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Weakly-supervised Structured Learning:



Hype cycle

http://en.wikipedia.org/wiki/Hype_cycle



General hype cycle for technology

http://en.wikipedia.org/wiki/Hype_cycle



Hype cycle of current technologies

Courtesy of Li Deng

http://educationstormfront.files.wordpress.com/2012/08/hypechart-20121.gif


Part I: 

Overview of some common and 

competing machine learning concepts



Questions to ask

Lessons about competing concepts in machine 

learning?

Why is learning structures so important?

Why do we emphasize weak-supervised 

learning?



Several pairs of competing concepts

Generative Discriminative

Parametric  Non-parametric

Supervised  Unsupervised

𝑝(𝑦, 𝑥) 𝑝(𝑦|𝑥)

𝑦 = 𝑓(𝑥) 𝑦 =  

𝑘=1

𝐾

𝛼𝑘𝑓𝑘(𝑥)

{ 𝑦𝑖 , 𝑥𝑖 , 𝑖 = 1. . 𝑁} { 𝑥𝑖 , 𝑖 = 1. . 𝑁}

Dense                                        Sparse

𝑥 2
𝑥 0

Flat (shallow)                             Deep

𝑦 = 𝑓(𝑥) 𝑦 = 𝑓 𝑛 𝑓 𝑛−1 … 𝑓 1 𝑥



Discriminative vs. generative models

Discriminative models, either 
explicitly or implicitly, study the 
posterior distribution directly.

Generative approaches model 
the likelihood and prior 
separately.



Parametric vs. non-parametric

𝑦 = 𝑓(𝑥) 𝑦 =  

𝑘=1

𝐾

𝛼𝑘𝑓𝑘(𝑥)



Supervised vs. unsupervised



Dense vs. sparse

SIFT descriptor (D. Lowe)

HOG descriptor (Dalal and Triggs)
SIFT detector (D. Lowe)



Flat vs. deep

⋯ ⋯

⋯ ⋯

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1

⋯ ⋯

⋯ ⋯

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1

⋯ ⋯

⋯ ⋯

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1

⋯ ⋯

⋯ ⋯

𝑙1 𝑙2 𝑙𝑗 𝑙𝐽

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1

Deep belief nets (G. Hinto)SVM (V. Vapnik)



Marr’s theory

D. Marr



Lessons we have learned: 
(1) perfect feature extraction?

Canny edges SIFT



Lessons we have learned: 
(2) single decision?

decision tree random forests



Lessons we have learned: 
(3) features?

Smart human design: 

SIFT descriptor (D. Lowe)
Viola and Jones

Features learned from raw data, CNN, LeCun et al.



Lessons we have learned: 
(4) bottom-up and top-down?

top-downbottom-up

Yuille and Kersten



Lessons we have learned: 
(5) bottom-up and top-down?

Ma and Wright



Lessons we have learned: 
(6) convex vs. non-convex?

𝑥

𝑓(𝑥)



Some general notes about 

discriminative and generative 

models



Neural networks, SVM, and Boosting

V. Vapnik
Y. Freund and R. Schapire

F. Rosenblatt

J. Hopfield

G. Hinton

Neural Networks

• Learns arbitrary function

• Back-propagation with 

gradient descent

• Easy to train

SVM

• Explicit formulation

• Convex optimization

• Linear and Kernel-based

• Robustness

Boosting

• Combines arbitrary 

functions

• Greedy but well-behaved

• Robustness

SVM

• Explicit formulation

• Scaling with linear 

function

• Efficiency in testing

• Large-scale computing

Deep Learning

• Reduced burden in design

• Hierarchical 

representation

• Big data

• Large-scale computing



Caruana and Niculesu-Mizil, ICML 2006

Overall rank by mean performance across problems and metrics (based on bootstrap analysis).

BST-DT: boosting with decision tree weak classifier                RF: random forest

BAG-DT: bagging with decision tree weak classifier                SVM: support vector machine

ANN: neural nets                                                                        KNN: k nearest neighboorhood

BST-STMP: boosting with decision stump weak classifier        DT: decision tree 

LOGREG: logistic regression                                                     NB: naïve Bayesian

It is informative, but by no means final.

Empirical comparisons of different algorithms



Empirical study on high-dimension
Caruana et al., ICML 2008

Moving average standardized scores of each learning algorithm as a function of the dimension.

The rank for the algorithms to perform consistently well:

(1) random forest  (2) neural nets (3) boosted tree (4) SVMs



Some literature

Perceptron and Neural networks (Rosenblatt 1958, Windrow and Hoff 1960,  

Hopfiled 1982, Rumelhart and McClelland 1986)

Support Vector Machine (Vapnik 1995)

AdaBoost and its variants (Freund and Schapire 1995, Friedman et al. 1998, Breiman 

1994)

Discriminative Approaches:

Nearest neighborhood classifier (Hart 1968)

Fisher linear discriminant (Fisher)

Generative Approaches:

PCA, TCA, ICA (Karhunen and Loeve 1947, H´erault et al. 1980, Frey and Jojic 1999) 

MRFs, Particle Filtering (Ising,  Geman and Geman 1994, Isard and Blake 1996)

Maximum Entropy Model (Della Pietra et al. 1997, Zhu et al. 1997, Hinton 2002)

DBN (Hinton 2006)….

…



Freund and Schapire 1995, 

Friedman et al. 1998

Max entropy principle and boosting

• Both have the feature selection procedure.

• Both follow a exponential probabilistic model (arguable).

Della Pietra et al. 997,

Zhu, Wu, and Mumford 1997

Hinton 2002

Although generative model is always preferred, if we can, we are 

forced to use discriminative models in many cases.



From discriminative to generative (Tu 2008)

We are given a set of training samples (positive), S, and we want to learn a 

corresponding generative model. We can turn a single class learning problem into a 

two-class learning problem. Let x be a data vector and 𝑦 ∈ {−1,+1} its label. 

Bayes rule:

Drop p(y) for simplicity:

The above equation says that a generative model for the positives 
p(x|y=+1) can be obtained from the discriminative model p(y|x) and a 
generative model p(x|y=-1) for the negatives.



From discriminative to generative

Instead, we learn the model recursively. 

Goal:



Discriminati
ve Model 

positives

negatives

Discriminati
ve Model 

positives

negatives

Discriminati
ve Model 

positives

negatives

A toy example

Reference Distribution

Target Distribution

Bootstrappin

g/sampling

Bootstrapping

/sampling

Learned Model



From discriminative to generative

Theory:                    asymptotically approaches 
p(x|y=+1). 

Proof:



Texture Patches

Discriminativ
e Model 

positives
negatives

Randomly 

selected

Discriminativ
e Model 

positives
negatives

Reference Images

Bootstrapping

Bootstrapped

Sampled

Sampling positives

Discriminativ
e Model negatives

Texture modeling



Texture modeling



Importance of structural information.



Importance of structured data

• Structured information within data sample.

• Structured information in-between data 

samples.

ISOMAP (Tenenbaum et al.), LLE (Roweis and Saul)

OCR



Structural prediction-overview
15 emotion categories (Anger, Abuse, Blame, 

Fear, Forgiveness, Guilt, Happiness_peacefulness, 

Hopefulness, Hopelessness, Love, Pride, Sorrow, 

and Thankfulness)

Hopelessness/Sorrow/Fear

John : I am going to tell you this at the last . You 

and John and Mother are what I am thinking - I 

ca n't go on - my life is ruined. I am ill and heart -

broken . Always I have felt alone and never more 

alone than now . John . Please God forgive me for 

all my wrong doing . I am lost and frightened . 

God help me , Bless my son and my mother .

sky

road

car buildin

g

tree

Depth data, Shotton et al. OCR



Structural information

Image from PASCAL



Structural prediction literature

• Hidden Markov Models (Markov 1922, Baum and Petrie 1966,..)

• Bayesian Network (Peral 1986,…)

• Neural Networks (Rosenblatt 1958, Werbos 1975, Hinton 2006)

• Markov Random Fields (Ising 1924, Geman and Geman 1984, …)

• Structural Support Vector Machine (Vapnik 1992, Tsochantaridis et 

al. 2005,…)

• Conditional Random Fields (Lafferty et al. 2001,…)

Graphical models…

Typical inference methods include Belief/message 
propagation, MCMC (Gibbs sampling, Metropolis-
Hasting), EM, Graph Cuts, Stochastic descent...



Problem formulation

MRF

CRF



Binary SVM (V. Vapnik)

2

𝑤 ∙ 𝑤

𝜀1𝜀2

min | 𝑤 |2 + 𝐶 𝜀𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤 ∙ 𝑥𝑖 +𝑏 ≥ 1 − 𝜀𝑖



Multi-Class SVM (Crammer & Singer, 2001)

 Training Examples:

 Inference:

 Training:  Find                       that solve



Structured SVM (Tsochantaridis et al.) 

• Formulation

Achieve:
argmaxword wT f( ,word) = “brace”

Such that:
wT f( ,“brace”) > wT f(       ,“aaaaa”)
wT f( ,“brace”) > wT f(       ,“aaaab”)
…
wT f( ,“brace”) > wT f(       ,“zzzzz”)

B. Taskar



A unified view of binary, multi-class, and structured SVM 

Binary Multi-class Structured

Specific

Compute feature (explicitly or 
implicitly through kernels)

Φ(𝑋)

Compute feature (explicitly or 
implicitly through kernels)

Φ(𝑋)

𝑌∗ = 𝑎𝑟𝑔 max
𝑌∈{1,..,𝑘}

𝑊𝑌 ∙ Φ(𝑋)

Compute feature (explicitly or 
implicitly through kernels)

Φ(𝑋, 𝑌)

𝑌∗ = 𝑎𝑟𝑔max
𝑌

𝑊 ∙ Φ(𝑋, 𝑌)

Unified 𝑌∗ = 𝑎𝑟𝑔 max
𝑌∈{−1,+1}

𝑌𝑊 ∙ Φ(𝑋) Φ 𝑋, 𝑌 = (Φ 𝑋 ∙ 𝛿 1 = 𝑌 , . . , Φ 𝑋 ∙
𝛿 𝑘 = 𝑌 )

𝑌∗ = 𝑎𝑟𝑔 max
𝑌∈{1,..,𝑘}

𝑊 ∙ Φ(𝑋, 𝑌)

Φ 𝑋, 𝑌 = (Φ 𝑋 ∙ 𝛿 1 = 𝑌 , . . , Φ 𝑋 ∙
𝛿 𝑘 = 𝑌 , 𝑦1, . . , 𝑦𝑛)

𝑌∗ = 𝑎𝑟𝑔max
𝑌

𝑊 ∙ Φ(𝑋, 𝑌)

𝑆 = { 𝑋𝑚, 𝑌𝑚 , 𝑚 = 1. . 𝑀}

𝑋 ∈ ℛ𝐿

𝑌 ∈ {−1,+1}

𝑌 =  
+1, 𝑖𝑓 𝑊 ∙ Φ(𝑋) ≥ 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆 = { 𝑋𝑚, 𝑌𝑚 , 𝑚 = 1. . 𝑀}

𝑋 ∈ ℛ𝐿

𝑌 ∈ {1, . . , 𝑘}

𝑋 = 𝑥1, . . , 𝑥𝑛 , 𝑥𝑖 ∈ ℛ𝐿

𝑌 = 𝑦1, . . , 𝑦𝑛 , 𝑦𝑖 ∈ {1. . 𝑘}



Part II: 

Why weakly-supervised learning?



• Social Networking Sites (e.g. Facebook, MySpace)

• Image Search Engines (e.g. Google, Bing)

• Photo Sharing Sites (e.g. Flickr, Picasa)

• Computer Vision Datasets (e.g. LabelMe, SUN, ImageNet)

CVPR 2013 workshop “Visual Learning with Weak Supervision”

Data and supervision (images)



Crowdsourcing: 
gross labels are easier to get



Fine-grained classification

Wah et al. cvpr 2014



Machine-crowd collaboration

Answer

Questi
on

VS
VS

VS
VS

VS

VS

Baseline 
Model

Confusing Class
Pairs

Learning with 
New 

Knowledge

Annotation 
Task

Deng, Krause, & Fei-Fei, CVPR2013



>90% of successful games use <10% of the 

bounding box  

Crowd picked bubbles (AMT)

Deng, Krause, & Fei-Fei, CVPR2013

70% of games are successful

200 classes from Caltech-UCSD-Bird [Welinder et al. 2010]

800 top confusing class pairs (via cross-validation) 

90K games on Amazon Mechanical Turk



Training Images

?
…

Linear 
SVM

Deng, Krause, & Fei-Fei, CVPR2013

Test Image

BubbleBank representation



Multiple instance learning (discriminative)



Multiple instance learning (generative)



Multiple instance learning

• Training data given in sets/bags [weakly 
supervised]
• If all instances in set are negative, set is negative

• Set is positive if at least 1 instance in set is positive

• Goal is to learn instance classifier f:

• If oracle gave positive instance j for each positive 
set, could train f using standard supervised 
learning

[Dietterich 97]



MIL example

Drug Activity Prediction

 Molecule can take on multiple shapes

 Representation ambiguous, use MIL to find most 
consistent state

[Dietterich 97]



Multiple instance learning (MIL)

• Supervised Learning Training Input

• MIL Training Input

• Goal: learning instance classifier

𝑦1, … , 𝑦𝑛 , 𝑦𝑖 ∈ 𝒴

ℎ𝑖1, … , ℎ𝑖𝑚



Multiple instance learning

𝑥11

𝑥12

𝑥13
𝑥21

𝑥22

𝑥23

𝑥31

𝑥32
𝑥33



Bags vs. instances



Optimization: discriminative EM

• Perform the discriminative learning in the 
presence of hidden variables. 

E-step: Update the hidden variable (label) of 

each sample in positive bags.

M-step: train discriminative models based on 

the estimated labels.



EM-DD (Zhang and Goldman, 2001)

• In the MIL setting, the label of a bag is determined by the 
"most positive" instance in the bag, i.e., the one with the 
highest probability of being positive among all the 
instances in that bag. The difficulty of MIL comes from the 
ambiguity of not knowing which instance is the most likely 
one.

• The knowledge of which instance determines the label of 
the bag is modeled using a set of hidden variables, 
which are estimated using the Expectation Maximization 
style approach. This results in an algorithm called EM-DD, 
which combines this EM-style approach with the DD 
algorithm.



Using SVM for MIL directly

min | 𝑤 |2 + 𝐶 𝜀𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤 ∙ 𝑥𝑖 +𝑏 ≥ 1 − 𝜀𝑖



MIL example 

Object detection with weak supervision 

 Positive set: image contains object

 Goal to train standard object detector

 Example positive set:

[Viola 05]



Weakly-supervised learning for 

structured data.



Kobatake and Tanaka, 1994Hubel and Wiesel Model

Visual representation



Poselets: a fully supervised approach

Specific body parts with 

full supervision
(Bourdev and Malik, 2010)



3D poselets

3D Postelets

Torso detection using poselets (Bourdev and Malik, 2010)



Body parts are hard to define in 
presence of occlusion



Object detection

Frontal 
Faces

Motorbikes Spotted Cats

Rigid Articulated

object  vs. background*

Dollar et al. 2008



Object Bag of ‘words’

L. Fei-fei



Analogy to documents

Of all the sensory impressions proceeding to 

the brain, the visual experiences are the 

dominant ones. Our perception of the world 

around us is based essentially on the 

messages that reach the brain from our eyes. 

For a long time it was thought that the retinal 

image was transmitted point by point to visual 

centers in the brain; the cerebral cortex was a 

movie screen, so to speak, upon which the 

image in the eye was projected. Through the 

discoveries of Hubel and Wiesel we now 

know that behind the origin of the visual 

perception in the brain there is a considerably 

more complicated course of events. By 

following the visual impulses along their path 

to the various cell layers of the optical cortex, 

Hubel and Wiesel have been able to 

demonstrate that the message about the 

image falling on the retina undergoes a step-

wise analysis in a system of nerve cells 

stored in columns. In this system each cell 

has its specific function and is responsible for 

a specific detail in the pattern of the retinal 

image.

sensory, brain, 

visual, perception, 

retinal, cerebral cortex,

eye, cell, optical 

nerve, image

Hubel, Wiesel

China is forecasting a trade surplus of $90bn 

(£51bn) to $100bn this year, a threefold 

increase on 2004's $32bn. The Commerce 

Ministry said the surplus would be created by 

a predicted 30% jump in exports to $750bn, 

compared with a 18% rise in imports to 

$660bn. The figures are likely to further 

annoy the US, which has long argued that 

China's exports are unfairly helped by a 

deliberately undervalued yuan.  Beijing 

agrees the surplus is too high, but says the 

yuan is only one factor. Bank of China 

governor Zhou Xiaochuan said the country 

also needed to do more to boost domestic 

demand so more goods stayed within the 

country. China increased the value of the 

yuan against the dollar by 2.1% in July and 

permitted it to trade within a narrow band, but 

the US wants the yuan to be allowed to trade 

freely. However, Beijing has made it clear that 

it will take its time and tread carefully before 

allowing the yuan to rise further in value.

China, trade, 

surplus, commerce, 

exports, imports, US, 

yuan, bank, domestic, 

foreign, increase, 

trade, value

L. Fei-fei



L. Fei-fei



category

decision

learning

feature detection

& representation

codewords dictionary

image representation

category models

(and/or) classifiers

recognition

L. Fei-fei



To learn parts with weak-

supervision.



Object detection

Frontal 
Faces

Motorbikes Spotted Cats

Rigid Articulated

object  vs. background*

Dollar et al. 2008



Standard vs MIL vs MCL

Standard

 Given Label  Target Decision 
Boundary

MIL MCL

Dollar et al. 2008



MCL Definition (1)

 Most general definition of a set/bag classifier:

Note defined        in terms of regular function g

 To compute               :

 For every sequence                       test 

 Computation time exponential in k:                  (m is set size)

 Model exponential in number of components



MCL definition (2)

• This leads to the second MCL formulation:

• depends on up to        instances 

 Computation time is                    + the running time of 

 For k=1, running time is linear in T and m

• But, is training tractable?

a standard function

“components”

use small k


Sets

Sequence of sets



Learning: single component

 Note:

 So first formulation of MCL with k=1 equivalent to MIL

 Can also show reduction for k>1, but training exponential in k

 Therefore existing MIL algorithms provide mechanism to 
learn single components

MCL (k=1)

MIL



 Additive Formulation:

 Additive models are simple but powerful 

 Prevalent in statistics, rich theory

 Can use boosting to train additive model

Learning multiple components



 General algorithm:

 Use MIL to obtain weak classifiers (components)

 Use boosting to combine components into strong 
classifier

 RealBoost for MCL:

Learning multiple components



Standard vs MIL vs MCL

Standard MIL MCL

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5



Speaker identification

Results

Speaker 1:

Speaker 2:

Training Samples Sets (all sub-clips)

VoiceBox Matlab Toolbox (MFCC features)



Pedestrian detection

 Inria Dataset  [Dalal & Triggs 2005]

 1213 Training Positives (+ reflections)

 O(2000) background training images 

 Test dataset about ½ as big

 Verification task:

 Does window contain pedestrian?

 Challenging dataset, much recent work

Specialized version of MCL:
1. Optimize MIL training

2. Incorporate spatial model



Learning from Less Supervision

 Learn object class models from unlabeled/weakly 
labeled images.  

 Unsupervised/Weakly Supervised Learning.

R. Girshick



“Is it possible to learn visual object 
classes simply from looking at images?” –

[Josef Sivic et al. ICCV 2005]

Topic Models (pLSA/LDA)
[Sivic et al. ICCV 05] 

[Russell et al. CVPR 06]

Link Analysis Technique
[Kim et al. CVPR 05’] 

[Kim and Torralba. NIPS 09’]

Pyramid Match Kernel +  Normalized Cut
[Grauman and Darrell. CVPR 06’] 

[Lee and Grauman. IJCV 09’]

Context-Aware Discovery
[Lee and Grauman. CVPR 10’] 

[Deselaers et al. IJCV 12’]
K. Grauman



PASCAL VOC results over time

R. Girshick



Deformable models

Left eye

template

Right eye

template

Mouth

template

Nose template“Springs”

Fischler and Elschlager 1973“The Representation and Matching of Pictorial Structures”

v1 v2

v3

v4



34 years later

Root template Part templates Spring costs

Root

(Felzenszwalb, McAllester, Ramanan ’08)



Discriminative-trained part-based models

(Felzenszwalb, McAllester, Ramanan ’08)



Deformation is not enough

Viewpoint

Subclasses

R. Girshick



Deformation is not enough

Occlusion/truncation

Symmetries

Compositional structure

(kid with bucket hat and

scuba goggles)

R. Girshick



Scenes and Images (SUN dataset, Xiao et al. 2010)

90

living room
vs. 
rest

forest
vs. 
rest



when? 1972

Lee, Efros, and Hebert



Visual data mining in computer vision

Visual world

 Most approaches mine globally consistent patterns

Object category discovery
[Sivic et al. 2005, Grauman & Darrell 2006, Russell et al. 2006, Lee & 

Grauman 2010,  Payet & Todorovic, 2010, Faktor & Irani 2012, Kang et al. 
2012, …]

Low-level “visual words”
[Sivic & Zisserman 2003, Laptev & Lindeberg 2003, Czurka et al. 

2004, …]

Lee, Efros, and Hebert



Visual data mining in computer vision

• Recent methods discover specific visual patterns

P
a

ri
s

P
ra

g
u

e

Visual world

Pari
s

non-
Paris

Mid-level visual 
elements

[Doersch et al. 2012, Endres et al. 2013, 
Juneja et al. 2013, Fouhey et al. 2013, 

Doersch et al. 2013]

Lee, Efros, and Hebert



Problem
 Much in our visual world undergoes a gradual 

change

Temporal:

1887-
1900

1900-
1941

1941-
1969

1958-
1969

1969-
1987

Lee, Efros, and Hebert



Goal

1920 1940 1960 1980 2000 year

when?
Historical dating of cars

[Kim et al. 2010, Fu et al. 2010, Palermo et al. 
2012]

 Mine mid-level visual elements in temporally- and spatially-
varying data and model their “visual style”

[Cristani et al. 2008, Hays & Efros 2008, Knopp
et al. 2010, Chen & Grauman. 2011, Schindler et 
al. 2012]

where?
Geolocalization of StreetView

images

Lee, Efros, and Hebert



Key Idea

1)   Establish connections

2)   Model style-specific differences 

1926 1947 1975

1926 1947 1975

“closed-world”

Lee, Efros, and Hebert



Making visual connections

Expect style to change gradually…

Natural world “background” dataset

1920s

1930s

1940s

Lee, Efros, and Hebert



Mining style-sensitive elements
Patch Nearest neighbors

Lee, Efros, and Hebert



Making visual connections

Top detection per decade

1990s1930s 1940s 1960s 1970s 1980s1920s 1950s

Lee, Efros, and Hebert



Mid-Level visual knowledge discovery

 Doersch et al. What Makes Paris Look like Paris? SIGGRAPH 2012

 Singh et al. Unsupervised Discovery of Mid-Level Discriminative 
Patches. ECCV 2012



Image search



Harvesting mid-level visual concepts from 
large-scale internet images

700 words

goggles spectacle key faucet wheel 
propeller fruit wheel roller coaster 
swing mirror button hook candle 
streetlight room light saddle bookshelf 
shelf umbrella plate snail balloon 
public toilet cupboard drawer garage 
cross fence door railing wall 
sail rack shower curtain homo 
rock pool ball bed bench 
chair sofa toilet seat writing 
desk dressing table gravel pool 
table attire table-tennis table shield 
backboard basketball court face veil 
drum guitar horn suit shoe 
basket blind floor bear grass 
bouquet blanket bridal gown vase 
pen bathtub rug curtain baseball 
glove towel mouse stick male 
horse squash racket box glove 
seashore jersey boot fork flipper 
soil cesspool duck turtle snake 
wing aqualung oxygen mask lion 
cell loudspeaker filter stove monkey 
kangaroo goggles spectacle key faucet 
wheel propeller fruit wheel roller 
coaster swing mirror button hook 
candle streetlight room light saddle 
bookshelf shelf umbrella plate snail 
balloon public toilet cupboard drawer 
garage cross fence door railing 
wall sail rack shower curtain 
homo rock pool ball bed 
bench chair sofa toilet seat 
writing desk dressing table gravel 
pool table attire table-tennis table 
shield backboard basketball court face
veil drum guitar horn snail 

450,000 images



Sky

Trees

Supervised learning for visual concepts



Difficulty with supervised learning 

 Scalability

 Intrinsic ambiguity in human annotations

 Inconsistency across different subjects

Sky



Weakly-Supervised Visual Concept Learning

Layer 1

Layer 2

Low-
level 
features

Learned 
concept
s

Layer 3

Low-
level 
features

Learned 
concept
s

Learned  
concepts

Extract 
codebook 
responses

Bottom-up saliency 

for ``noisy input’’

Low-
level 
features



Learned visual concepts

Kobatake and Tanaka, 1994

HOG

LBP

L*a*b*
histogram

Visual Concepts

Featur
e 

Vector

Pooled 
feature 
vectors

{x1 x1 x2 x3 x4 

…}



Learned response maps
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Learned mid-level visual concepts

Optimally responded 
patches



Classification using visual concepts

MIT Indoor Scene

UIUC Sport

15 Scene

Pascal VOC 2007



Response maps of mid-level concepts



Extension

Objects 
Nouns

Motions
Verbs



Views in cognitive science

 Activation in human MT/MST 
 Kourtzi et al., J. Cog Neurosci, 2000, Proverbio et al., PLoS One, 2009

 A series of findings from Boroditsky
 Still images of actions  human cognition  Visual imagery of motion 

motion language, Psych Sci, 2008, Cognition, 2010, PNAS, 2010

 Experiments in Computer Vision (a MIL demonstration)



Action concepts from still images

We are crawling ~1000 action categories, e.g. brushing teeth, bowling, from 
Google and Bing image search engines.



Motion phrase



Expansion



M-phrases



Distribution of images
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Motions in still images

1,024 categories of motions from Google and Bing



UCSD-1024



Inner-category consistency
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Recognizing human actions in videos



Content-based video 
retrieval

Sports video analysis

Surveillance event detection Human-machine interface / Gaming 

Background & applications



Spatial-temporal video features by dense trajectory 

Wang et al. 2013



Learned video patches from action video clips



Learned video patches from action video clips



Weakly-Supervised Learning for Microscopic Image 
Segmentation, Clustering, and Classification

 Colon cancer 

 Lung cancer

 Liver cancer

 Breast cancer

 Nasopharyngeal cancer

 Kidney cancer

 Esophagus cancer

 Gastric cancer

2000 pathology reports of 
colon cancer including disease 
information and image 
information



Weakly-Supervised Learning

1. It is relatively easy to identify 
cancer/non-cancer histopathology 
images.

2. The detailed segmentation however 
requires careful manual annotations.

3. It is an ambiguous task to 
identify/recognize the subclasses of the 
cancer type.



Histopathology Images (extremely large: 
around 1TB per image)



Motivation for Weakly-
Supervised Learning

Cancer histopathology image Non-cancer histopathology image



Motivation for Weakly-Supervised Learning

Positive 

bags
Negative 

bags

Cancer Image Non-cancer Image

An integrated formulation to perform pixel-level segmentation, patch-level clustering, and image-

level classification with image-level labels as supervision, Multiple Clustered Instance Learning (Xu et 

al. cvpr 2012, Xu et al. MICCAI 2012).



Results- Test Images (Xu et al. CVPR 2012)

(a): The original 

images.

(b): The pixel-

level 

segmentation 

and clustering 

for standard 

Boosting + K-

means

(c): MIL + K-

means, and our 

MCIL.

(d): MCIL

(e): The 

instance-level 

ground truth 

labeled by three 

pathologists.



Unsupervised object discovery



Illustration

Positive bags

Negative 
bags



Bottom-up multiple class learning

Zhu et al., CVPR 2012



Object discovery results



Weakly supervised modeling
of single object class

• [32] Leistner, et al. ECCV 11’

• [11] Deselaers et al. IJCV 12’

• [9] Chum Zisserman. CVPR 07’

• [41] Russell et al. CVPR 06’

• [38] Pandey and Lazebnik. ICCV 11’

• [25] Joulin et al. CVPR 12’

Ours [32] [11] [9] [41] [38] [25]

PASCAL 06-
subset

45 36 49 34 27 N/A 43

PASCAL 07-
subset

31 25 28 19 14 30 30



PASCAL results: 



Unsupervised object discovery-a 
low-rank approach (Wang et al. 2014)



Previous work

RPCA: E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal 
component analysis? Journal of the ACM, 58(3), May 2011.

RASL: Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, RASL: Robust 
Alignment by Sparse and Low-rank Decomposition for Linearly 
Correlated Images, PAMI 2011.

min
𝐴,𝐸,𝑍

| 𝐴 |∗ + 𝛾| 𝐸 |1 𝑠. 𝑡. 𝐷 ∙ 𝜏 = 𝐴 + 𝐸



A Low-rank solution

min
𝐴,𝐸,𝑍

𝑟𝑎𝑛𝑘 𝐴 + 𝛾| 𝐸 |0 𝑠. 𝑡. 𝑋 ∙ 𝑑𝑖𝑎𝑔 𝑍 = 𝐴 + 𝐸, ∀𝑘 ∈ [𝐾] 

𝑖=1

𝑛𝑘

𝑧𝑖
𝑘 = 1

𝑋

1
0
0
0

0
1
0
0

𝑍 𝐸

+=

𝐴



Relaxing the conditions

min
𝐴,𝐸,𝑍

𝑟𝑎𝑛𝑘 𝐴 + 𝛾| 𝐸 |0 𝑠. 𝑡. 𝑋 𝑑𝑖𝑎𝑔 𝑍 = 𝐴 + 𝐸, ∀𝑘 ∈ [𝐾] 

𝑖=1

𝑛𝑘

𝑧𝑖
𝑘 = 1

min
𝐴,𝐸,𝑍

| 𝐴 |∗ + 𝛾| 𝐸 |1 𝑠. 𝑡. 𝑋 𝑑𝑖𝑎𝑔 𝑍 = 𝐴 + 𝐸, ∀𝑘 ∈ [𝐾] 

𝑖=1

𝑛𝑘

𝑧𝑖
𝑘 = 1

min
𝐴,𝐸,𝑍

| 𝐴 |∗ + 𝛾| 𝐸 |1 𝑠. 𝑡. 𝑋 𝑑𝑖𝑎𝑔 𝑍 = 𝐴 + 𝐸, ∀𝑘 ∈ 𝐾 1𝑇𝑍 𝑘 = 1

Now a convex optimization which can be solved by e.g. Inexact Augmented 
Lagrange Multiplier.



Inexact augmented Lagrange multiplier



Results



MRF tumor discovery



Connection with deep learning

LeCun,et al.



Conclusion
• There are rich mathematical/statistical/computational models which become 

increasingly convenient to use.

• The availability of ever increasing data cohort provides a golden opportunity 

to exploit rich and intrinsic data representation.

• Gross label information is much easier to obtain which can be viewed as 

“noisy” input which allows us to explore structural information which might 

be hard to specify at the first place.

• Weakly-supervised learning allows us to greatly automate and scale up the 

learning process, which is strongly tied with the development of human 

cognition.

• There are still a lot of open questions, so as great opportunities ahead.

Abstraction, Composition, Competition, and 

Computation 



Thanks! Questions?


