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Abstract

Multi-label learning deals with data objects associated with
multiple labels simultaneously. Previous studies typically as-
sume that for each instance, the full set of relevant labels as-
sociated with each training instance is given. In many applica-
tions such as image annotation, however, it’s usually difficult
to get the full label set for each instance and only a partial or
even empty set of relevant labels is available. We call this kind
of problem as ‘semi-supervised weak-label learning’ prob-
lem. In this work we propose the SSWL (Semi-Supervised
Weak-Label) method to address this problem. Both instance
similarity and label similarity are considered for the com-
plement of missing labels. Ensemble of multiple models are
utilized to improve the robustness when label information is
insufficient. We formulate the objective as a bi-convex opti-
mization problem with an efficient block coordinate descent
algorithm. Experiments validate the effectiveness of SSWL.

Introduction
Conventional supervised learning often assumes that each
instance is associated with a single label. However, in many
real-world tasks, one instance usually has more than one
labels. For example, in text categorization, a document on
Olympic Game belongs to business and sport simultane-
ously; in image annotation, an image on the scene of Paris is
associated with tower and sky simultaneously. Conventional
supervised learning based on one label per instance is out
of its capability to cope with this problem, and multi-label
learning (Zhang and Zhou 2014) that deals with instances
associated with a set of labels has received much attention.

In previous multi-label studies, a basic assumption for
training data is that all the relevant labels of every training
instance are known. However, in many applications, such
assumption is hard to hold because obtaining all relevant la-
bels is difficult, and generally only a partial or even empty
label set can be observed. For example, suppose a training
image is related to the concepts car, road, people and build-
ing. In real cases, the user may only tag car, road for the
training image while missing the label people and building.
What is worse, the training image may not be selected to tag
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for users due to the limited resources and thus the observed
relevant label of the image is even an empty set.

Label incompleteness significantly influences the perfor-
mance of multi-label learning (Zhou 2017). To alleviate it,
there are some previous work. Weak-label learning focuses
on the issue of partial relevant label set. Sun et al., (2010)
presented the WELL approach based on the assumption that
instance similarities are determined by a group of low-rank
similarity matrixes. Bucak et al., (2011) presented the MLR-
GL approach with the use of group lasso to regularize the
training errors. Semi-supervised multi-label learning tries to
handle the issue of empty relevant label set, where transduc-
tive multi-label learning methods (Liu, Jin, and Yang 2006;
Chen et al. 2008; Guo and Schuurmans 2012; Kong, Ng, and
Zhou 2013) that assume testing instances are from unlabeled
instances, whereas pure semi-supervised multi-label learn-
ing methods (Zhao and Guo 2015; Zhan and Zhang 2017)
try to make multi-label prediction for any unseen instance.

It is evident that neither weak-label learning nor semi-
supervised multi-label learning can tackle the problem con-
cerned in the paper. For example, weak-label learning ig-
nores the use of many unlabeled instances that could be very
useful; semi-supervised multi-label learning assumes that all
the relevant labels are available for labeled instances, which
is not the case in our situation. Note that the data scenario
studies in the paper is quite different from previous multi-
label studies. We call this kind of multi-label problem as
semi-supervised weak-label learning. We illustrate the dif-
ferences between the learning scenario in the paper and pre-
vious multi-label learning frameworks in Figure 1.

In this paper, we study semi-supervised weak-label learn-
ing problem and propose the SSWL (Semi-Supervised
Weak-Label) method. Our basic assumption is that both the
instance and label similarity are helpful for the complement
of missing labels. Moreover, ensemble of multiple models
usually performs more robust than a single model, when the
label information is insufficient. Specifically, we first con-
struct a regularization term based on smoothness assump-
tion, that is, similar instances should have similar concept
compositions within their label sets, which requires the fi-
nal prediction to be coherent to the smoothness of instance
and label similarity simultaneously. We build models for
labeled and unlabeled instances respectively, and then we
leverage the diverse models via the co-regularization frame-



Figure 1: Four multi-label learning settings

work (Sindhwani, Niyogi, and Belkin 2005). We formulate
the problem as a bi-convex formulation and provide an effi-
cient block coordinate descent solution. The effectiveness of
the proposed method is validated in experiments.

The rest of this paper is organized as follows. We start by a
brief review of related work. Then we formulate the problem
and present the proposed approach. Experimental results are
reported, followed by the conclusion of this work.

Related Work
This line of weak-label learning research is raised in the past
few years. Sun et al., (2010) and Bucak et al., (2011) are
two early studies on this direction. Sun et al., (2010) pre-
sented the WELL approach based on the assumption that
instance similarities are determined by a group of low-rank
similarity matrixes. Bucak et al., (2011) presented the MLR-
GL approach with the use of group lasso to regularize the
training errors. Recently, many learning methods have tried
to conquer weak-label problems. Examples include meth-
ods based on label co-occurrence (Wu, Jin, and Jain 2013;
Zhu, Yan, and Ma 2010), sparse reconstructions (Lin et
al. 2013), low-rank matrix completion (Xu, Jin, and Zhou
2013), etc. The weak-label problem also occurs in other
learning scenarios, such as multi-instance multi-label learn-
ing (Yang, Jiang, and Zhou 2013). However, weak-label
learning methods are not sufficient to tackle well the semi-
supervised weak-label data, because they neglect the ex-
ploitation of a large amount of unlabeled instances that is
known to be very useful.

Semi-supervised multi-label learning falls into two cate-
gories. One is transductive multi-label learning that assumes
testing instances are from unlabeled instances. Examples in-
clude methods (Liu, Jin, and Yang 2006; Chen et al. 2008;
Kong, Ng, and Zhou 2013; Wang, Tu, and Tsotsos 2013).
Specifically, Liu et al., (2006) assumed that the similarity in
the label space is closely related to that in the feature space,
and thus employed the similarity in feature space to guide
the learning of missing label assignments, which leads to a
constrained nonnegative matrix factorization optimization.

Chen et al., (Chen et al. 2008) constructed instance and label
graph respectively and showed that the labels of unlabeled
data finally can be obtained by solving a Sylvester Equation.
Kong et al., (2013) formulated the transductive multi-label
learning as an optimization problem of estimating label con-
cept compositions. The other one is pure semi-supervised
multi-label learning that could make multi-label prediction
for any unseen instance. Examples include methods (Zhao
and Guo 2015; Zhan and Zhang 2017). Specifically, Zhao et
al., (2015) aimed to improve multi-label prediction perfor-
mance by integrating label correlation and multi-label pre-
diction in a mutually beneficial manner. Zhan et al., (2017)
proposed an inductive co-training style method to address
this problem. They generated two classification models by
dichotomizing the feature space with diversity maximization
to handle multi-label data, and then pairwise ranking pre-
dictions on unlabeled data was iteratively communicated for
model refinement. Nevertheless, although semi-supervised
multi-label learning have taken the incompleteness of rele-
vant labels into account, it still assumes that full relevant la-
bels are available for labeled instances and such an assump-
tion does not hold in semi-supervised weak-label data.

The Proposed Method
Problem Statement and Notations
In the original supervised multi-label setting, we are given
a training data set {(xi,yi)}mi=1. The instance xi is repre-
sented as a d-dimensional real value vector. The label yi can
be represented as an n-dimensional binary label vector, with
1 indicating that the instance belongs to the concept corre-
sponding to the dimension and −1 otherwise. All the labels
consist of the label space Y = {1,−1}n. In other words, we
have an instance matrix X = [x1,x2, . . . ,xm]

′
each row

for one instance, and a full label matrix Y ∈ {1,−1}m×n
where Yij = 1 means the i-th instance has the j-th label,
while Yij = −1 means the i-th instance doesn’t have the j-
th label. We let Si = {j|Yij = 1, j = 1, . . . , n} denote the
full set of relevant labels for instance xi, ∀i = 1, . . . ,m.

In the semi-supervised weak-label learning setting, we



Table 1: Summary of Some Basic Notations

Notations Meaning
m number of instances
n number of labels
d number of features
x ∈ Rd instance feature vector
X ∈ Rm×d instance feature matrix
Y = {+1,−1}n label space
y ∈ Y label vector
Y ∈ {1,−1}m×n label matrix
C ∈ {0, 1}m×n label occurrence matrix
Ŷ ∈ {1,−1}m×n predictive label matrix

have the same instance matrix X. However, the full label
matrix Y is not available and instead we are only given a
label occurrence matrix C ∈ {0, 1}m×n where Cij = 1
means the i-th instance has the j-th label (the same as the
case of Yij = 1), while when Cij = 0, the underlying label
Yij has two possible values. One is that Yij = 1, which
means the i-th instance has the j-th label but it is unob-
served, and the other is Yij = −1, meaning that the i-th
instance does not has the j-th label, which is also unknown.
Moreover, in semi-supervised weak-label learning, there is
no further constraint about the number of observed relevant
labels for each instance. Specifically, let Ŝi = {j|Cij =
1, j = 1, . . . , n} denote the observed set of relevant la-
bels for instance xi, ∀i = 1, . . . ,m. We then have Ŝi is
only a subset of full relevant label set Si, or even Ŝi is even
an empty set. Our goal is to learn a predictive label matrix
Ŷ ∈ {1,−1}m×n from {X,C} to approximate Y.

Problem Formulation
A direct strategy to deal with semi-supervised weak-label
setting is to decompose the task into n independent binary
classification problems, each for one label. For each label,
a number of existing binary semi-supervised learning algo-
rithms, such as label propagation (Zhu and Goldberg 2009)
and semi-supervised SVMs (Chapelle, Schölkopf, and Zien
2006), can be employed. Zhu et al., (2005) gave an exam-
ple illustrating the importance of considering label correla-
tion. Such a strategy, however, ignores label correlation that
could be very useful and often leads to suboptimal problem.
In order to take label correlation into account, we in this pa-
per propose to use both the instance and label similarity for
the complementation of missing relevant labels. Specifically,
we introduce a regularization term based on smoothness as-
sumption, that is, similar instances should have similar con-
cept compositions within their label sets, which requires the
final prediction to be coherent to the smoothness of instance
and label similarity simultaneously.

Formally, let GI be a weighted neighborhood graph on
labeled and unlabeled instances. Each vertex in GI cor-
responds an instance xi, and an edge between xi and xp
means, xi is a k nearest neighbor of xp or xp is a k near-
est neighbor of xi. We define a sparse m × m matrix

S (Kong, Ng, and Zhou 2013), indicating the similarities
among neighboring instances:

Sip =

{
1
zi

exp(−‖xi−xp‖22
2σ2 ), if p ∈ Ni,

0, otherwise.

where Ni is the instance set of i-th instance’s k

nearest neighbors. zi =
∑
p∈Ni

exp(−‖xi−xp‖22
2σ2 ), thus∑

p∈Ni
Sip = 1. In order to reduce computational cost of

k nearest neighbor search among labeled and unlabeled in-
stances, we use kd-tree (Weber, Schek, and Blott 1998) to
efficiently search for approximate k nearest neighbors for
each instance and use multi-label dimensionality reduction
approach to reduce the impact of the curse of dimensional-
ity (Zhang and Zhou 2010).

In semi-supervised weak-label learning, the observed rel-
evant label sets of instances are incomplete. We can not di-
rectly compute the label similarity matrix L like instance
similarity, and thus we need to learn it. In the sequel for
simplicity of discussion, we first assume that label similar-
ity matrix L is given.

To estimate the predictive label matrix Ŷ, there are two
main approaches from the perspective of smoothness as-
sumption. Firstly, from the perspective of the instance sim-
ilarity, the relevant label set of an instance can be derived
by that of its nearest neighbors, i.e., Ŷij ≈

∑
p∈Ni

SipŶpj .
Secondly, from the perspective of the similarity of label, the
assignment of one certain label on training instances, can
be derived by the assignments of its adjacent labels, i.e.,
Ŷij ≈

∑
q∈N̂j

ŶiqLqj , where N̂j is the label set of j-th
label’s k nearest neighbors. Obviously, the predictive label
matrix is not only related to the instance similarity but also
the label similarity. This motivates us to characterize both
the smoothness of the instance similarity and the label simi-
larity, that is,

Ŷij ≈
∑
p∈Ni

∑
q∈N̂j

SipŶpqLqj (1)

Consequently we obtain a new regularization term:

Ω(Ŷ,S,L) =
∑
ij

(Ŷij −
∑
p∈Ni

∑
q∈N̂j

SipŶpqLqj)
2

= ‖Ŷ− SŶL‖2F (2)

where ‖M‖2F = tr(MM
′
) and tr(·) is the trace of a matrix.

With the new regularization term, we aim to learn a
promising predictive label Ŷ in semi-supervised weak-label
setting. Inspired by (Zhou 2012), we employ ensemble
learning which is known to be more robust than a sin-
gle model, especially when label information is insufficient.
Specifically, we first build two models with the new regu-
larization term for labeled and unlabeled instances respec-
tively, and then leverage the diverse models by the co-
regularization framework (Sindhwani, Niyogi, and Belkin
2005) to derive a robust predictive result.

Formally, let XW and XW̄ denote two linear multi-label
models, where W, W̄ ∈ Rd×n are the coefficient matrixes.



The first model XW is initialized to predict the observed rel-
evant labels, i.e., the elements withCij = 1, whose objective
is formulated as ‖(XW)◦C−C‖2F where ◦ is the Hadamard
product (the entrywise product). The second model is initial-
ized to predict the uncertain elements in the label occurrence
matrix C, i.e., the elements with Cij = 0, whose objective
is formulated as ‖(XW̄)◦(E−C)+(E−C)‖2F where Em,n
is the all-one matrix. It is obvious that these two models are
diverse but not strong enough, we then leverage them via
the promising co-regularization framework to derive a ro-
bust predictive result. The idea is to enforce two models be-
come consistent on the prediction of the uncertain elements
in the label occurrence matrix C, whose objective is cast as
‖(X(W − W̄)) ◦ (E − C)‖2F . Summarizing the above con-
sideration, we then derive our objective which is to find W,
W̄ and the label similarity matrix L such that the following
objective is minimized,

min
W,W̄,L

‖(XW) ◦C−C‖2F + αΩ(U,S,L)+

β‖(X(W− W̄)) ◦ (E−C)‖2F+

ζ‖(XW̄) ◦ (E−C) + (E−C)‖2F
s.t. U = (XW) ◦C + (XW̄) ◦ (E−C)

(3)

where α, β, ζ are the parameters. U = (XW) ◦C + (XW̄) ◦
(E−C) is the integrated prediction of two models. Eq. 3 on
one side considers the smoothness on both instance and la-
bel similarity. On the other side it absorbs ensemble learning
to derive robust results. It is worth noting that classical label
propagation techniques can be realized as a special case of
our proposal. Specifically, when setting β = ζ = 0 and L
be the identity matrix, our proposal is equivalent to n clas-
sical label propagation forms, each for one label. Another
advantage of our proposal is that it does not restrict the test-
ing instances to be picked from unlabeled ones, and is able
to make prediction for any unseen instance.

Algorithm 1: SSWL Method
Input : X: m× d instance matrix

C: m× n label occurrence matrix
S: m×m similarity matrix of instances

Output: W and W̄: d× n coefficient matrixes
1 Initialize W, W̄, L;
2 while not converged do
3 Fix W̄ and L, update W by Eq.5;
4 Fix W and L, update W̄ by Eq.7;
5 Fix W and W̄, update L by Eq.9;
6 end

Block Coordinate Descend Algorithm
The objective function in Eq.3 involves W, W̄ and L, and it
is not easy to optimize with respect to all the variables simul-
taneously. Fortunately, Eq.3 is a bi-convex function (Gorski,
Pfeuffer, and Klamroth 2007) which means if we fix W and
W̄, the optimization of L is convex, and alternatively, when
fixing L and W(or W̄), the optimization of W̄(or W) is also

convex. In this case, here we extend an efficient block co-
ordinate descend algorithm (Tseng 2001). Specifically, we
first optimize the objective function with respect to W when
W̄ and L are fixed, then optimize variable W̄ when W and L
are fixed, and finally optimize variable L when the first two
variables are fixed. These three subroutines are repeated un-
til convergence. Algorithm 1 summarizes the pseudo-code
of our proposal. More specifically, we first introduce some
notations.

H = I⊗X

O = (I− L
′
⊗ S)

P = H
′
diag(vec(C))

Q = H
′
diag(vec(E−C))

Here vec(M) is the vectorization of matrix M, diag(v)
is a diagonal matrix with vector v as its diagonal elements
and ⊗ is the Kronecker product. Moreover, since the updat-
ing subroutines of variables {W, W̄,L} involve the solving
of linear equations, we introduce a theorem from (Horn and
Johnson 1991). By using this theorem, we can easily trans-
form the complex linear matrix equation encountered in the
updating subroutines to the normal linear equations.
Theorem 1. (Horn and Johnson 1991) Suppose a ma-
trix X̂ satisfies an equation,

∑b
i=1 AiX̂Bi = V, where

{Ai}bi=1, {Bi}bi=1 and V are known. To obtain the solu-
tion X̂, one could solve the following equivalent problem
instead, (

∑b
i=1 B

′

i ⊗Ai)vec(X̂) = vec(V), which is a nor-
mal linear equation.

Update W with Fixed W̄ and L

When W̄ and L are fixed, we have the following equation for
W by setting the derivative of Eq.3 w.r.t W to zero,

αX
′
((U + S

′
SULL

′
− SUL− S

′
UL

′
) ◦C)

+βX
′
((X(W − W̄)) ◦ (E−C))

+X
′
(R−C) = 0 (4)

where R = (XW) ◦ C. According to Theorem 1, we can
rewrite Eq.4 as,

(PH + βQH + αPO
′
OP

′
)vec(W) (5)

= H
′
vec(C) + (βQH− αPO

′
OQ

′
)vec(W̄)

which is a simple and normal linear equation, and we em-
ploy the conjugate gradient algorithm (Møller 1993) which
is known as a computationally efficient algorithm for solv-
ing linear equations.

Update W̄ with Fixed W and L

When W and L are fixed, similar to the case in the update
of W, we have the following equation for W̄ by setting the
derivative w.r.t. W̄ to zero,

αX
′
((U + S

′
SULL

′
− SUL− S

′
UL

′
) ◦ (E−C))

+βX
′
((X(W̄ −W)) ◦ (E−C))

+ζX
′
(T + E−C) = 0 (6)



where T = (XW̄)◦(E−C). We rewrite Eq.6 as the following
one with theorem 1,

((ζ + β)QH + αQO
′
OQ

′
)vec(W̄) (7)

= −ζH
′
vec(E−C) + (βQH− αQO

′
OP

′
)vec(W)

The efficient conjugate gradient algorithm is also employed
for solving the above linear equations.

Update L with Fixed W and W̄

When W and W̄ are fixed, by setting the derivative of Eq.3
w.r.t. L to zero, we have the following equation for L, i.e.,

(SU)
′
(SU)L = (SU)

′
U (8)

We have the following closed-form solution for L which is
updated efficiently,

L = Z+(SU)
′
U (9)

where Z = (SU)
′
(SU) and Z+ indicates the pseudo inverse

matrix of Z. We use the optimized solution of Eq.3 as our
final L. After getting the coefficient matrix W, we need to
discretize the predictive label matrix. If [XW]ij > 0, we set
Ŷij = 1, otherwise we set Ŷij = −1.

Experiments
In this section, we first give the experimental setup and then
show the evaluation of our proposal compared to several
state-of-the-art algorithms on a number of real-world tasks.

Experimental Setup
The proposed approach is compared with a number of
methods, including the state-of-the-art weak-label learn-
ing method MLR-GL (Bucak, Jin, and Jain 2011), semi-
supervised multi-label learning method SSML (Zhao and
Guo 2015), a state-of-the-art supervised multi-label learn-
ing method ML-KNN (Zhang and Zhou 2007) and three
naive methods that directly decompose the task into multiple
binary classification problems via treating labels indepen-
dently. Particularly, BSVM trains multiple supervised SVMs
each for one label, which is the baseline method. Well-
SVM (Li et al. 2013) and S4VM (Li and Zhou 2015) are two
promising binary semi-supervised SVMs. We further com-
pare with a variant of our proposal that does not using the un-
labeled instances. We call it as SSWL-wo. LIBSVM (Chang
and Lin 2011) package is employed for the implementa-
tion for the BSVM method and RBF kernel with the rec-
ommended parameter is employed. For our SSWL method
and the SSWL-wo method, 5 nearest neighbor graph is used
for the instance matrix in all the experiments.

We measure the classification results in terms of three
multi-label evaluation criteria that are both instance-wise
and label-wise effective (Wu and Zhou 2017), i.e., Micro-F1,
Macro-F1 and Hamming Loss (H.L.). Hamming Loss evalu-
ates the fraction of misclassified instance-label pairs; Macro-
F1 and Micro-F1 which take both precision and recall into
account. The larger the value of Micro-F1 and Macro-F1,
the better the performance. For hamming loss, the smaller

the value, the better the performance. More details about the
evaluation metric please refer to (Zhang and Zhou 2014).

For each dataset, we consider the incomplete label ratio
(I. L. Ratio) by randomly dropping {0%, 20%, 40%, 60%}
of the observed labels on the labeled training data. We com-
pared all methods using the same data setting for each data
set. For all the methods, we conducted parameter selec-
tion for each evaluation metric by performing 5-fold cross-
validation on the training set. For our approach, we selected
the trade-off parameters α, β and ζ from {10−2, . . . , 102}.
To reduce statistical variability, results are averaged over 10
independent repetitions.

Text Categorization Task

The text classification task is collected from SIAM Text
Mining Competition (TMC). Each document is an avia-
tion safety report documenting one or more problems that
occurred on certain flights. The goal is to label the docu-
ments with respect to what types of problems they describe.
Each document may belong to more than one class. TMC
dataset (Srivastava and Zane-Ulman 2005) is a large text
dataset with 28,596 instances and 22 labels in total. We used
its short version, each instance contains 500 features. We
randomly selected 1500 instances for training (500 labeled
and 1000 unlabeled) and used the rest for testing.

Results are shown in Table 2. It can be seen that SSWL
obtains quite promising performance. It achieves the best
performance on 9 of 12 subtasks, while the other comparison
methods have achieved the best performance on up to one
subtask. SSWL-wo also obtains good performance but is not
that good as SSWL. This suggests that the use of unlabeled
data can help to further improve performance. Our proposal
works better than state-of-the-art weak-label learning and
semi-supervised multi-label learning algorithms. This shows
that in semi-supervised weak-label learning, taking both
semi-supervised and weak-label data into account is ben-
eficial. The approaches with direct decomposition achieve
sub-optimal performance.

Gene Function Analysis Task

The second task is to predict the gene function classes of the
Yeast Saccharomyces cerevisiae, which is one of the best
studied organisms. The Yeast data set (Elisseeff and Weston
2001)is a gene function classification dataset with 2417 ex-
amples and 14 class labels. Each gene is expressed with 103
microarray expression features. The average number of la-
bels for each instance is 4.24±1.57. We randomly selected
1500 instances for training (500 labeled and 1000 unlabeled)
and used the rest for testing.

Results are shown in Table 3. It can be seen that SSWL
performs significantly better than the other approaches on
three evaluation metrics. Moreover, SSWL also consistently
perform robustly as the ratio of missing labels changes. This
result further verifies that it is important to take both semi-
supervised and weak-label data into account to handling
semi-supervised weak-label learning.



Table 2: Experimental results (mean±std) on TMC. ↑ (↓) indicates the larger (smaller) the better. The best performance and its
comparable performances are bolded (pairwise t-tests at 95% significance level).

I.L.
Ratio

SSWL SSWL-wo Well-SVM MLR-GL SSML ML-kNN S4VM BSVM

Micro-F1(↑)
0% .640± .001 .639± .001 .612± .003 .615± .001 .638± .001 .501± .001 .578± .002 .487± .002
20% .602± .003 .578± .001 .556± .002 .596± .002 .580± .002 .213± .002 .506± .001 .292± .001
40% .582± .001 .455± .004 .356± .002 .461± .003 .423± .001 .032± .001 .365± .003 .023± .002
60% .570± .002 .505± .001 .113± .002 .563± .002 .160± .022 .012± .001 .215± .002 .007± .003

Macro-F1(↑)
0% .618± .002 .620± .003 .586± .002 .588± .002 .613± .002 .467± .001 .545± .002 .464± .002
20% .582± .001 .568± .001 .519± .001 .567± .001 .543± .002 .175± .001 .457± .002 .244± .001
40% .566± .003 .409± .005 .295± .003 .413± .002 .368± .002 .024± .001 .309± .002 .017± .001
60% .553± .002 .494± .001 .089± .005 .537± .001 .125± .029 .008± .001 .279± .002 .004± .001

H.L.(↓)
0% .065± .002 .069± .001 .067± .002 .076± .001 .067± .001 .082± .002 .085± .002 .080± .001
20% .075± .002 .075± .001 .072± .001 .078± .002 .071± .002 .092± .002 .087± .005 .088± .001
40% .079± .001 .082± .002 .083± .002 .086± .002 .080± .001 .099± .001 .092± .002 .100± .001
60% .087± .003 .089± .002 .097± .003 .084± .002 .095± .003 .101± .002 .111± .003 .101± .002

Table 3: Experimental results (mean±std) on yeast. ↑ (↓) indicates the larger (smaller) the better. The best performance and its
comparable performances are bolded (pairwise t-tests at 95% significance level).

I.L.
Ratio

SSWL SSWL-wo Well-SVM MLR-GL SSML ML-kNN S4VM BSVM

Micro-F1(↑)
0% .647± .001 .619± .002 .612± .002 .623± .003 .584± .001 .625± .002 .592± .001 .623± .002
20% .638± .001 .626± .002 .534± .003 .618± .005 .510± .002 .506± .001 .511± .001 .509± .001
40% .604± .002 .554± .003 .394± .003 .379± .004 .152± .001 .103± .002 .432± .001 .188± .003
60% .616± .002 .568± .002 .241± .002 .209± .002 .046± .031 .002± .002 .320± .002 .019± .007

Macro-F1(↑)
0% .635± .001 .594± .001 .582± .003 .600± .001 .557± .002 .602± .001 .578± .002 .592± .002
20% .618± .001 .613± .001 .494± .002 .593± .004 .476± .001 .470± .001 .476± .002 .478± .002
40% .574± .001 .538± .005 .359± .004 .340± .002 .126± .001 .083± .001 .397± .001 .145± .002
60% .595± .002 .554± .001 .194± .003 .177± .002 .039± .025 .001± .001 .280± .005 .016± .003

H.L.(↓)
0% .207± .001 .209± .001 .211± .001 .213± .002 .215± .002 .208± .001 .214± .001 .209± .001
20% .210± .001 .216± .001 .221± .002 .211± .002 .224± .002 .225± .001 .253± .002 .224± .001
40% .225± .001 .252± .004 .246± .003 .251± .001 .286± .002 .294± .001 .257± .001 .279± .002
60% .231± .003 .268± .003 .278± .002 .275± .003 .299± .010 .305± .001 .286± .002 .302± .002

Scene Classification Task

The third task is a scene classification problem. In natural
scene classification, each scene image may belong to sev-
eral classes simultaneously. Through analyzing images with
known label sets, a multi-label learning method will auto-
matically predict the sets of labels for unseen images. The
above process of semantic scene classification can be ap-
plied to many areas. The Scene Image data set (Zhang and
Zhou 2007) contains 2,000 natural scene images and 5 la-
bels. Each image has on average 1.24 ± 0.44 labels and
is represented as 294-dimensional vector. We randomly se-
lected 1500 instances for training (500 labeled and 1000 un-
labeled) and the rest ones are used for testing.

Results in Table 4 show that SSWL also achieve highly
competitively performance with compared methods. It also
clearly shows the advantage of our proposed approach which
is able to exploit unlabeled data, as well as weak-label learn-
ing to enhance the performance.

Image Annotation Task

The last task is an image annotation problem. A key issue in
image annotation is the correlations among the labels. The
labels do not exist in isolation. We use the Microsoft Re-
search image annotation data set (msrc) to verify that our
method can help predict. msrc is a labeled image dataset
with 591 images in 23 object classes. Each image has on av-
erage 2.51± 1.22 labels and is represented as a vector with
960 GIST features (Oliva and Torralba 2001). We randomly
selected 80% of the data for training (30% labeled and 50%
unlabeled) and used the rest 20% for testing.

Results are shown in Table 5. Overall, these results
demonstrate the benefit of handling incomplete labels in the
learning process. It also clearly shows the advantage of our
proposed approach which is able to exploit unlabeled data,
as well as weak-label learning to enhance the performance.
Our algorithm usually converges quickly. Again, the results
demonstrate the effectiveness of our proposal algorithm.



Table 4: Experimental results (mean±std) on SceneImage. ↑ (↓) indicates the larger (smaller) the better. The best performance
and its comparable performances are bolded (pairwise t-tests at 95% significance level).

I.L.
Ratio

SSWL SSWL-wo Well-SVM MLR-GL SSML ML-kNN S4VM BSVM

Micro-F1(↑)
0% .589± .003 .583± .002 .613± .002 .528± .002 .499± .002 .456± .001 .489± .001 .538± .002
20% .572± .002 .545± .001 .558± .003 .419± .001 .394± .002 .389± .002 .458± .003 .392± .001
40% .540± .002 .534± .002 .395± .001 .220± .001 .174± .001 .094± .001 .289± .001 .205± .001
60% .521± .003 .517± .002 .251± .002 .000± .001 .019± .010 .000± .000 .300± .001 .010± .002

Macro-F1(↑)
0% .576± .002 .553± .001 .567± .001 .454± .003 .407± .001 .362± .001 .466± .001 .437± .001
20% .550± .003 .505± .001 .494± .002 .320± .001 .295± .002 .295± .002 .417± .001 .284± .001
40% .523± .002 .499± .001 .306± .001 .140± .001 .113± .001 .056± .001 .207± .002 .134± .002
60% .510± .004 .495± .001 .165± .002 .000± .001 .011± .005 .000± .000 .230± .001 .005± .003

H.L.(↓)
0% .184± .001 .186± .001 .167± .002 .192± .001 .193± .001 .192± .002 .245± .002 .167± .001
20% .199± .001 .201± .001 .182± .002 .199± .001 .203± .001 .204± .002 .236± .002 .194± .001
40% .206± .001 .214± .001 .206± .001 .219± .001 .227± .001 .240± .002 .226± .001 .221± .001
60% .208± .002 .222± .001 .220± .002 .249± .001 .247± .003 .250± .002 .229± .002 .248± .002

Table 5: Experimental results (mean±std) on msrc. ↑ (↓) indicates the larger (smaller) the better. The best performance and its
comparable performances are bolded (pairwise t-tests at 95% significance level).

I.L.
Ratio

SSWL SSWL-wo Well-SVM MLR-GL SSML ML-kNN S4VM BSVM

Micro-F1(↑)
0% .590± .003 .550± .003 .505± .003 .533± .003 .604± .002 .355± .001 .351± .001 .487± .001
20% .571± .001 .513± .003 .444± .001 .472± .002 .569± .003 .307± .001 .331± .002 .292± .002
40% .507± .001 .449± .005 .216± .002 .500± .001 .533± .002 .122± .002 .316± .001 .047± .003
60% .465± .001 .367± .002 .118± .003 .244± .001 .462± .001 .034± .001 .294± .001 .007± .001

Macro-F1(↑)
0% .562± .003 .505± .004 .412± .002 .465± .004 .612± .001 .291± .002 .378± .001 .464± .001
20% .522± .001 .419± .004 .302± .002 .390± .002 .518± .002 .216± .001 .369± .002 .244± .002
40% .491± .002 .396± .004 .151± .003 .424± .002 .472± .001 .072± .002 .317± .002 .032± .002
60% .430± .001 .298± .001 .082± .002 .166± .001 .391± .002 .037± .001 .282± .001 .004± .001

H.L.(↓)
0% .083± .001 .085± .001 .083± .002 .093± .002 .108± .002 .094± .001 .154± .001 .092± .001
20% .085± .001 .091± .001 .086± .001 .101± .001 .105± .002 .095± .001 .163± .002 .088± .001
40% .090± .001 .098± .002 .098± .003 .083± .002 .100± .001 .101± .001 .182± .002 .100± .002
60% .092± .001 .099± .001 .103± .002 .100± .002 .094± .001 .106± .001 .201± .001 .101± .001

Conclusion

In this paper, we consider semi-supervised weak-label learn-
ing problem where the relevant label sets of instances are
not only partially known, but also probably completely un-
known. This is a new kind of multi-label learning problem
that to the best of our knowledge, has not been thoroughly
studied before. To address this problem, we propose the
SSWL method. Both instance similarity and label similarity
are considered for the complement of missing labels. More-
over, ensemble of multiple models is employed which is
more robust than a single model when the label information
is insufficient. We formulate the objective as a bi-convex op-
timization and present an efficient block coordinate descend
solution. Experiments on a number of real tasks validate
the effectiveness of SSWL in handling the semi-supervised
weak-label learning problem.

There are many interesting future works. For example, our
current proposal adopts a learning method for the label sim-

ilarity where some prior knowledge may be not leveraged.
More flexible methods that is able to incorporate the do-
main knowledge are worth trying in the future. Moreover,
the study for transductive weak-label problem is an interest-
ing issue in the future.
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