282K 2K P8 2

Objective: Transformed Robust PCA:
Alls + M|E|1 subj A+ E=Dor

min |
Solution: Iteratively solving the linearized convex program:

min ||All. + A|E]|ly subj A+ E=Dot,+J-Ar

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12



TILT: Shape from texture

Input (red window D)

Output (rectified green window A )

BB
SRS
6600
BHEBE

Zhang, Liang, Ganesh,

Ma, ACCV’10, IJCV’12
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Virtual Reality in Urban Scenes




Structured Texture Completion and Repairing
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Regularity of Texts at All Scales

Input (red window D )

; < PO A N A,
< Lty Wi 7a o
7 MEYE Y E S A

Output (rectified green window A )

(QlFith

Rectification can lead to more robust recognition
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Zhang, Liang, Ganesh, Ma, ACCV’10 and IJCV’12



Other Data/Applications: Lyrics and Music Separation

Songs (STFT) Low-rank (music) Sparse (voices)

Original Matrix M Low Rank Matrix L Sparse Matrix S
3 g 8000 gt agen 2 : 8000 e P g —
3 - : : : s L [ 2 b
S 7000 BN =~ = : : 7000 3 t;%-. 1% : % A
Bl o = = = = - = = . A i ] = K E2L8 |
5 — - 6000 ==t = == { T = == = 6000 & ;.A', 3 o Sl % = e
]ﬁ: 5000 == = N 5000 : 1= b B = 2
= T = z b =5 2520
5 ) 5 > = = f 5 2 2 -
= 5 ‘00 - 4 ; i o B § “ﬁ ;
g = 3 g . T SR SRR A Rl :
2000 " 2 28 S S T x>
2000 ] 2000 g 3 =
E == —Fer =T - i -
1000 S = - == == . T OB
— — — 1000 - S e e e : = 1000 rj}_’ =2
R —— s Rp— P— - — - — r = pas
— > — —— = — — g B i L ;

Lo Barik
Hl:ltluﬂt H:t' ": L

signal —> STFT —

Snairse
Matrix 5

Time
Evaluation | ISTFT : Frequency ¢
Masking

Po-Sen Huang, Scott Chen, Paris Smaragdis, Mark Hasegawa-Johnson, ICASSP 2012.



Other Data/Applications: Protein-Gene Correlation

Microarray data

¥
{Cell Specific Genes microarray)

Sep 1
Gene Expression far
I I @ach c&lf e Step 3
vnzin
Pru i i
Step 2
b Hand W
Lalippaspaib: . Whole Microarray

Update

Fig. 1. The diagram of the workflow of the method presented in this paper

Endiamaiar Epinaal Ftvodiast Macoofage

Fig. 6. HeatMap of estimaied pene signatures for the somed cell specific
penes afier adjustments based on fold chanpes. RPCA is used in the first
steq. It is clear that this matrix is chose 0 2 block dizponal stracture.

Wang, Machiraju, and Huang, submitted to Bioinformatics 2012.



Take-home Messages for Visual Data Processing:

1. (Transformed) low-rank and sparse structures are central to visual data
modeling, processing, and analyzing;

2. Such structures can now be extracted correctly, robustly, and efficiently,
from raw image pixels (or high-dim features);

3. These new algorithms unleash tremendous local or global information from
multiple or single images, emulating or surpassing human perception;

4. These algorithms start to exert significant impact on image/video processing,
3D reconstruction, and object recognition.

But try not to abuse or misuse them...
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Part II: Optimization for Low-
Dimensional Structures



Two convex optimization problems

¢1 minimization seeks a sparse solution to an underdetermined linear

system of equations: )
n E N m . '
) B s . _ .
min ||x||; s.t. Az =1y |:._ :*_{ -
I H N
y A e

Robust PCA expresses an input data matrix as a sum of a
low-rank matrix L and a sparse matrix S

min ||L|[. + \|S|: s.t. L+S =D




Two noise-aware variants

Basis pursuit denoising seeks a sparse near-solution to an
underdetermined linear system: )

al--=-.

min [lz]|; + 5]lAz — ylf3

22

Noise-aware Robust PCA approximates an input data matrix as a sum of a
low-rank matrix L and a sparse matrix S

min || L], + A|lS|:1 + 2[|IL+ S — D||%




Many possible applications ...

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct.

The company said the dividend was ra/
35 cts on a pre-split basis, equal to a 25
basis.

Chrysler said the stock dividend is pa
record March 23 while the cash dividend i<
of record March 23. It said cash will be pai

With the split, Chrysler said 13.2 min st
in its stock repurchase program that began
now has a target of 56.3 min shares with t

Chrydler said in a statement the actiot
standing performance over the past few y
about the company's future.”

... if we can solve these core optimization problems
accurately, efficiently, and scalably.



Key challenges: nonsmoothness and scale

Nonsmoothness: structure-inducing regularizers W -1
such as || - |[1, || - ||+ are not differentiable:

Great for structure recovery ... AN
... challenging for optimization.




Key challenges: nonsmoothness and scale

Nonsmoothness: structure-inducing regularizers W -l
such as || - |[1, || - ||+ are not differentiable:
Great for structure recovery ... AN

... challenging for optimization.

Scale ... typical problems involve 10% — 10° unknowns, or more.

Time = (#iterations for an e-accurate soln.) x (time per iteration)

Classical interior point methods (e.g., SeDuMi, SDPT3): great convergence
rate (linear or better), but Q(#unknowns®) cost per iteration. High accuracy for
small problems.

First-order (gradient-like) algorithms: slower (sublinear) convergence rate, but
very cheap iterations. Moderate accuracy even for large problems.



Why care? Practical impact of algorithm choice

Time required to solve a 1,000 x 1,000 matrix recovery problem:

Algorithm Accuracy Rank | E||o # iterations | time (sec)
IT 5.99e-006 50 101,268 8,550 119,370.3
DUAL 8.65e-006 50 100,024 822 1,855.4
APG 5.85e-006 50 100,347 134 1,468.9
APG, 5.91e-006 50 100,347 134 82.7
EALM, 2.07e-007 50 100,014 34 37.5
IALM, 3.83e-007 50 99,996 23 11.8

Four orders of magnitude improvement, just by choosing the right
algorithm to solve the convex program.

This is the difference between theory that will have impact “someday”
and practical computational techniques that can be applied right now...




This lecture: Three key techniques

In this hour lecture, we will focus on three recurring ideas that allow
us to address the challenges of nonsmoothness and scale:

Proximal gradient methods: coping with nonsmoothness

Optimal first-order methods: accelerating convergence

Augmented Lagrangian methods: handling constraints




Why worry about nonsmoothness?

The best uniform rate of convergence for first-order methods* for
minimizing f € F depends very strongly on smoothness:

Function class F

fxr) — f(x¥)

smooth  f convex, differentiable
S IVi(x) - V)| < Lile— 2|

el — o ()

nonsmooth f convex

\/ [f(x) — f(2)] < M|z — ']

* Such as gradient descent. See e.Q., Nesterov, “Introductory Lectures on Convex Optimization”
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Why worry about nonsmoothness?

The best uniform rate of convergence for first-order methods* for
minimizing f € F depends very strongly on smoothness:

Function class F

fxr) — f(x¥)

smooth  f convex, differentiable
S IVi(x) - V)| < Lile— 2|

el — o ()

nonsmooth f convex

\/ [f(x) — f(2)] < M|z — ']

For f(xy) — f(x*) <€, need k = O(c7?) iter. for worst nonsmooth f

Can we exploit special structure of | - |1, | - ||« to get accuracy
comparable to gradient descent (for smooth functions) ?




What does gradient descent do anyway?

Consider min f(x), with f convex, differentiable, and V f L-Lipschitz.

Gradient descent: zx+1 =z, — +Vf(xs)
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What does gradient descent do anyway?

Consider min f(x), with f convex, differentiable, and V f L-Lipschitz.

Gradient descent: zx+1 =z, — +Vf(xs)

Quadratic approximation to / around j:

flx,zp) = flze)+ (V(xr), @ — xp) + £l — 2
= Lo — (xp — TV (xp)3 + o(k).

Doesn’t depend on x




What does gradient descent do anyway?

Consider min f(x), with f convex, differentiable, and V f L-Lipschitz.

Gradient descent: zx+1 =z, — +Vf(xs)

Quadratic approximation to / around j:

flx,zp) = flze)+ (V(xr), @ — xp) + £l — 2
= Lo — (xp — TV (xp)3 + o(k).

Key observation: x4 = argming f(x,x).

At each iteration, the gradient descent minimizes a (separable) quadratic
approximation to the objective function, formed at T



What does gradient descent do anyway?

Consider min f(x), with f convex, differentiable, and V f L-Lipschitz.

Gradient descent: zx+1 =z, — +Vf(xs)

Quadratic approximation to / around j:

flx,zp) = flze)+ (V(xr), @ — xp) + £l — 2
= Lo — (xp — TV (xp)3 + o(k).

Key observation: x4 = argming f(x,x).

At each iteration, the gradient descent minimizes a (separable) quadratic
approximation to the objective function, formed at T

Rate for gradient descent: f(x;) — f(z*) < CL”m(}c—m*“Q = 0 (%)
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Borrowing the approximation idea...

min 3[|Az—yl3 + Azli = min f(z) + g(=z)

smooth  nonsmooth

Just approximate the smooth part:

~

F(z,zp) = f(zp) + (V(xp), ©—xp) + 5z — x]]* + g(x)
Sl — (@) — £V f(zr))||5 + g(x) + o(xp).



Borrowing the approximation idea...

min 3[|Az—yl3 + Azli = min f(z) + g(=z)

smooth  nonsmooth

Just approximate the smooth part:

~

Fz,xp) = f(ze) + (VF(or), @ — o) + 5l — 2] + g(2)
Sl — (@) — £V f(zr))||5 + g(x) + o(xp).

... and then minimize to get the next iterate:
Li+1 — arg min F(CB, GBk)
xr

= argmin £fla — (@ — 2VF (@)} + (@)

This is called a proximal gradient algorithm.



Proximal gradient algorithm

min f(x) + g(x), with f convex differentiable, V f L-Lipschitz.

Proximal Gradient:

Tyt = argming 5| — (xx — £V F(zx))[3 + 9(z)

Converges at the same rate as gradient descent:

Flay) — F(a7) < SHzeell — 0 (1)

Efficient whenever we can easily solve the proximal problem
prox,,4(z) = argmin gllz — 2|3 + pg(x)

i.e.,, minimize ¢ plus a separable quadratic.



Prox. operators for structure-inducing norms

prox,,(2) = argmin 3|z — 23 + ug(x)

For g(x) = ||x||,, prox,,(z) is given by soft thresholding
the elements of z: S, (2) = sign(z) max{|z| — u, 0}.

This operator shrinks all of the elements of z towards zero:

‘f’ WH' ‘J iy ’hll H

z s<z>

It can be computed in linear time (very efficient).



Prox. operators for structure-inducing norms

prox,,,(z) = argmin gllz — 2|3 + pg()

For g(x) = ||x||1, prox,,(z) is given by soft thresholding
the elements of z: S, (2) = sign(z) max{|z| — u, 0}.

For g(X) = || X||«, prox,,(Z) is given by soft thresholding
the singular values of Z: for Z = UX V",

Z) = US,[Z]V*.

prox . (

Again efficient (same cost as a singular value decomposition).

Similar expressions exist for other structure inducing norms.



Summing up: proximal gradient

min f(x)+ g(x), with f convex differentiable, V f L-Lipschitz.

Proximal Gradient:

Ty = argming 5[l — (zx — £V £ ()5 + g(z)

Converges at the same rate as gradient descent:

Flay) — F(a7) < SHze=zll — o (1)

Efficient whenever we can easily solve the proximal problem
prox,,4(z) = argmin gllz — 2|3 + pg(x)

This is the case for many structure-inducing norms.



What have we accomplished so far?

Function class F f(xr) — f(x*)

smooth  f convex, dlffe’rentlable | CLlmo—="I” _ g ()
N— |IVf(z) = Vf(x)| < Lljxz — 2| k2 k2
smooth + structured nonsmooth: F =

\ J o+ \\/ f, g convex, 2 = 2

IVf(z) = Vf)| < Llje— 2|

nvex
nonsmooth ~ f conve OM|ay—a"| _ @( )

\/ [f(x) — f(&')| < M|z — '] Vk

Still a gap between convergence rate of proximal gradient,
O(1/k) and the optimal O(1/k*) rate for smooth f.

Can we close this gap?



Why is the gradient method suboptimal?

For smooth f, gradient descent is also suboptimal...
intuitively, for badly conditioned functions it may “chatter”:

Gradient descent

Lrt+1 — Tk — Osz(.’Bk)



Why is the gradient method suboptimal?

For smooth f, gradient descent is also suboptimal...
intuitively, for badly conditioned functions it may “chatter”:

Gradient descent

Lrt+1 — Tk — Osz(:l?k)

The heavy ball method treats the iterate as a point mass with momentum,
and hence, a tendency to continue moving in direction ®y — Tp_1 :

Heavy ball

Trpi1 = xp — oV f(xy) + B(xr — Tr—1)



Nesterov’s optimal method

Shares some intuition with heavy ball, but not identical.
Heavyball: i1 =T — oV f(xy) + B(xr — TR—1)

Nesterov : Y = Tk + Br(Tr — Tp—1)
Tp+1 = Yp — OV (Yy)
with a very special choice of 3, to ensure the optimal rate:

_ tp—1 I/ 14483 _
Be=3= thp=—F5— a=1/L

Theorem 6 (Nesterov ’83) Let f be a convex function with L-Lipschitz gra-
dient. The accelerated gradient algorithm achieves

CL|mo — " |3

flow) = f(a") < 2

(1)

This 18 optimal up to constants.




What about smooth + nonsmooth?

min  f(x) + g(x)

smooth mnonsmooth

Again form a separable quadratic upper bound, but now at Yy :

~

F(x,y,) = f(yk)+<Vf(yk)7$—yk>+%||33—yk||2+9($)
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Fay
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Again, replace the gradient step with minimization of the upper bound:

Tpi1 = argminF(xz,y,)
T
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What about smooth + nonsmooth?

min  f(x) + g(x)

smooth mnonsmooth

Again form a separable quadratic upper bound, but now at Yy :

Fay

F(z,y,) = flye) +(Vf(ye) @ —yp) + 5lz =yl + g(z)
Again, replace the gradient step with minimization of the upper bound:
Lk+1 = aIg m{gﬂ F(m: Yr)

= argmin 7|z — (y, — V() + 9()

= PTOXL—lg(yk - %Vf(yk))

Making the same special choice Y = x + Sx(Tr — Tx—1) , we obtain

an accelerated proximal gradient algorithm.



Accelerated proximal gradient algorithm

min f(x)+ g(x), with f convex, differentiable, V f L-Lipschitz.

Accelerated Proximal Gradient:

Yp = Tk + Pr(Tr — Tp—1)
Repeat .
Lr+1 = prOXL—lg(yk: - fvf(yk-))

14++/14+4t2
and tk+1: 2 k

with (i = b=

B
tht1

Converges at the same rate as Nesterov’s optimal gradient method:

* CL||xo—x*||?
F(ay) — F(z*) < SHeeel = 0(4%)

Again, efficient whenever we can easily solve the proximal problem

prox,,(z) = argmin gz — 2|3 + pg(x)



What have we accomplished so far?

Function class F

f(zr) — f(z™)

smooth  f convex, differentiable
~— IVf(z) = V()| < Lljx — '

CL|lzo—2"|" _ g (L)

smooth + structured nonsmooth: F=f+g

—_ f. g convex,
IVf(z) = V[f(@)| < Lz -2’

nonsmooth f convex

\/ [f(x) — f(&')| < M|z — ']

CM|xo—x™|| _ 1
ol = e (%

For composite functions F = f + g, with f smooth,
if g has an efficient proximal operator, we achieve
the same (optimal) rate as if F was smooth.




What about constraints?

Consider the equality constrained problem

min ||z|l; s.t. Az =1y ()

Continuation: solve a sequence of unconstrained problems of form

min ||z|ly + §l|Az — y|3,
with p " oo . Solutions converge to the solution to (x).
Big downside: conditioning. For f(x) = 4| Az — y||3, the gradient is

L -Lipschitz, with L = u||A*A||. As @ /" oo, the unconstrained

problems get harder and harder to solve.

Is there a better-structured way to enforce equality constraints?



The method of multipliers

min F(x) s.t. Ax =y (%)
The Lagrangian is

L(x,A\) = F(x) + (\, Ax — y)



The method of multipliers

min F(x) s.t. Ax =y ()
The augmented Lagrangian is

Lo(x,A) = F(z) + (A, Az —y) + §||Az — yl[3.

Extra penalty term



The method of multipliers

min F(x) s.t. Ax =y ()
The augmented Lagrangian is

Lo(x,A) = F(z) + (A, Az —y) + §||Az — yl[3.

The method of multipliers solves (*) by seeking a saddle point of £, :
xp+1 = argmin L£,(x, Ag)

Apt1 = g+ p(Axri1 — y).



The method of multipliers

min F(x) s.t. Ax =y ()
The augmented Lagrangian is

Lo(x,A) = F(z) + (A, Az —y) + §||Az — yl[3.

The method of multipliers solves (*) by seeking a saddle point of £, :
xp+1 = argmin L£,(x, Ag)

Apt1 = g+ p(Axri1 — y).

Solves a sequence of unconstrained problems: min £,(x, Ax)
xr

Penalty parameter p > 0 can be constant (avoids ill-conditioning),
or increasing for (faster convergence).



Summing up: Method of multipliers

Solves, e.g.,, min F'(x) s.t. Ax =1y, with F' convex, Isc.

Method of multipliers (augmented Lagrangian)
1 = argmin L,(x, Ag)

Akt1 = Mg+ p(Azri1 —y).

Classical method [Hestenes ‘69, Powell ‘69], see also [Bertsekas ‘82].
Avoids conditioning problems with the continuation / penalty method.

Under very general conditions Aj converges to a dual optimal point,
|Azy, —y|| = 0, and F(xg) — inf{ F(z) | Az =y }.
[Rockafellar ‘73, Eckstein “12] .



What have we accomplished so far?

Consider the robust PCA problem
min | L||« + A||S]1 st. L+S=D

Augmented Lagrangian

Lo(L, S, A) =||L|[ + A|S[l1 + (A, L+ S - D)+ §|[L+ S — D||,

The method of multipliers is

(Lior, Siir) = argming s | Ll + A|S| + (Ag, L+S~ D) + 8| L+ S DJ};
Ak:—l—l = A, + p(Lk + S — D)

Each iteration is a large nonsmooth optimization problem...

Is there special structure we can exploit to simplify the iterations?



Special structure: Separable objectives

min [|L|. + A|S|; st. L+S=D

Aug. Lagrangian: L,(L,S,A)=|L|+A|S|h+(A,L+S—-D)+5|L+S—D|%

Minimizing L, with respect to S is easy:

argmgnﬁp(L,S,A) = argm§n||L||*+)\||S||1+(A,L+S—D)+§HL+S—D||}



Special structure: Separable objectives

min [|L|. + A|S|; st. L+S=D

Aug. Lagrangian: Lo(L,S,A)=||L||l«+A|S|H +(A,L+S—-D)+ E||L+S— D|%

Minimizing L, with respect to S is easy:
argmgnﬁp(L, S,A) = argmgn IL[l. + A||S]1 + (A,L+S - D)+ £|L+S—D|7
= argmin \|S|ly + §1S — (D = L = JA)|[z + (L, D, A)



Special structure: Separable objectives

min [|L|. + A|S|; st. L+S=D

Aug. Lagrangian: Lo(L,S,A)=||L||l«+A|S|H +(A,L+S—-D)+ E||L+S— D|%

Minimizing L, with respect to S is easy:
argmgnﬁp(L, S,A) = argmgn IL|l« + AlS|li +(A,L+S - D)+ 2|L+S - D|%
= argmin \|S|ly + §1S — (D = L = JA)|[z + (L, D, A)
- prox)\pfln_”l(D—L—p_lA).



Special structure: Separable objectives

min [|L|. + A|S|; st. L+S=D

Aug. Lagrangian: L,(L,S,A)=|L|+A|S|h+(A,L+S—-D)+5|L+S—D|%

Minimizing L, with respect to S is easy:

arg msifnﬁp(L, S, A) = pI‘OX)\pflll_”l(D — L — p_lA).



Special structure: Separable objectives

min [|L|. + A|S|; st. L+S=D

Aug. Lagrangian: £,(L,S,A)=||L||.+ A|S|1 +(A,L+S—D)+%|L+S - D|%
Minimizing L, with respect to S is easy:
argm&nﬁp(L, S, A) = pI‘OX)\pflll_”l(D —L—p_lA).

Minimizing £, with respect to L is also easy:

argrngnﬁp(L, S,A) = prox,— ., (D—-8- pA).



Special structure: Separable objectives

min [|L|. + A|S|; st. L+S=D

Aug. Lagrangian: £,(L,S,A)=||L||.+ A|S|1 +(A,L+S—D)+%|L+S - D|%
Minimizing L, with respect to S is easy:

argmgnﬁp(L, S, A) = pI‘OX)\pflll_”l(D —L—p_lA).
Minimizing £, with respect to L is also easy:

argrngnﬁp(L, S,A) = prox,— ., (D—-8- ptA).

Why not just alternate?

Ly, = argmgnﬁp(L, Sk, Ak) = proxp_lll_”*(D — Si—p tAL).
Sk+1 = a,rgmsin Lo(Lgy1,S8,Ax) = pTOXApfln.”l(D — Ly — P_lAk)-
Api1 = A+ p(Lgy1 + S — D)




More generally: Alternating Directions MoM

min f(x)+ h(z) st. Ax+ Bz=1y

Aug. Lagrangian: L,(z,z,\) = f(z) + h(z) + (\, Az + Bz —y) + £|Az + Bz — y||%

Alternating Directions Method of Multipliers (ADMM)
Tp+1 = argming L,(x, 2k, Ai)
Zp+1 = argming L,(Tr11, 2, Ak)
Ai+1 = A + p(AZr4+1 + Bziy1 — y)




Alternating Directions MoM

min f(x)+ h(z) st. Ax+ Bz=1y

Aug. Lagrangian: L,(z,z,\) = f(z) + h(z) + (\, Az + Bz — y) + 2| Az + Bz — y||%

Alternating Directions Method of Multipliers (ADMM)
Tp+1 = argming L,(x, 2k, Ai)
Zp+1 = argming L,(Tr11, 2, Ak)
Ai+1 = A + p(AZr4+1 + Bziy1 — y)

Convergence: if f,h closed, proper, convex functions, and £ has a
saddle point, then ... Ag converges to a dual optimal point,

Axp + Bz, — vy and f(xi) + h(z,) — inf{ f(x) + h(z) | A+ Bz =y }.

Convergence rate O(1/k), in a certain sense [He+Yuan “11].



Linearized Alternating Directions MoM

min f(x)+ h(z) st. Ax+ Bz=1y

Aug. Lagrangian: L,(z,z,\) = f(z) + h(z) + (\, Az + Bz —y) + £|Az + Bz — y||%
ADMM: Lk+1 — arg ma%n ‘Cp(aja 2k Ak)
= argmin f(z) + §|| Az + Bz —y + 23

Complicated if A, B # I

Linearized ADMM: just take a proximal gradient step...

Tpi1 = argmain f(x) + &z — (xp, — TA*(Azy, + Bz, — y + %Ak))”%

— proxzf(a:k — TA*(ACUk + Bz —y — %Ak))
P

Much more efficient if / has a simple proximal operator.



Linearized Alternating Directions MoM

min f(x)+ h(z) st. Ax+ Bz=1y

Aug. Lagrangian: L,(z,z,\) = f(z) + h(z) + (\, Az + Bz — y) + 2| Az + Bz — y||%

Linearized ADMM
Tpy1 = profo(:ck —TA"(Azp + Bz —y + )\k))

Zp41 = pI'OXTh( . —1B”* (Awk—i—l + Bz, —y+ Ak))
Ak+1 = A + p(ACUkH + Bzpi1 —y)

See, e.g., [S. Ma 2012]. Convergentif 7 < min{|| A%, | B||*}.
Handles problems with more than two terms, e.g., > . fi(®;).

Now can take advantage of two types of special structure ...
separability of the objective and prox capability of f, h



Finally, what have we accomplished?

Time required to solve a 1,000 x 1,000 robust PCA problem:

Algorithm Accuracy Rank 1 E]|o # iterations | time (sec)
IT 5.99e-006 50 101,268 8,550 119,370.3
DUAL 8.65e-006 50 100,024 822 1,855.4
APG 5.85e-006 50 100,347 134 1,468.9
APG, 5.91e-006 50 100,347 134 82.7
EALM, 2.07e-007 50 100,014 34 37.5
IALM, 3.83e-007 50 99,996 23 11.8

THIS
LECTURE

|

Four orders of magnitude improvement, just by choosing the right

algorithm to solve the convex program:

Proximal gradient = Accelerated proximal gradient = ALM = ADMoM



Recap and Conclusions

Key challenges of nonsmoothness and scale can be mitigated by using
special structure in sparse and low-rank optimization problem:s:

Efficient proximity operators = proximal gradient methods

Separable objectives = alternating directions methods

Efficient moderate-accuracy solutions for very large problems.
Special tricks can further improve specific cases (factorization for low-rank)

Techniques in this literature apply quite broadly.
Extremely useful tools for creative problem formulation / solution.

Fundamental theory guiding engineering practice:

What are the basic principles and limitations?
What specific structure in my problem can allow me to do better?



To read more...

Problem complexity and lower bounds:
Nesterov — Introductory Lectures on Convex Optimization: A Basic Course 2004
Nemirovsky — Problem Complexity and Method Efficiency in Convex Optimization

Proximal gradient methods:

Accelerated gradient methods:
Nesterov — A method of solving a convex programming problem with convergence rate O(1/k"2), 1983
Tseng — On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, 2008
Beck+Teboulle — A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, 2009

Augmented Lagrangian:
Hestenes — Multiplier and gradient methods, 1969
Powell — A method for nonlinear constraints in minimization problems, 1969
Rockafellar — Augmented Lagrangians and the Proximal Point Algorithm in Convex Programming, 1973
Bertsekas — Constrained Optimization and Lagrange Multiplier Methods, 1982

Alternating directions:
Glowinski+Marocco — Sur 'approximation, par elements finis d’ordre un, et la resolution, par ... 1975
Gabay+Mercier — A dual algorithm for the solution of nonlinear variational problems ... 1976
Eckstein+Bertsekas — On the Douglas-Rachford splitting method and the proximal point ... 1992
Boyd et. al. — Distributed optimization and statistical learning via the alternating directions ... 2010
Eckstein — Augmented Lagrangian and Alternating Directions Methods for Convex Optimization 2012



Part III: Non-Convex
Alternatives



Previous Strategy for Sparse Estimation
Replace {; Norm with Convex ¢; Norm

Ideal (noiseless) case:

min|x| s.t. y=®x
@
I = 2l

Relaxed case:

minfy - @x]), + 2],



Non-Convexity via Iterative Reweighted £,

Non-convex penalty  9(x|)
L___T___J

concave,
non-decreasing

convex upper bound

a(|x|)

Updates:

(k+1)

X « argmin > w|x| st y=Ax

slope of convex
wkD @g_(u) : upper bound
ou

U=l (4D

[Fazel et al., 2003]



Example

Penalty function:

g(x) = Zlog(\xi\Jrg), £>0

Updates:
X'« argmin > w|x| st y=Ax

1
(‘ Xi(k+1)

VVi( k-+1) «—

+ )

[Fazel et al., 2003; Candés et al., 2008]

Variational Bayes (VB) can provide even more robust
alternative penalties with provable guarantees

[Bishop 2006; Wipf et al., 2011]



Why bother with non-convexity?

Three important (interrelated) cases:

1. Scaling/Shrinkage Problem: The ¢, norm may over-shrink
large magnitude coefficients.

2. Correlation Problem: The dictionary A has some correlated
columns which disrupt £,-£, equivalence.

3. Extra Parameters: There are additional parameters to
estimate, potentially embedded in A.

Similar principles hold regarding robust PCA



Case 1: Scaling and Shrinkage Issues

The £, penalty favors both sparse and low-variance
solutions:

M, = M, &= X,

sparse low
variance

Scale-sensitive {; solutions may over-shrink large
coefficients, possibly at the expense of sparsity.

[Fan and Li, 2001; Levin et al., 2011]




Scaling Issues

+ If the magnitudes of the non-zero elements in X, are highly
scaled, then the sparse recovery problem should be easier.

M | S
AN I AT B VA B
scaled coefficients (easy) uniform coefficients (hard)

+ The £, solution may overly shrink large coefficients to

achieve lower variance, and hence may not exploit the
simpler scenario.



Extreme Case: Jeffreys Distribution

Density: p(X) o |_1|
X

2.5

1.5

]

All have
equal area

p(X)

0.5+

0
X

Even a simple greedy estimation strategy should work well here




Simulation Example

+ For each test case:

Generate a random dictionary A with 50 rows and 100 columns.

=

2. Generate a sparse coefficient vector X,,.
3. Compute signal via 'y = A X,.

2. Run £, and OMP (a very simple greedy strategy) to try and correctly
estimate X,

5. Average over 1000 trials to compute empirical probability of failure.

+ Repeat with different sparsity values, I.e., ||x0||0_



Results

Unit Coefficients
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OMP is significantly better!




Underlying Problem

Example:
¥(u,v) = set of sparse vectors x, with support [ 2.3]

pattern u and sign pattern v X, = 0 _ ¢ (@3
16
— 0_

Theorem
If arg min|Ix|| ~ # arg min |X
g minx, = arg min]x|

for some X, € ‘P(u,v), y = AX,, then {,
faills for all elements in this set.

[Malioutov et al., 2004]



Always Room for Improvement

Theorem

In noiseless case, under mild conditions VB will:
1. Never do worse than the regular convex ¢,-norm solution.

2. Forany A and Y¥(u,v), there will always be cases where it
performs better (... helps with scaling/shrinkage issues).

[Wipf, 2011]

convex upper bound \

With large coefficients, convex
bound becomes flat ==» small
penalty in next iteration

g([x1)

<O




Simulation Example Revisited

+ For each test case:

1. Generate a random dictionary ® with 50 rows and 100 columns.
2. Generate a sparse coefficient vector X,,.
3. Compute signal via 'y = A X,.

2. Run VB, £, and OMP (simple greedy strategy) to try and correctly
estimate X,

5. Average over 1000 trials to compute empirical probability of failure.

+ Repeat with different sparsity values, I.e., ||Xo||0.



Error Rate

Unit Coefficients

Results
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Error Rate

Highly Scaled Coefficients
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VB




Practical Example: Outlier Detection
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Outlier Problem Cont.

+ Linear generative model:

= AX 4+ & «—— sparse noise

m-dimensional | ¥ y
observations / \

predictor unknown
variables coefficients,
non-sparse

+ Objective: Estimate X while rejecting outliers



Convert to Sparse Estimation Problem

PrOjNuII[AT](y) -
\ J

Y
y

min
&

Proj

'AT](AX + 8)

NuII_

I

g, st y=¢

- PrOjNuII[AT](E)

\ J
|

O

Once outliers are known, can estimate X via:

& = (ATA] AT(y—¢)

[Candés and Tao, 2004]



Practical Solutions

+ But unknown outliers are likely unconstrained (different
scales), and convex substitution may be suboptimal:

minfg| st y=de

+ Can instead use non-convex VB ...



Practical Example:
Surface Normal Estimation via Photometric Stereo

For basic
Lambertian
surface

[Woodham, 1980]
Lighting

Observations Normal
Surface Normal Map



Robust Surface Normal Estimation

+ Basic Lambertian model ignores specular reflections,

shadows, and other artifacts.

+ Alternative per-pixel model:

observations under | ¥ y

different lightings / \

— LN + & «—1 sparse errors

lighting
matrix

raw unknown
surface normal

+ Can also include a diffuse error term, and apply VB.

[Ikehata et al., 2012]



Results

[8.4% specular corruptions, 24% shadows]

Bunny Image Ground Truth

1.0

0.0
[Ikehata et al., 2012]



Aggregate Results

[# of images varying]

No. of Mean Error (deg.)

images VB 04
5 5.2 11.9
10 2.8 5.6
15 1.9 4.0
20 1.2 2.7

25 0.81 1.9
30 0.62 1.6
35 0.59 1.5
40 0.53 1.2

[Ikehata et al., 2012]



Case 2: Correlated Dictionaries

+ Most theory applies to uncorrelated case, but many
(most?) practical dictionaries have significant structure.

+ Examples:




Dictionary Correlation Structure

Low Correlation: Easy
A'A

2 4 B g

10 12 14 16 18 20

Examples:
A ncory ~  1id N(0,1) entries
A random rows of DFT

(uncor) =

High Correlation: Hard

ux] [a7] E= ]

10

12

14

16

18

20

arbitrary ~ block
diagonal



How do we compensate for
dictionary structure?

Simple Example:

et vector o, denote the column norms of A and define

oliie) = e

Then the problem ,
min [y -Ax[; + 4 9(x;«)

IS Invariant to column norms.

So what about some function g that depends on
the correlation structure A'A




VB and Dictionary Correlations

VB is equivalent to solving the penalized regression problem
. 2 T
min |[y—-Ax|, + 4 gVBQx\;A A)
X

for some function g,z that favors a sparse X.

[Palmer et al., 2006; Wipf et al., 2011]

Notes on gy :
— Variables are penalized jointly based on the
correlation structure of A.

— This allows VB to compensate for strong
dictionary correlations.




Clustered Dictionary Model

—

any mxn dictionary such that
¢, minimization succeeds for
all x|, <k

any dictionary obtained by
replacing each column of A
with a “cluster” of n, basis
vectors within a radius ¢

(uncork)

(cluster support) set of cluster

iIndeces whereby some X, has
at least one nonzero element.



Simple Clustered Example

T
A(cor,k)A(cor,k)

2 4 B g 10 12 14 16 18 20

Problem:

+ The £, solution typically selects either zero or one basis
vector from each cluster of correlated columns.

+ While the ‘cluster support’ may be partially correct, the
chosen basis vectors likely will not be.



VB and the Correlation Problem

Theorem

+ Let X, be a sparse signal.

+ Under mild conditions, a minor variant of VB will recover X,
givenany y = A .y X, provided

Q| <k and > n <m

IEQO

for some ¢ sufficiently small.

[Wipf and Wu, 2012]

Key Message: Non-convex algorithms can succeed
even when strong correlations cause failure with 4




MEG/EEG Example

source space (X,) sensor space (y)

+ Forward model dictionary A can be computed using
Maxwell’'s equations [Sarvas,1987].

+ Will be dependent on location of sensors, but always highly
correlated by physical constraints.




Noisy Localization Results

SNIR=10dB SNIR=0dB

[Owen et al., 2013]



Real Data

[Owen et al., 2013]



Remarks

Non-convex VB algorithms implicitly employ a penalty
that helps compensate for correlated dictionaries.

MEG/EEG experiments show advantages of non-
convexity when A is:

1. Highly underdetermined, e.qg.,
m=275 and n=10

2. Very ill-conditioned and structured, i.e., columns/rows are
highly correlated.



Case 3: Dictionary Has
Embedded Parameters

+ ldeal (noiseless) :

min x|, st y=A(k)x

X,kEQk

+ Approximate version:

min |y - A(k)x], + 4[],

X,kEQk

+ Applications: Bilinear models, blind deconvolution,
blind image deblurring, etc.

[Fergus et al., 2006; Levin et al., 2011]



Example: Blind Deconvolution

+ Observation model:

y = kxx+g = A(k)x+eg

convolution toeplitz
operator matrix

+ Would like to estimate the unknown X blindly since K
IS also unknown.

+ In many situations (e.g., image deblurring) unknown X
IS sparse.



Efficient Convex Substitution?

Solve: i
min |x|| s.t. y=Kk=*X
min x|, sty
Q, = {k:Zki:L kizO,Vi}
Problem:

Ml =

D kX,
1

translated signal

<>kl =[x, v feasible k,x
1 t

+ A degenerate solution is favored:

k=05, Ak)=1I

We can’t use £,




Practical Example: Blind Image Deblurring

+ Basic convolution model (can be generalized):

y = K*X+¢g
blurry blur Sharp
image kernel image

Unknown quantities we
need to estimate



Gradients of Natural Images are Sparse

Log # pixels

20 1
=150 ~100

Gradient

Can solve a modified sparse coding problem in gradient domain

X . vectorized derivatives of the sharp image
Yy : vectorized derivatives of the blurry image



Practical Blind Deblurring Algorithm

+ A nearly ideal cost function for blind deblurring is

min [y —kxx], + 4|,

X,kEQk
Q, - {k:Zkizl, kizo,Vi}

+ But local minima are a huge problem, and convex
relaxation provably fails ...

+ However, can leverage a principled non-convex VB
substitution:

min [y —k=x[, + 29ys(xk)
0vs (X, k) = g,(x)+0,(k)

[Zhang and Wipf, 2013]



Blind Deblurring Evaluation Dataset

Levin et al. dataset [cVPR, 2009]

+ 4 iImages of size 255 x 255 and 8 different empirically measured
ground-truth blur kernels, giving 32 total blurry images

Blur Kernels




Estimation Results

T/l Shan T Xu
B Cho B VB
Fergus
o 0.8 Levin |
o
by
g _
E 06_
Q
o _
@ ~
® 0.41
O
O
®
0.2
0

1.1 1.5 1.7 2 2.5
Error ratios

Note: All of these competing methods require
considerable heuristics and tuning parameters




Extensions
Can easily adapt our model to more general scenarios:

1.  Non-uniform convolution models

Blurry image is
a superposition
of translated
and rotated
sharp images

2. Multiple images for simultaneous denoising and deblurring

[Yuan, et al., SIGGRAPH, 2007]



Non-Uniform Real-World Deblurring

Whyte et al

O. Whyte et al. , Non-uniform deblurring for shaken images, CVPR, 2010.




Non-Uniform Real-World Deblurring

B B 0l 8 - B B B B B H

,Gupta et al.

S. Hirsch et al. , Single image deblurring using motion density functions, ECCV, 2010.



Non-Uniform Real-World Deblurring

oW
Joshi et al.

.'é\ gy

N. Joshi et al. , Image deblurring using inertial measurement sensors, SIGGRAPH, 2010.



Non-Uniform Real-World Deblurrlng

S. Hirsch et al. , Fast removal of non-uniform camera shake, ICCV, 2011.



Dual Motion Real-World Deblurring

Blurry | Zhu et al.

Blurry li

X. Zhu et al. , Deconvolving PSFs for better motion deblurring using multiple images, ECCV, 2012.



Personal Photos

e recovered image

two blurry photos taken at a conference




Recap

+ Three (interrelated) issues with the convex ¢, norm:

1. Over-shrinkage at the expense of sparsity
2. Correlated dictionaries disrupt performance

3. Extra dictionary parameters may be hard to estimate

+ In all three, non-convex substitutes can potentially
enhance performance dramatically.



Similar Principles Apply to other Low-
Dimensional Models

low rank

+

Robust PCA

sparse

observation

[Candes et al., 2011; Wipf, 2012]
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