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Abstract
In the field of machine learning (ML), an essential
type of decision-related problem is known as AUF
(Avoiding Undesired Future): if an ML model pre-
dicts an undesired outcome, how can decisions
be made to prevent it? Recently, a novel frame-
work called rehearsal learning has been proposed
to address the AUF problem. Despite its utility
in modeling uncertainty for decision-making, it
remains unclear under what conditions and how
optimal actions that maximize the AUF probabil-
ity can be identified. In this paper, we propose
CARE (CAnonical REctangle), a condition un-
der which the maximum AUF probability can be
achieved. Under the CARE condition, we present
a projection-Newton algorithm to select actions
and prove that the algorithm achieves superlinear
convergence to the optimal one. Besides, we pro-
vide a generalization method for adopting the al-
gorithm to AUF scenarios beyond the CARE con-
dition. Finally, we demonstrate that a closed-form
solution exists when the outcome is a singleton
variable, substantially reducing the time complex-
ity of decision-making. Experiments validate the
effectiveness and efficiency of our method.

1. Introduction
Machine Learning (ML) models have achieved great success
in various real-world prediction tasks (LeCun et al., 2015).
Instead of solely focusing on the prediction, Zhou (2022)
emphasizes another important issue, i.e., if the prediction
of an ML model is undesired, how to find effective actions
to prevent it from happening. This problem is known as
the AUF (avoiding undesired future) problem (Zhou, 2022).
Consider an autonomous drone delivery system scenario
as an example. Imagine that the system has trained an ML
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Figure 1. Relations between correlation, influence, and causation
(reproduced from Zhou (2022)).

model that takes real-time environmental data (denoted as
X) as input and predicts the risk of package loss (denoted
as Y). For a particular delivery, if the prediction indicates
a high risk of loss, the system will consider altering values
of some intermediate control variables (denoted as Z), such
as altitude, speed, or route, to mitigate the risk. Since ex-
perimenting with real deliveries to explore better actions
is costly and potentially results in lost packages, different
alterations on Z must be carefully considered. Let S denote
the desired region of Y where the risk of package loss is
sufficiently low; the AUF problem can be interpreted as find-
ing the optimal alteration zξ that maximizes the probability
of Y ∈ S, which is called the AUF probability (PAUF).

Generally, decision-makers lack access to an explicit for-
mula for PAUF w.r.t. alterations, which complicates the se-
lection of effective alterations. To model PAUF, we need to
understand the relations among variables {X,Z,Y}. While
correlation is often sufficient for prediction in ML models,
effective decision-making demands a more nuanced under-
standing of variable relations. In certain decision-making
contexts, causal relations are helpful to model these rela-
tions (Bareinboim et al., 2015; Lattimore et al., 2016). In
practice, identifying causal relations is essentially challeng-
ing, as it typically relies on untestable assumptions (Spirtes
et al., 2000; Schölkopf et al., 2021). However, a com-
plete causal understanding is not a prerequisite for effective
decision-making, as evidenced by human decision-makers
who could successfully make decisions without such com-
prehensive knowledge (Zhou, 2022). Furthermore, even
when causal factors are identified, they may not be action-
able for decision-making purposes. Additionally, variables
that influence outcomes are not necessarily causal factors.
Recognizing that correlation is insufficient and causation
is somewhat luxurious for decision-making, Zhou (2023)
propose the influence relation as an intermediate concept
between correlation and causation, as depicted in Fig. 1.
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Table 1. Time-complexity for decision-making, |Y| = 1

ALG. QIN ET AL., 2023 DU ET AL., 2024 OURS

TIME 6∈ O
(
pk

)
, ∀k ∈ N O

(
p3
)

O (p)

Building on this, Qin et al. (2023) develop the rehearsal
learning framework to learn influence relations and provide
a corresponding decision-making algorithm based on the
relations, and Du et al. (2024) consider the decision cost and
enhance the computational efficiency. While the learned
relations aid in selecting effective alterations, directly op-
timizing PAUF remains challenging due to the lack of an
analyzable functional form in most scenarios. Consequently,
existing rehearsal learning methods typically identify plau-
sible alterations by ensuring PAUF exceeds a predetermined
threshold τ , formulated as PAUF ≥ τ .

The existing rehearsal learning approaches suffer from two
critical shortcomings. First, the threshold-based strategy
for maximizing the AUF probability is unsuitable. Let Cτ
represent the constraint PAUF ≥ τ and P?A denote the maxi-
mum achievable AUF probability through alterations. When
τ > P?A, the feasible domain of Cτ becomes empty, causing
existing rehearsal learning approaches fail to find feasible
alterations. Conversely, when τ < P?A, solutions satisfy-
ing Cτ may be suboptimal, as they are not guaranteed to
maximize the AUF probability. Second, the computational
burden of constructing the feasible region satisfying Cτ
is prohibitive, especially for high-dimensional problems.
Specifically, when constructing the feasible domain of Cτ ,
the time complexity of existing sampling-based approach
cannot be bounded by any polynomial function of p, and
the method in Du et al. (2024) exhibits cubic complexity
O(p3) (where p represents the dimension of V) in cases
where |Y| = 1, as illustrated in Tab. 1.

To address the aforementioned shortcomings, we propose
a novel approach to directly maximize the AUF probabil-
ity PAUF. Specifically, we establish the CARE (CAnonical
REctangle) condition for the AUF problem, a condition that
is practical in real-world tasks. Under the CARE condition,
we show that PAUF can be explicitly formulated as a func-
tion of the selected alteration zξ given observed variables
x and influence relations parameterized by θ, which elim-
inates the need to construct the feasible domain satisfying
Cτ and facilitates direct optimization. Although this func-
tion is not inherently concave, we prove that applying a log
transformation ensures concavity, thereby guaranteeing the
existence of a global maximum of PAUF. While the trans-
formed function remains complex, both the gradient vector
and Hessian matrix are always computable. Leveraging
these properties, we develop a projection-Newton method
to select decision alterations for the AUF problem, which is
proven to achieve superlinear convergence to the optimal zξ

that maximizes PAUF. For cases where the CARE condition
does not hold, we introduce an inner embedding technique
to construct a concave lower bound of logPAUF, which sat-
isfies the CARE condition and can be used as a surrogate
for optimization. Last but not least, we demonstrate that
the CARE condition always holds when the desired AUF
region is an interval and constructively derive a closed-form
solution for the optimal zξ when |Y| = 1, significantly re-
ducing the time complexity, as illustrated in Tab. 1. Finally,
experimental results validate the effectiveness and efficiency
of our approach on both synthetic and real-world datasets.

Our contributions can be summarized as follows:
1. We propose the CARE condition for AUF problem, under

which the logged AUF probability can be proven to be a
concave function w.r.t. the selected alteration zξ.

2. We present a projection-Newton algorithm to select the
optimal alteration, and we prove that the algorithm can
achieve a superlinear convergence rate.

3. We provide an inner embedding methodology to handle
the AUF problem not satisfying the CARE condition.
Experiments validate the effectiveness of our methods.

4. We prove the existence of a closed-form solution when
|Y| = 1, in which case the time complexity can be
significantly reduced for addressing the AUF problem.

2. Preliminaries and problem setup
A probabilistic graphical model called structural rehearsal
model (SRM) is proposed by Qin et al. (2023) to charac-
terize influence relations among variables in the AUF prob-
lem. Influence relations can capture mutual dependencies
between variables while accommodating dynamic environ-
ments, making it more suitable for decision-making. The
SRM comprises a set of rehearsal graphs and associated
parameters {〈Gt,θt〉}. Focusing on the optimal action in
specific decision rounds, we consider Gt , G in this work,
which can be straightforwardly generalized to multi-round
scenarios. Detailed definition of SRM is listed in Appx. A.1.

The rehearsal graph G models the qualitative influence re-
lations among variables, which is denoted by G = (V,E).
Specifically, V represents the variable set of the AUF prob-
lem and E represents the edges characterizing influence
relations among variables. There are two types of edges
in G, a directional edge X → Y means that X influences
Y , and a bi-directional edge X ↔ Y means that X and Y
are mutually influenced. For example, sunlight unilaterally
influences the plant growth, whereas rainfall and river flow
are mutually influenced, as changes in either one affect the
other. Besides, the corresponding structural equations of
variable Vjs can be parameterized by

{
βj , σ

2
j

}|V|
j=1
⊆ θ:

Vj := fj
(
PAG

j ;βj
)

+ εj , (1)
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where Vj ∈ V denotes the j-th vertex of the graph G,
PAG

j , {u | u → Vj in G} represents parents of Vj , and
the additive noise εj follows N (0, σj

2). In this work, we
focus on a basic yet essential class of the AUF problem,
characterized by linear structural equations fjs in Eq. (1),
i.e., Vj := βTj PAj + εj , where βj ∈ R|PAGj |×1, consistent
with prior studies (Qin et al., 2023; Du et al., 2024).

Besides, the decision-making process centers on identifying
appropriate alterations, which are decision actions specified
by human decision-makers as sets of vertex-value pairs.
For instance, as shown in Fig. 6 (provided in Appx. A.1),
ξ ← {Z1 = z1} in Fig. 6(b) demonstrates such an alteration.
Meanwhile, the execution of an alteration is formalized
through a rehearsal operation, denoted as Rh(·), which
modifies the original graph structure as shown in Fig. 6(b)-
Fig. 6(d). The rehearsal operation removes all incoming
influence links that point into any vertices contained in ξ,
and fixes the values in ξ to their associated vertices; while
this operation maintains the influence relations among all
other vertices in the resulting graph GRh(ξ).

For the AUF problem, the goal is to find an optimal alter-
ation that can maximize the AUF probability after perform-
ing it. As the generation of variables is parameterized by θ
in an SRM, and the observation of x happens before making
decisions, the AUF probability is conditional on θ, x. Also,
in practice, the alteration range is limited for the variables z.
Thus, the AUF problem can be formulated as the following
constrained optimization problem:

arg max
zξ

P
(
Y ∈ S | x,θ, Rh(zξ)

)
s. t. zξleft ≤ zξ ≤ zξright.

(2)

The constraint in Eq. (2) uses a compact element-wise nota-
tion, where zξleft ≤ zξ ≤ zξright means that each element of
zξ must satisfy its corresponding lower and upper bounds
specified in zξleft and zξright respectively.

3. Our approach
In this section, we propose our approach to identify deci-
sion actions that maximize PAUF. The primary challenge
lies in the lack of an analyzable functional form and the
potential irregularity of PAUF, making direct optimization
intractable. To address this, we propose a special type of
desired region S, under which we prove that PAUF admits
an analyzable functional form and exhibits convexity after
applying a negative log transformation, enabling efficient
decision optimization. For AUF cases with irregular S, we
present a generalization method to optimize an upper bound
of the negative log AUF probability as a surrogate, thereby
extending our approach to broader application scenarios.

In what follows, we establish the key condition, i.e., the

CARE condition, and prove that PAUF under this condition
can be explicitly formulated and exhibits convexity w.r.t. the
decision alterations after a negative log transformation.

3.1. CARE condition for AUF problem

In this subsection, we introduce the CAnonical REctangle
(CARE) condition for the desired region S . The motivation
of the condition stems from the observation that the func-
tional form of AUF probability P

(
Y ∈ S | x,θ, Rh(zξ)

)
depends on the shape of the desired region S. We start by
defining the convex polytope in Def. 3.1, a superclass of the
canonical rectangle in the CARE condition.

Definition 3.1 (Convex polytope). The region P is a con-
vex polytope in Rd iff it could be written as P (M,d) ,{
s ∈ Rd : Ms ≤ d

}
with M ∈ Rn×d and d ∈ Rn×1.

In general, a convex polytope expresses a convex region that
is formed by the intersection of multiple half-spaces divided
by hyperplanes. In this sense, the empty set is contained
in the definition and the convex polytope could be an open
region. Based on this, we define the canonical rectangle in
Def. 3.2, which is a subclass of convex polytope.

Definition 3.2 (Canonical rectangle). Let P (M,d) de-
note a convex polytope in Rd, G � 0 denote a positive
definite matrix in Rd×d. P (M,d) is called to be a canoni-
cal rectangle w.r.t. matrix G iff the following holds:

1. P (M,d) expresses a non-empy closed region;
2. M ∈ R2d×d with full rank, d ∈ R2d×1; and
3. ∃ permutation matrix Pσ ∈ R2d×2d and diagonal ma-

trix Λ ∈ R2d×2d such that M = ΛPσ (I,−I)
T

Q,
where G = QTDQ is the eigen-decomposition of G.

Remark 3.3. Note that if a convex polytope P (M,d) is
canonical w.r.t. G ∈ Rd×d, then the polytope P (M,d) ={
s ∈ Rd : Ms ≤ d

}
expresses a (hyper-)rectangle region

in Rd. We provide two geometric intuitions of the canonical
rectangle. First, edges of the rectangle are parallel to axes of
the coordinate system induced by Q, as shown in Fig. 2(a).
Second, surfaces of the rectangle are parallel to axial planes
of the ellipse sTGs = 1, as shown in Fig. 2(b). Without
loss of generality, for G = QTDQ, we assign Pσ = I

and Λ = diag(D−
1
2 ,D−

1
2 ) (thus M = (I,−I)

T
D−

1
2 Q),

since d can fit M by permutation and rescaling.

Coordinate system induced by Q1
An example canonical rectangle w.r.t. G1

(a) axes induced by Q1

Hyperellipse sTG2s = 1
An example canonical rectangle w.r.t. G2

(b) ellipse sTG2s = 1

Figure 2. Geometric intuitions of the canonical rectangle
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Recall from Eq. (2) that the goal is to find alterations maxi-
mizing the AUF probability. Since optimizing a probabilis-
tic target is generally intractable, we seek conditions under
which the AUF probability becomes analyzable. Building
on the canonical rectangle, we propose the CARE condition
in Def. 3.5 to achieve this goal. Before that, we present
Lemma 3.4, which links the target variables Y to the obser-
vation x, the alteration zξ, and parameters θ.

Lemma 3.4 (Qin et al., 2023). Given observed x and pa-
rameter set θ(, {{βj}s,Σ}) of the SRM, it holds that
Y = Ax+Bzξ+Cε, where A,B,C are constant matrices
of appropriate shapes based on θ, zξ are intermediate vari-
ables with alteration ξ, and ε = [ε1, . . . , ε|V|] ∼ N (0,Σ).

Definition 3.5 (CARE condition). The AUF problem satis-
fies the CARE (CAnonical REctangle) condition iff the as-
sociated desired region S is a canonical rectangle S(M,d)
w.r.t. matrix CΣCT with C,Σ defined in Lemma 3.4.

This condition is prevalent in real-world scenarios, par-
ticularly when the dimensions of Y are mutually inde-
pendent. Considering a two-dimensional random variable
Y = {Y1, Y2} as an example, if Y1 ⊥⊥ Y2 after alteration
and the desired region S = {a1 ≤ Y1 ≤ b1, a2 ≤ Y2 ≤ b2},
then the AUF problem satisfies the CARE condition. Under
the CARE condition, the AUF probability can be formulated
as an analyzable function, and its negative log form exhibits
convexity, as shown in the following Thm. 3.6.

Theorem 3.6. Under CARE condition that S , S(M,d),
let PA denote AUF probability P(Y ∈ S | θ,x, Rh(zξ)),
kT
j denote the j-th row of matrix MB, and bj denote

the j-th component of vector MAx − d (A,B defined
in Lemma 3.4). Then the following asserts hold:

1. Let |Y| = d, the AUF probability can be expressed as:

PA =

d∏
i=1

{
Φ
(
−kT

i zξ − bi
)
− Φ

(
kT
i+dz

ξ + bi+d
)}
.

2. For any bounded alteration zξ, PA > 0 and the func-
tion `

(
zξ
)

= − log (PA) is convex w.r.t. zξ .

Thm. 3.6 provides the functional form of the AUF proba-
bility under the CARE condition defined in Def. 3.5. As a
consequence, Cor. 3.7 reveals that the AUF problem can be
transformed into a convex optimization.

Corollary 3.7. Let d denote |Y|. Under the CARE condi-
tion, the AUF problem defined in Eq. (2) can be equivalently
transformed into a convex optimization as follows:

arg min
zξ

d∑
i=1

− log
{

∆i(z
ξ)
}

s. t. zleft ≤ zξ ≤ zright,

(3)

where ∆i(z
ξ) = Φ

(
−kT

i zξ − bi
)
− Φ

(
kT
i+dz

ξ + bi+d
)
,

with kj and bj defined as in Thm. 3.6.

3.2. Projection-Newton for addressing the AUF problem

In this subsection, we present a projection-Newton method
to solve the AUF problem with theoretical guarantees. The
proof of the theoretical result is provided in Appx. C.

As illustrated in Cor. 3.7, the AUF problem can be trans-
formed into a convex optimization under the CARE con-
dition. To solve the AUF problem, there remain two chal-
lenges: (a) although Thm. 3.6 can express the AUF proba-
bility by known elements, the functional expression of the
associated Gaussian CDF Φ(·) remains complex; and (b)
AUF scenarios exist beyond the CARE condition, in which
case the transformation in Eq. (3) does not hold anymore. In
what follows, we propose an algorithm to accurately solve
the transformed problem in Eq. (3) and provide a general-
ization method of our algorithm for AUF scenarios that do
not satisfy the CARE condition in the following subsection.

The formula of the gradient g and the Hessian H of the opti-
mization target `(zξ) =

∑|Y|
i=1− log

{
∆i(z

ξ)
}

is presented
by Eq. (10) in Appx. C, which are associated with Gaussian
CDF Φ(·) and Gaussian PDF φ(·). Although the functional
expression of Φ(·) is too complex to analyze, its exact value
at any specific point can be accurately approximated. Hence,
gradient g and Hessian H are always computable. Mean-
while, because Eq. (3) is a convex optimization, the Newton
method (Boyd & Vandenberghe, 2004) could be considered
to address the optimization. However, classical Newton (or
Quasi-Newton) methods cannot be directly used, because
they are designed for unconstrained optimization (Shanno,
1970), which is not the case of Eq. (3).

Due to this, we adapt the projection Newton method (Bert-
sekas, 1982) to solve the optimization problem defined in
Eq. (3). As outlined in Alg. 1, the iteration begins with
the initial point zξ(0). In each iteration t, we compute the
gradient g(t), Hessian H(t), step size α(t), and construct
D(t) as a partial diagonal approximation of H−1

(t) . After
performing a Newton-like step, the point is projected into
the feasible domain [zleft, zright]. The step size α(t) is de-
termined using an Armijo-like rule (Boyd & Vandenberghe,
2004). Detailed definitions of DiagApprox(·), Armijo(·),
and Project [zleft, zright](·) are provided in Appx. C. For
learning the structural model (θ̂) from observational data,
we employ the least square estimation (LSE) for parameters
β̂j , and estimating Σ̂ based on residuals. Note that the time
complexity of the decision-making step, specifically lines 5
to 11, can be bounded byO(|zξ|3 ·L) (L is iteration rounds),
as the dominant time-consuming operation in each iteration
is computing the inverse of the matrix H(t) ∈ R|zξ|×|zξ|.

As a second-order optimization method, the presented pro-
jection Newton method in Alg. 1 enjoys a superlinear con-
vergence speed by the following Thm. 3.8, similar to the
classical Newton method (Boyd & Vandenberghe, 2004).
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Algorithm 1 Projection Newton for selecting optimal action

Input: observed x; parameter θ̂; S(M,d) under CARE

1: Compute matrices A,B,C by {β̂j}|V|j=1 ∈ θ̂

2: `(zξ) =
|Y|∑
i=1

− log
{

∆i(z
ξ)
}

. ∆i(z
ξ) in Cor. 3.7

3: Initialize zξ(0) ∈ [zleft, zright]

4: for t = 0 to L− 1 do
5: Compute g(t) = ∂

∂zξ
`(zξ)

∣∣
zξ=zξ

(t)

6: Compute H(t) = ∂2

∂zξ∂zξT
`(zξ)

∣∣
zξ=zξ

(t)

7: . Computation formula in Appx. C
8: D(t) = DiagAppx(H−1

(t) ), α(t) = Armijo
(
D(t)

)
9: zξ(t+1) = Project

[zleft,zright]

(
zξ(t) − α(t)D(t)g(t)

)
10: if ‖zξ(t+1) − zξ(t)‖ < δ then

11: Set zξ(L) = zξ(t+1) and break
12: end if
13: end for
Output: the optimal decision alteration zξ(L)

Theorem 3.8. Let P?A denote the maximal AUF probability
P(Y ∈ S | θ̂,x, Rh(zξ)) that can be achieved by alteration
zξ ∈ [zleft, zright], and let {zξ(k)}

L
k=1 denote the sequence

outputted by Alg. 1. The probability sequence {P(Y ∈ S |
θ̂,x, Rh(zξ(k)))}

L
k=1 converges to P?A with a superlinear

convergence rate (at least quadratic).

As guaranteed in Thm. 3.8, the optimal alteration that max-
imizes PAUF can be efficiently selected by Alg. 1. Note
that PAUF in Thm. 3.8 conditioned on θ̂ rather than θ, this
is because true parameters of the SRM are practically not
available. We can only estimate the parameters from data,
and then try to select the optimal decision alteration based
on θ̂ rather than true θ. Hence, the guarantee in Thm. 3.8
designed for Alg. 1 is conditioned on θ̂ as well, and if the θ̂
used in Alg. 1 can be changed as true θ, PAUF in Thm. 3.8
also turns to condition on θ.

3.3. AUF scenarios beyond the CARE condition

Another crucial concern is that AUF scenarios exist beyond
the CARE condition, where the transformation in Cor. 3.7
no longer holds. Analyzing the AUF probability in such
cases is challenging due to irregular desired regions. To
address this, we propose inner CARE embedding, which
identifies an inner canonical rectangle Icr for the desired re-
gion S, such that P(Y ∈ Icr | θ̂,x, Rh(zξ)) forms a strict
lower bound for P(Y ∈ S | θ̂,x, Rh(zξ)). This ensures
the transformation in Cor. 3.7 holds for the lower bound,
allowing us to optimize it as a surrogate using Alg. 1. The
formal definition of inner CARE embedding is in Def. 3.9.

Original desired region 
Inner CARE embedding of 

(a) for a non-convex S (red)

Original desired region 
Inner CARE embedding of 

(b) for a circular S (red)

Figure 3. Examples of inner CARE embedding for different re-
gions S with the same covariance matrix CTΣC

Definition 3.9 (Inner CARE embedding). Let S denote a
non-empty region in Rd, and let Icr (M,d) denote a convex
polytope as defined in Def. 3.1. Then Icr (M,d) is called
the inner CARE embedding of S iff the following holds:
(1) Icr (M,d) is a canonical rectangle w.r.t. CΣCT ∈

Rd×d, where C and Σ are defined in Lemma 3.4; and
(2) Icr is the lagest subset of S satisfying (1) above.

With Def. 3.9, we can always define a region Icr(M,d)
that satisfies the CARE condition for any non-empty desired
region S . As illustrated in Fig. 3, we shade the inner CARE
embedding in dark red for some irregular desired regions
S, including a non-convex polytope as in Fig. 3(a) and a
circular region as in Fig. 3(b). As the inner CARE embed-
ding Icr always satisfies the CARE condition, leveraging
the transformation in Cor. 3.7 could be considered, and the
following Prop. 3.10 guarantees its feasibility.

Proposition 3.10. Let S denote a non-empty region in Rd,
and let Icr (M,d) denote the inner CARE embedding of
S. Then, it always holds that `(zξ) ≤ ˆ̀(zξ), where the

loss function `(zξ) = − log
(
P(Y ∈ S | θ̂,x, Rh(zξ))

)
and ˆ̀(zξ) = − log

(
P(Y ∈ Icr | θ̂,x, Rh(zξ))

)
.

Prop. 3.10 guarantees that for any irregular desired region
S in the AUF problem, the inner CARE embedding method
provides a strict upper bound ˆ̀(zξ) on the original loss
function `(zξ). This upper bound serves as an effective sur-
rogate optimization target, analogous to classical empirical
risk minimization (ERM) (Mohri et al., 2018). Since inner
CARE embedding always produces a region satisfying the
CARE condition and enabling the convex transformation
in Cor. 3.7, we can transform the intractable problem of
optimizing PAUF without an analyzable formula into the
more manageable task of finding the inner CARE embed-
ding for S. It is worth noting that while the inner CARE
embedding requires the largest subset of S satisfying the
CARE condition, Prop. 3.10 remains valid for any CARE-
compliant subset of S. Finally, given that desired regions
can vary substantially across applications, different inner
CARE embedding methods need to be specifically designed
for each distinct region type. Below, we provide a method
for finding the inner CARE embedding for a circular region.
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Proposition 3.11. Let S = {x ∈ Rd | ‖x− o‖22 = r2} de-
note a circular region on Rd, and let C,Σ denote problem-
related matrices as defined in Lemma 3.4. Then, the inner
CARE embedding of S can be expressed by Icr (M,d) with:{

M = (I,−I)TΛQ

d = (I, I)TΛ1 · r/
√
d+ Mo,

(4)

where QTΛQ is the eigen-decomposition of matrix CΣCT,
I ∈ Rd×d is the identity matrix and 1 ∈ Rd×1 is the vector
with all components equals 1.

From Prop. 3.11 presented above, for a circular desired re-
gion S, we can directly apply Eq. (4) to obtain its inner
CARE embedding Icr(M,d). Although the original loss
function, i.e., `(zξ) = − log

(
P(Y ∈ S | θ̂,x, Rh(zξ))

)
,

is generally not analyzable in this situation, Prop. 3.10 guar-
antees that we can optimize its analyzable upper bound,
i.e., − log

(
P(Y ∈ Icr | θ̂,x, Rh(zξ))

)
, as a surrogate by

using the convex transformation defined in Cor. 3.7.

4. A closed-form solution for |Y| = 1

In this section, we propose a closed-form solution for the
formulated AUF problem in cases where the dimension of
the concerned output equals 1 (|Y| = 1) and the desired
region of Y is an interval on R. The proposed closed-form
solution can greatly reduce the time complexity for selecting
optimal alterations that maximize the AUF probability.

Considering situations where the output dimension is sin-
gleton, i.e., |Y| = 1, it can be verified that any interval
region S on R satisfies the CARE condition. In this case,
recall from Thm. 3.6 that the AUF probability can always be
expressed as PAUF = Φ

(
−kT

1 zξ − b1
)
− Φ

(
kT

2 zξ + b2
)
,

where kT
i is the i-th row of matrix MB ∈ R2×|zξ| and bi is

the i-th component of vector MAx− d ∈ R2×1. Here, M,
A, B, d, and x are defined in Lemma 3.4 and Thm. 3.6. Fur-
thermore, according to the discussion in Remark 3.3, we can
assume without loss of generality that ki = −ki+|Y|, lead-
ing to PAUF = Φ

(
kT

2 zξ − b1
)
− Φ

(
kT

2 zξ + b2
)
. Remark

that −b1 > b2 always holds because Φ(·) is a monotone in-
creasing function and PAUF > 0 as guaranteed in Thm. 3.6.

Using Alg. 1 to select the optimal alteration is also available
in this case, which has a O(|zξ|3 · L) time complexity as
discussed in Sec. 3.2. To decrease the executing time by
leveraging the information of |Y| = 1, directly analyzing
the gradient is worth considering. Specifically, the gradi-
ent of `(zξ) = − log

{
Φ
(
kT

2 zξ − b1
)
− Φ

(
kT

2 zξ + b2
)}

in Eq. (3) can be derived as follows:

∂

∂zξ
`(zξ) =

φ
(
kT

2 zξ + b2
)
− φ

(
kT

2 zξ − b1
)

Φ
(
kT

2 zξ − b1
)
− Φ

(
kT

2 zξ + b2
)k2. (5)

Algorithm 2 Closed-form solution for cases where |Y| = 1

Input: observed x; parameter θ̂; S(M,d) under CARE

1: Compute matrices A,B,C by {β̂j}|V|j=1 ∈ θ̂
2: K = MB ∈ R2×|zξ|; b = MAx− d ∈ R2×1

3: kT ← the 2nd row vector of matrix K

4: b← (b1 − b2)/2 . bi is the i-th component of b

5: Select zξ = CLOSED-SOLUTION(k, b, zleft, zright)
6: function CLOSED-SOLUTION(k, b, l, r)
7: m = kT · (I(k ≥ 0) ◦ l+ I(k < 0) ◦ r)
8: M = kT · (I(k < 0) ◦ l+ I(k ≥ 0) ◦ r)
9: if b ≤ m then

10: z? = I(k ≥ 0) ◦ l+ I(k < 0) ◦ r
11: else if b ≥M then
12: z? = I(k < 0) ◦ l+ I(k ≥ 0) ◦ r
13: else z? ← 0, and do
14: for j = 0 to |z?| do
15: if kj = 0 then
16: continue
17: else if b/kj ∈ [lj , rj ] then
18: z?j = b/kj and break
19: else
20: z?j = I(b/kj < lj)lj + I(b/kj ≥ rj)rj
21: b← b− z?j
22: end if
23: end for
24: end if
25: return z?

Output: the optimal decision alteration zξ

Intuitively, directly analyzing the stationary points of `(zξ)
can reduce execution time. As shown in Thm. 3.6, `(zξ)
is convex w.r.t. zξ, so any stationary point z? of `(zξ), i.e.,
where ∂

∂zξ
`(zξ)

∣∣
zξ=z?

= 0, achieves the global minimum.
In cases where |Y| = 1, this idea is feasible, as Alg. 2
constructively provides a zero point z? of Eq. (5).

As shown in Alg. 2, the function CLOSED-SOLUTION
primarily utilizes if-else statements and iterates over the
vector z?. Therefore, this function can be represented in a
closed form as a complex equation, which depends on k, b,
l, and r using the indicator function I(·) and the summation
operator

∑
. Specifically, Alg. 2 focuses on finding the root

for Eq. (5), which suffices to be an optimal alteration that
achieves the maximal AUF probability. Recognizing that k2

does not necessarily equal 0, the point z is a root of Eq. (5)
if and only if φ

(
kT

2 z− b1
)

= φ
(
kT

2 z + b2
)
. Given the

even nature of φ(·), which is monotonic on (−∞, 0], and
the fact that −b1 > b2 as previously discussed, it follows
that kT

2 z − b1 = −kT
2 z − b2, which simplifies to kT

2 z =
b1−b2

2 . Alg. 2 is designed to solve this equation under the
constraint z ∈ [zleft, zright], where M and m represent the
maximum and minimum values achievable by kT

2 z under
this constraint. If there exists a z? ∈ [zleft, zright] such that
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kT
2 z? = b1−b2

2 , this root is selected as shown in lines 14 to
20; otherwise, the boundary value is chosen as described in
lines 10 to 13. Further discussions are provided in Appx. B,
along with the proof for the following Thm. 4.1.

Theorem 4.1. When |Y| = 1, let P?A denote the maximal
AUF probability P(Y ∈ [yl, yr] | θ̂,x, Rh(zξ)) that can be
achieved by alteration zξ ∈ [zleft, zright], and let z? denote
the alteration outputted by Alg. 2. Then the probability
P(Y ∈ [yl, yr] | θ̂,x, Rh(z?)) equals P?A.

As guaranteed in Thm. 4.1, the optimal alteration that maxi-
mizes PAUF can be effectively determined by Alg. 2. The
issue of conditioning on θ̂ rather than true θ follows the
same discussion as Thm. 3.8. It is worth noting that the time
complexity of the decision-making step in this case, i.e., the
time complexity of the function in Alg. 2, is bounded by
O(|zξ|), because all operations can be reduced to iterating
over elements of vectors with length |zξ|, including k, l, r,
and z?. Compared with Alg. 1, which has a time complexity
of O(|zξ|3 · L), the execution time for selecting the optimal
alteration in Alg. 2 is greatly accelerated by leveraging the
information that |Y| = 1. Last but not least, we would like
to emphasize that |Y| = 1 is a crucial case, as most of the
experiments in existing rehearsal learning research are es-
tablished on this scenario (Qin et al., 2023; Du et al., 2024).
Therefore, developing a theoretically efficient approach for
this case is essential for practical applications.

5. Discussion
Our approach aims to select optimal alteration zξ that maxi-
mizes the AUF probability PAUF. Under the CARE condi-
tion, it precisely determines the optimal alteration. The con-
dition offers practical advantages, as decision-makers can
strategically design the desired region S to satisfy the CARE
condition after estimating system parameters. For scenar-
ios beyond CARE, our approach constructs inner CARE
embeddings. While this construction remains challenging
for arbitrary regions, we demonstrate its feasibility for spe-
cific geometries such as circular regions in Prop. 3.11. For
other region types, established techniques like maximum
rectangle algorithms for polygons (Choi et al., 2021) pro-
vide powerful tools, and future advances in these methods
will further expand our approach’s applicability.

Meanwhile, while our theoretical analysis is established
with the Gaussian noise assumption that is widely adopted
across various domains (Shumway et al., 2000; Cohen et al.,
2018), our methodology remains effective in general cases
through appropriate Gaussian approximations. For instance,
Laplace’s approximation (Bishop & Nasrabadi, 2006) in
Bayesian statistics demonstrates how unimodal distributions
can be effectively approximated by fitting a Gaussian distri-
bution centered at their mode.

6. Related work
We discuss two types of works related to our study, including
reinforcement learning (RL) and causality:

Reinforcement Learning (RL). RL methods have demon-
strated remarkable success across various decision-making
domains (Sutton & Barto, 2018). In general, classical RL
approaches (Lillicrap et al., 2016; Haarnoja et al., 2018)
typically require extensive cost-free interactions, which are
unavailable in AUF setting. While numbers of offline RL (Li
et al., 2023; Qiao & Wang, 2023) and hybrid offline-online
RL (Song et al., 2022; Pong et al., 2022) methods have been
developed to mitigate interaction requirements, they remain
ill-suited for AUF scenarios (which demands immediate de-
cisions without interactions) and necessitate substantial of-
fline datasets. Furthermore, when using MDP to model AUF,
the reward function may differ substantially between offline
and online data, as the distribution of Y given observed
z (P(Y | z)) can fundamentally differ from that under al-
terations on z (P(Y | Rh(z))), resulting in mismatched
reward functions I(Y ∈ S | z) versus I(Y ∈ S | Rh(z)).
In contrast, rehearsal learning leverages structural relations
among variables, enabling it to recommend immediate deci-
sions based solely on observational data without requiring
interactions. Note that for addressing AUF, finding influ-
ence relations is a key step, while RL could be a helpful tool
for finding the relations with proper adaptations.

Causality. Extensive research has explored structural mod-
els for decision-making, primarily based on structural causal
models (Spirtes et al., 2000). This work encompasses two
notable categories: (i) methods for identifying causal struc-
tures or effects (Kocaoglu et al., 2017; Wang et al., 2020;
2023b; Qin et al., 2021; Wang et al., 2023a; Zhang et al.,
2023; Qin et al., 2024), which focus primarily on causal dis-
covery and estimation; and (ii) approaches for determining
optimal intervention points using causal bandits or causal
RL methods (Lattimore et al., 2016; Sen et al., 2017; Lee
& Bareinboim, 2018; Zhang & Bareinboim, 2019; Lu et al.,
2021; Park et al., 2025), which incorporate additional util-
ity considerations. These methods generally rely on causal
modeling, which may be luxurious or restrictive in some
real-world decision-making scenarios (Zhou, 2022). The
strong assumptions required for causal identification often
limit the feasibility of finding viable alterations. Conversely,
correlation-based approaches, which underpin most ML
models, are generally not sufficient for decision-making.
Based on this insight, rehearsal is proposed (Zhou, 2022),
which captures influence relations for addressing the AUF
problem (Zhou, 2023). Qin et al. (2023) further propose the
SRM and rehearsal-learning framework, which can adapt
to dynamically evolving decision systems. Note that this
framework can recommend effective alterations across both
time-varying systems and scenarios with mutual influences.
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7. Experiments
We evaluate our proposed approach on two datasets includ-
ing a synthetic dataset and a real-world dataset. We com-
pare our method with two baseline methods and the existing
rehearsal learning methods, including QWZ23 (Qin et al.,
2023) and AUF-MICNS (Du et al., 2024). Besides, although
we have discussed in Sec. 6 that RL methods are not well-
suited for the AUF problem due to limited or even nonex-
istent interactions with the decision environment, we still
implement some classic RL algorithms for comparison to
mitigate potential concerns. The compared RL algorithms
includes DDPG (Lillicrap et al., 2016), PPO (Schulman
et al., 2017), and SAC (Haarnoja et al., 2018). First, we
briefly introduce the datasets, with details listed in Appx. D.

Synthetic Data (Manage). The Manage dataset is designed
to simulate a market management scenario where a market
manager must make decisions to promote total profit (TPF)
and customer numbers (NCT). Key variables affecting TPF
and NCT include the cost of raw materials (C), product price
(P), and competitor’s price (E), among others. We assume
that P and C are the actionable variables in this context.
There are mutually influenced relationships among these
variables: setting P low leads to a competitive drop in E,
and vice versa. The dimensions of X, Z, and Y are 2, 4,
and 2, respectively. The desired region S for Y is a circular
region, and over 95% of value Y fails to fall within S in
natural conditions as shown in Fig. 5(a).

Real-world Data (Bermuda). The Bermuda dataset, which
records environmental variables in the Bermuda area, is
described in ecology research (Courtney et al., 2017), with
available generation order of variables (Andersson & Bates,
2018). The dimensions of X, Z, and Y are 3, 7, and 1, and
the desired region S for Y is S = {NEC ∈ [0.5, 2]}. In
natural conditions, over 90% of value Y fails to fall within
S , as shown in Fig. 5(a). The parameters of structural equa-
tions are derived from fitting linear models on normalized
data (Qin et al., 2023). It is assumed that 5 variables in Z
are actionable (Aglietti et al., 2020), and feasible alteration
values are set to [−1, 1] for each of them.

Meanwhile, we repeat the experiment under 100 random
seeds for each dataset, incluing 3 measures as follows:

1. AUF Prob. given x. The probability that the selected
action can successfully make Y ∈ S (conditioned
on x and θ). This is an immediate decision, and the
probability is approximated by Monte Carlo method.

2. 100-Rds AUF Freq. Success counts of making Y ∈ S
in a 100-round experiment (with different observations
xs). This is a sequential decision-making scenario, in
which the RL methods could update the policy.

3. Avg. Time. Average executing time for making one
decision (the time only for the decision-making step).

Table 2. Results of synthetic data (mean ± std).

METHOD AUF PROB.(%) 100-RDS SUCC. FREQ. AVG. TIME (MS)

NO ACTION 2.52 ± 9.19 1.61 ± 1.29 \
RANDOM 0.97 ± 7.01 1.60 ± 1.52 \

DDPG 1.44 ± 9.53 1.57 ± 1.16 6.35 ± 0.28
SAC 0.98 ± 8.07 1.55 ± 1.16 10.85 ± 0.22
PPO 1.42 ± 8.02 1.65 ± 1.13 11.50 ± 1.84

QWZ23 94.22 ± 1.25 94.06 ± 1.25 85.37 ± 69.3
MICNS 96.96 ± 8.12 96.99 ± 8.44 4.02 ± 1.28
OURS 99.01 ± 0.62 98.93 ± 1.26 5.86 ± 2.17

Table 3. Results of Bermuda data (mean ± std).

METHOD AUF PROB.(%) 100-RDS SUCC. FREQ. AVG. TIME (MS)

NO ACTION 8.77 ± 3.36 8.94 ± 2.76 \
RANDOM 15.47 ± 20.9 14.93 ± 3.41 \

DDPG 14.46 ± 27.6 20.70 ± 5.52 15.17 ± 3.57
SAC 14.05 ± 31.1 18.21 ± 3.94 12.48 ± 0.66
PPO 15.91 ± 33.8 17.15 ± 3.71 13.31 ± 2.59

QWZ23 73.47 ± 7.11 72.62 ± 4.21 567.7 ± 129
MICNS 76.19 ± 20.8 76.69 ± 14.3 23.61 ± 13.2
OURS 82.76 ± 4.44 83.26 ± 3.68 0.91 ± 0.07

The comparison results are summarized in Tab. 2 and Tab. 3,
where the number of observational samples is set to 100. For
immediate decisions, RL methods rely on default policies,
resulting in performance similar to random actions. With
limited interactions, RL methods can gather information to
update their policies but still fail to produce actions compa-
rable to rehearsal methods due to limited interactions. In
contrast, rehearsal methods can generate effective actions
by exploiting structural relations among environment vari-
ables. Our approach consistently outperforms others across
all datasets under the AUF probability measure, which is
the core concern of AUF problem. In terms of execution
time, our approach has the same complexity (O(|z|3)) as
AUF-MICNS when |Y| > 1, but achieves efficient decision-
making with a reduced complexity of O(|z|) for |Y| = 1,
leveraging the closed-form solution provided in Alg. 2. Fi-
nally, the hyperparameter τ for previous rehearsal-learning
methods is selected as the value that achieves the highest
average AUF probability among various candidates.
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Figure 4. RL convergence curves (DDPG and SAC) on Bermuda
data with adequate number of interactions.
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Figure 5. Results for the synthetic dataset (row 1) and Bermuda dataset (row 2), respectively. For each dataset, the desired region shaded
in red in column (a) is identical to that in column (b). The bands in column (c) represent the standard deviations.

Fig. 4 illustrates the convergence curves of DDPG and SAC
on Bermuda data, demonstrating that classical RL methods
perform well with sufficient interactions, despite their poor
performance in the AUF setting where interactions are lim-
ited (Tab. 3). Fig. 5 presents: (a) the original distribution of
outcome Y; (b) the distribution of Y after implementing al-
terations; and (c) the relationship between AUF probability
PAUF, estimation error E||θ̂ − θ||, and the number of ob-
servational samples. As evident in Fig. 5(b), our proposed
approach successfully shifts the distribution of Y toward the
desired region S through selected alterations. Furthermore,
Fig. 5(c) shows that our method converges to the optimal
solution as the number of observational samples increases,
without requiring any interactions with the environment.

8. Conclusion
Rehearsal learning provides a promising framework for ad-
dressing the AUF problem in practical applications. How-
ever, existing rehearsal methods cannot identify the optimal
decision alterations that maximize the AUF probability. To
overcome this limitation, we proposed the CARE condi-
tion, which enables the transformation of the AUF problem
into a convex optimization. For solving this transformed
problem, we developed the projection-Newton algorithm
that guarantees optimal decisions with superlinear conver-
gence. Recognizing that some AUF scenarios fall outside
the CARE condition, we introduced inner CARE embed-
ding to generalize our approach. Additionally, we proved
that when |Y| = 1, AUF problem admits a closed-form
solution, enabling decision-making with time complexity
O(|z|), significantly improving efficiency over prior meth-
ods. Experiments validate the effectiveness of our approach.
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A. Definitions
A.1. Details about Structural Rehearsal Models

In this section, we provide comprehensive definitions and discussions of the Structural Rehearsal Model (SRM), a proba-
bilistic graphical model introduced by (Qin et al., 2023) to characterize influence relations among variables in AUF problem.
The original definitions and discussions of the SRM can be found in Qin et al. (2023), and in this paper, we do not consider
the time t since we focus on the immediate decision making.

• Definition of the rehearsal graph

Definition A.1 (Mixed graph, (Qin et al., 2023)). Let G = (V,E) be a graph, where V denotes the vertices and E the
edges. G is a mixed graph if for any distinct vertices u, v ∈ V, there is at most one edge connecting them, and the edge is
either directional ( u→ v or u← v ) or bi-directional (u↔ v).

Definition A.2 (Bi-directional clique, (Qin et al., 2023)). A bi-directional clique C = (Vc,Ec) of a mixed graph G =
(V,E) is a complete subgraph induced by Vc ⊆ V such that any edge e ∈ Ec is bi-directional. C is maximal if adding any
other vertex does not induce a bi-directional clique.

Definition A.3 (Rehearsal graph, (Qin et al., 2023)). Let G = (V,E) be a mixed graph. Let {Ci}li=1 denote all maximal
bi-directional cliques of G, where Ci = (Vc

i ,E
c
i ). G is a rehearsal graph if and only if:

1. Vc
i ∩Vc

j = ∅ for any i 6= j.

2. ∀i ∈ [l], if there is any edge pointing from some u ∈ V\Vc
i to some v ∈ Vc

i , then ∀v ∈ Vc
i , u→ v.

3. There exists a topological ordering for {Ci}li=1 following the directions of directional edges between Cis.

Note that the topological ordering for bi-directional cliques {Ci}li=1 in G reflects the generation order of involved variables.

• The associated structural equations

X1

Z3

Y1

Y2
Z2

Z1

X Z Y

X2

(a) original rehearsal graph G

X1

Z3

Y1

Y2
Z2

z1

X Z Y

X2

(b) GRh(Z1=z1)

X1

z3

Y1

Y2
Z2

Z1

X Z Y

X2

(c) GRh(Z3=z3)

X1

z3

Y1

Y2
Z2

X Z Y

X2

z1

(d) GRh({Z1,Z3}={z1,z3})

Figure 6. Fig. 6(a) is a rehearsal graph, Fig. 6(b)∼ Fig. 6(d) is
the corresponding alteration graphs with alterations. When an
alteration occurs to certain variables, all incoming arrows to those
variables are removed while other graph structures preserved.

Associated with the graphical representation, the struc-
tural equations are defined over the bi-directional cliques
{Ci}li=1. Specifically, these equations are parameterized by
θ, which comprises the set of parameter matrices {βi} and
the covariance matrix Σi for each clique Ci in the rehearsal
graph G. Notably, the quantitative influence of a directed
edgeA→ B, whereA ∈ Ca andB ∈ Cb, is captured in the
parameter matrix βb. This is due to the topological ordering
of the bi-directional cliques reflecting the temporal sequence
of the generation process. In contrast, the influence of a bi-
directional edge D1 ↔ D2 for D1, D2 ∈ Cd is encoded
in the covariance matrix Σd, as mutual influence between
variables ceases once the system reaches equilibrium.

For clarity in the main paper, we simplify the definition of
dynamic structural equations in Eq. (1) to operate at the
variable level rather than the clique level. For each variable
Vj ∈ Ci, the associated parameter vector can be extracted
directly from the corresponding parameter matrices {βi}.
Similarly, the variance σ2

j for each variable Vj ∈ Ci can be
obtained from the respective covariance matrix Σi.

Lastly, while the dynamic structural equations in Eq. (1) assume Gaussian noise for all Vj ∈ V, it is worth emphasizing
that for variables in cliques without parents, their noise terms can follow arbitrary distributions. This flexibility does not
affect our proposed approach, as the columns of the matrix C corresponding to such variables are zero (as per Lemma 3.4).
Consequently, both the theoretical results and the proposed algorithms remain unaffected.

12
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B. Proofs
In this section, we prove the asserts appeared in the paper.

B.1. Proof of Theorem 3.6

Lemma B.1. Let h (x, λ) = − log
(
Φ
(
cTx + λ

)
− Φ

(
cTx

))
where λ > 0 and c is a non-zero constant vector. Then

h (x, λ) is convex w.r.t. x, since the Hessian matrix∇2
xh (x, λ) � 0.

Proof. First, the gradient and Hessian w.r.t. x can be derived as:

∇xh = −
φ
(
cTx + λ

)
− φ

(
cTx

)
Φ (cTx + λ)− Φ (cTx)

· c (6)

∇2
xh =

(
Φ
(
cTx + λ

)
− Φ

(
cTx

)) {(
cTx + λ

)
φ
(
cTx + λ

)
− cTxφ

(
cTx

)}
+
(
φ
(
cTx + λ

)
− φ

(
cTx

))2
(Φ (cTx + λ)− Φ (cTx))

2 · ccT (7)

Let f(x, λ) = (Φ (x+ λ)− Φ (x)) {(x+ λ)φ (x+ λ)− xφ (x)} + (φ (x+ λ)− φ (x))
2. Notice that in Eq. (7),(

Φ
(
cTx + λ

)
− Φ

(
cTx

))2
> 0 and ccT � 0 always hold. Hence, it suffices to prove that ∇2

xh � 0 if we can prove that
f(x, λ) > 0 holds for ∀x ∈ R when λ > 0. Notice that:

f(x, λ) = φ(x)f1(x, λ) + φ(x+ λ)f2(x, λ),where{
f1(x, λ) = −x (Φ (x+ λ)− Φ (x)) + φ(x)− φ(x+ λ)

f2(x, λ) = (x+ λ) (Φ (x+ λ)− Φ (x)) + φ(x+ λ)− φ(x).

Since φ(x) > 0 and φ(x + λ) > 0 always holds, thus when λ > 0, if we can prove that f1(x, λ), f2(x, λ) > 0 holds for
∀x ∈ R, it suffices to prove that f(x, λ) > 0 holds for ∀x ∈ R. Notice that when λ > 0, it can be derived that:{

∇λf1 = −xφ (x+ λ) + (x+ λ)φ(x+ λ) = λφ(x+ λ) > 0

∇λf2 = Φ (x+ λ)− Φ (x) + (x+ λ)φ (x+ λ)− (x+ λ)φ(x+ λ) = Φ (x+ λ)− Φ (x) > 0.

Hence, for ∀x ∈ R, f1(x, λ) > f1(x, 0) = 0 and f2(x, λ) > f2(x, 0) = 0, which suffices to prove that∇2
xh � 0.

Theorem 3.6. We call the desired region S(M,d) satisfies the CARE condition iff S(M,d) is canonical w.r.t. CΣCT. Let
PA denote P(Y ∈ S | θ,x, Rh(zξ)), kT

j denote the j-th row of MB and bj denote the j-th component of MAx− d, the
following asserts hold under the CARE condition:

1. Let |Y| = d, the AUF probability can be expressed as

PA =

d∏
i=1

{
Φ
(
−kT

i zξ − bi
)
− Φ

(
kT
i+dz

ξ + bi+d
)}

;

2. For any bounded alteration zξ, PA > 0 and the function `
(
zξ
)

= − log (PA) is convex w.r.t. zξ .

Proof. Since S(M,d) is canonical w.r.t. CΣCT, as discussed in Remark 3.3, we define without loss of generality that:

M =
[
I −I

]T
D−

1
2 Q ∈ R2p×p,

where p = |Y|, CΣCT = QTDQ is the eigen decomposition of matrix CΣCT. Meanwhile, from Lemma 3.4, we know
that Y ∼ N

(
Ax + Bzξ,CΣCT

)
. Hence, it can be derived that:

MY ≤ d⇔MY −M
(
Ax + Bzξ

)
≤ d−M

(
Ax + Bzξ

)
⇔M

(
Y −Ax−Bzξ

)
≤ d−M

(
Ax + Bzξ

)
⇔ (I,−I)TD−

1
2 Q
(
Y −Ax−Bzξ

)
≤ d−M

(
Ax + Bzξ

)
⇔ (I,−I)Tν ≤ d−M

(
Ax + Bzξ

)
, where ν ∼ N (0, Ip×p)
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That is to say, it holds that:

P(Y ∈ S | θ,x, Rh(zξ)) = P

(
p∧
i=1

{
kT
i+pz

ξ + bi+p ≤ νi ≤ −kT
i zξ − bi

})

=

p∏
i=1

P
(
kT
i+pz

ξ + bi+p ≤ νi ≤ −kT
i zξ − bi

)
=

p∏
i=1

{
Φ
(
−kT

i zξ − bi
)
− Φ

(
kT
i+pz

ξ + bi+p
)}
,

(8)

where kT
j is j-th row of MB, and bj is j-th component of MAx− d.

Besides, we prove the convexity of `
(
zξ
)

as follows. First, it can be derived that:

`
(
zξ
)

= − logP(Y ∈ S | θ,x, Rh(zξ))

= −
p∑
i=1

log
(
Φ
(
−kT

i zξ − bi
)
− Φ

(
kT
i+pz

ξ + bi+p
))
,

(9)

Let `i
(
zξ
)

denote − log
(
Φ
(
−kT

i zξ − bi
)
− Φ

(
kT
i+pz

ξ + bi+p
))

. If we could prove that `i
(
zξ
)
s are all convex w.r.t. zξ,

it suffices to prove `
(
zξ
)

is convex w.r.t. zξ because `
(
zξ
)

=
∑p
i=1 `i

(
zξ
)
.

It can be observed that −ki = ki+p always holds due to the definition of M. Meanwhile, it has to hold that bi+p ≤ −bi
because S(M,d) is a canonical rectangle as defined in Def. 3.2. Without loss of generality, assume the j-th component of
ki is non-zero, then define the affine transformation:

ai
(
zξ
)

= zξ +
bi+p
kij

ej ,where ej is a zero vector except j-th component set to 1.

Notice that by definition, it can be derived that:

`i
(
ai
(
zξ
))

= − log
(
Φ
(
−kT

i ai
(
zξ
)
− bi

)
− Φ

(
−kT

i ai
(
zξ
)

+ bi+p
))

= − log
(
Φ
(
−kT

i zξ − bi+p − bi
)
− Φ

(
−kT

i zξ
))
.

Because −bi+p − bi > 0 as explained above, `i
(
ai
(
zξ
))

is convex w.r.t. zξ by Lemma B.1. Since ai(·) is an affine
transformation, `i

(
zξ
)

is also convex w.r.t. zξ (for ∀i), which suffices to prove that `
(
zξ
)

is convex w.r.t. zξ.

B.2. Proof of Theorem 3.8

The proof of Thm. 3.8 relies on the detailed definition of the gradient, the Hessain matrix, the DiagApprox operator and the
Armijo-like rule. Hence, we provide the proof in Appx. C after the details of Alg. 1.

B.3. Proof of Proposition 3.10

Proposition 3.10. Let S denote a non-empty region in Rd, and let Icr (M,d) denote the inner CARE embedding of

S. Then, it always holds that `(zξ) ≤ ˆ̀(zξ), where the loss function `(zξ) = − log
(
P(Y ∈ S | θ̂,x, Rh(zξ))

)
and

ˆ̀(zξ) = − log
(
P(Y ∈ Icr | θ̂,x, Rh(zξ))

)
.

Proof. By definition of the inner CARE embedding as in Def. 3.9, it always holds that Icr (M,d) ⊆ S. Hence, it suffices
to prove that for any given θ̂,x, and zξ, it must hold that P(Y ∈ Icr | θ̂,x, Rh(zξ)) ≤ P(Y ∈ S | θ̂,x, Rh(zξ)) by the
definition of probability theory. Consequently, we always have `(zξ) ≤ ˆ̀(zξ).
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B.4. Proof of Proposition 3.11

Proposition 3.11. Let S = {x ∈ Rd | ‖x−o‖22 = r2} denote a circular region on Rd, and let C,Σ denote problem-related
matrices as defined in Lemma 3.4. Then, the inner CARE embedding of S can be expressed by Icr (M,d) with:{

M = (I,−I)TΛQ

d = (I, I)TΛ1 · r/
√
d+ Mo,

where QTΛQ is the eigen-decomposition of matrix CΣCT, I ∈ Rd×d is the identity matrix and 1 ∈ Rd is the vector with
all components equals 1.

Proof. The inner CARE rectangle of a circle must be a (hyper-)square. Let a denote the edge length of the square, then by
pythagorean theorem, it can be derived that:

d · a2 = (2r)2 ⇒ a =
2r√
d
.

Hence, the inner CARE square w.r.t. the original axes coordinate system should be:{
x | (I,−I)T(x− o) ≤ (1,1)T

r√
d

}
.

If we rotate the coordinate system using the positive definite matrix Q, the inner CARE square w.r.t. Q can be expressed as:{
x | (I,−I)TQ(x− o) ≤ (1,1)T

r√
d

}
.

As introduced in Sec. 3.1, we add the shrinkage matrix Λ, and can derive that:{
x | (I,−I)TΛQ(x− o) ≤ (I, I)TΛ1

r√
d

}
,

from which we can assert that M = (I,−I)TΛQ and d = (I, I)TΛ1 · r/
√
d+ Mo for region {x |Mx ≤ d}.

B.5. Proof of Theorem 4.1

Theorem 4.1. When |Y| = 1, let P?A denote the maximal AUF probability P(Y ∈ [l, r] | θ̂,x, Rh(zξ)) that can be
achieved by alteration zξ ∈ [zleft, zright], and let z? denote the alteration outputted by Alg. 2. Then the probability
P(Y ∈ [l, r] | θ̂,x, Rh(z?)) equals the maximal one P?A.

Proof. Recall from Sec. 4 that when the dimension of Y is 1, we can know that:

`(zξ) = − log
{

Φ
(
kT

2 zξ − b1
)
− Φ

(
kT

2 zξ + b2
)}
.

In this case, to find zξ? arg min
zξ∈[zleft,zright]

`(zξ), we first define function f(x) as follws:

f(x) = − log {Φ (x− b1)− Φ (x+ b2)} .

Let m = kT
2 · (I(k2 > 0) ◦ zleft + I(k2 < 0) ◦ zright) and M = kT

2 · (I(k2 < 0) ◦ zleft + I(k2 > 0) ◦ zright), it can be
derived that kT

2 zξ ∈ [m,M ] and kT
2 zξ can continuously choose the value in this interval. Hence, we turn to use a two stage

method to find zξ?: first, we find x? = arg min
x∈[m,M ]

f(x); and second, we find an appropriate zξ? such that kT
2 zξ? = x?.

It can be derived that f ′(x) = − φ(x−b1)−φ(x+b2)
Φ(x−b1)−Φ(x+b2) , which can be analyzed that f ′(x) ≤ 0 on (−∞, b1−b22 ] and f ′(x) ≥ 0 on

[ b1−b22 ,+∞). Hence, f(x) is monotone decreasing on (−∞, b1−b22 ] and is monotone increasing on [ b1−b22 ,+∞). Thus, it
can be derived that if b1−b22 ≤ m, then x? = m; and if b1−b22 ≥M , then x? = M . For these two cases, we can directly set
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zξ? = I(k2 > 0) ◦ zleft + I(k2 < 0) ◦ zright for x? = m and set zξ? = I(k2 < 0) ◦ zleft + I(k2 > 0) ◦ zright for x? = M

such that kT
2 zξ? = x? can always hold.

For the remaining case that m < b1−b2
2 < M , it holds that x? = b1−b2

2 . In this case, to find an appropriate zξ? such
that kT

2 zξ? = b1−b2
2 , we can start from zξ? = 0 and perform an iteration that for each dimension j of zξ?, check if there

exist zj ∈ [zleft,j , zright,j ] such that substitute the j-th dimension of zξ? by zj can lead to kT
2 zξ? = b1−b2

2 . The checking
process is listed in line 9 to line 14 in Alg. 2. As we have discussed how to determine zξ? for all the possible cases
( b1−b22 ≤ m, m < b1−b2

2 < M and b1−b2
2 ≥ M ), it has been proven that Alg. 2 always outputs the alteration that can

achieve min
zξ∈[zleft,zright]

`(zξ), i.e., the one that can achieve the maximum AUF probability.

C. Details of projection Newton method
We aim to optimize the following objective function:

`
(
zξ
)

=

d∑
i=1

− log
{

Φ
(
−kT

i zξ − bi
)
− Φ

(
−kT

i zξ + bi+d
)}
.

We can compute both the gradient and the second-order Hessian matrix of the objective function as follows:

g
(
zξ
)
,∇`

(
zξ
)

=

d∑
i=1

φ
(
−k>i zξ − bi

)
− φ

(
−k>i zξ + bi+d

)
Φ
(
−k>i zξ − bi

)
− Φ

(
−k>i zξ + bi+d

)ki
H
(
zξ
)
,∇2`

(
zξ
)

=

d∑
i=1

k>i ki ·

{ (
φ
(
−k>i zξ − bi

)
− φ

(
−k>i zξ + bi+d

))2(
Φ
(
−k>i zξ − bi

)
− Φ

(
−k>i zξ + bi+d

))2 +

{(
−k>i zξ − bi

)
φ
(
−k>i zξ − bi

)
−
(
−k>i zξ + bi+d

)
φ
(
−k>i zξ + bi+d

)}
Φ
(
−k>i zξ − bi

)
− Φ

(
−k>i zξ + bi+d

) } (10)

Before proceeding, we make a few simple observations regarding g(zξ) and H(zξ). Both of these quantities admit closed-
form expressions, enabling us to leverage second-order Hessian information to facilitate the optimization of `(zξ), and we
employ a modified projection Newton method. The method can be expressed as follows:

zk+1 = zk(αk),

where the subscript k + 1 and k are identical to (t+ 1) and (t) as defined in the main body of the paper, and

zk(α) = Proj [zk − αDk∇` (zk)] .

For all z ∈ Rn, we define the projection operator Proj[z] with coordinates given by:

Proj[z]i =


ziright if ziright ≤ zi,

zi if zileft < zi < ziright,

zileft if zi ≤ zileft.

To clarify the definitions of Dk and αk in the above equation, we first introduce the subset of indices IProj
k :

IProj
k =

{
i | zileft ≤ zik ≤ zileft + εk and

∂` (zk)

∂zi
> 0 or ziright − εk ≤ zik ≤ ziright and

∂` (zk)

∂zi
< 0

}
,

and the matrix Dk is defined as:
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Dk = H−1
k ,

where Hk is the matrix with elements Hij
k given by

Hij
k =

{
0 if i 6= j, and either i ∈ IProj

k or j ∈ I+
k ,

∂2`(xk)
∂zi∂zi otherwise.

The algorithm utilizes a scalar ε > 0 (typically small), a fixed diagonal positive definite matrix M (such as the identity
matrix), and two parameters β ∈ (0, 1) and σ ∈

(
0, 1

2

)
, which are used in conjunction with an Armijo-like stepsize rule

(first introduced in (Bertsekas, 1976)). The scalar εk is defined as

εk = min
{
ε,
∣∣zk − [zk −M∇` (zk)]

∗∣∣} .
The matrix Dk is positive definite, and M is a fixed diagonal positive definite matrix. The stepsize αk is given by:

αk = βmk ,

where

pk = Dk∇` (xk) ,

and mk is the first nonnegative integer m such that:

` (zk)− ` [zk (βm)] ≥ σ

βm ∑
i∈IProj

k

∂` (zk)

∂zi
pik +

∑
i∈IProj

k

∂` (zk)

∂zi
[
zik − zik (βm)

] . (11)

Proposition C.1. We have the following observations:

1 The gradient ∇` is Lipschitz continuous on each bounded set of Rn; i.e., given any bounded set S ⊂ Rn there exists a
scalar L (depending on S ) such that

|∇`(z1)−∇`(z2)| ≤ L|z1 − z2| ∀z1, z2 ∈ S. (12)

2 There exist positive scalars λ1, λ2 and nonnegative integers q1, q2 such that

λ1w
q1
k |z|

2 ≤ z′Dkz ≤ λ2w
q2
k |z|

2 ∀z ∈ Rn, k = 0, 1 · · · , (13)

where
wk =

∣∣∣zk − [zk −M∇` (zk)]
Proj

∣∣∣ .
3 The local minimum z∗ of problem is such that for some δ > 0, ` is twice continuously differentiable in the open sphere
{z | |z− z∗| < δ}, and there exist positive scalars m1,m2 such that

m1|z|2 ≤ z′∇2`(z)z ≤ m2|z|2 ∀z such that |z− z∗| < δ and z 6= 0 such that zi = 0,∀i ∈ B (z∗) .

Furthermore,
∂` (z∗)

∂zi
> 0 ∀i ∈ B (z∗) . (14)
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Proof. Consider a bounded set Z ⊂ Rd for zξ. Because ki, bi, and bi+d are fixed, the quantities −k>i zξ − bi and
−k>i zξ + bi+d vary over a bounded interval as zξ ranges over the bounded set Z.

Since Φ(·) is continuous, Φ
(
−k>i zξ − bi

)
and Φ

(
−k>i zξ + bi+d

)
are also continuous functions of zξ , and hence uniformly

continuous on the compact set Z .

We write bmin = min1≤i≤d |bi+d − bi|, and let

Di

(
zξ
)

= Φ
(
−k>i zξ + bi+d

)
− Φ

(
−k>i zξ − bi

)
. (15)

Without loss of generality, suppose bi+d > bi. Then for all zξ ∈ Z:

−k>i zξ − bi < −k>i zξ + bi+d.

Since Φ(·) is strictly increasing, it follows that Di

(
zξ
)
> 0. Because zξ is restricted to a bounded set Z , the values −k>i zξ

lie within some finite interval. Hence,
(
−k>i zξ − bi

)
and

(
−k>i zξ + bi+d

)
also lie in some bounded intervals. Since Φ(·) is

continuous and strictly increasing, the difference Φ
(
−k>i zξ + bi+d

)
−Φ

(
−k>i zξ − bi

)
attains a strictly positive minimum

on the compact set Z . Alternatively, one can use a Lipschitz continuity argument: Φ(·) is Lipschitz continuous with some
constant L ≤ 1√

2π
, so

Di

(
zξ
)

= Φ(y)− Φ(x) ≥ L|y − x|,

where x = −k>i zξ − bi and y = −k>i zξ + bi+d, and L is determined by S. Thus,

|y − x| = |bi+d − bi| ≥ bmin.

Therefore,

Di

(
zξ
)
≥ Lbmin ∀zξ ∈ Z

For the numerator:

Ni
(
zξ
)

= φ
(
−k>i zξ − bi

)
− φ

(
−k>i zξ + bi+d

)
.

Since φ(·) is the standard normal PDF, it is bounded above by 1√
2π

. Thus:

∣∣Ni (zξ)∣∣ ≤ 2√
2π
.

Combining these results:

∣∣∣∣∣Ni
(
zξ
)

Di (zξ)

∣∣∣∣∣ ≤
2√
2π

Lbmin
=

C1

bmin
,

where C1 = 2√
2πL

is a constant independent of zξ. Since ki are fixed vectors, let

C2 = max
1≤i≤d

‖ki‖ ,

then each term in the sum has a uniform bound:
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∥∥∥∥∥Ni
(
zξ
)

Di (zξ)
ki

∥∥∥∥∥ ≤ C1

bmin
C2.

Summing over i = 1, . . . , d:

∥∥g (zξ)∥∥ =

∥∥∥∥∥
d∑
i=1

Ni
(
zξ
)

Di (zξ)
ki

∥∥∥∥∥ ≤
d∑
i=1

∥∥∥∥∥Ni
(
zξ
)

Di (zξ)
ki

∥∥∥∥∥ ≤
d∑
i=1

C1

bmin
C2 = d

C1C2

bmin
.

This constants do not depend on zξ.

For the second one, From this definition, Hk is essentially diagonal except possibly for som modifications dictated by the
sets IProj

k and I+
k . Crucially, if an index i falls into IProj

k , it indicates that zik is close to the boundary and that the sign of
∂`(zk)
∂zi is such that pushing beyond the boundary would reduce, hence the zeroing out of certain off-diagonal terms ensures a

stable modification.

Because `(·) is twice continuously differentiable, the second derivatives ∂2`
∂zi∂zi are continuous and thus bounded within

any compact region. This ensures that each nonzero diagonal element of Hk stays within certain positive bounds, except
potentially when i ∈ IProj

k , where the proximity to the boundary and the definition of Hk allows the diagonal entries to
shrink.

Indices in the set IProj
k correspond to coordinates near the boundary where the step is adjusted by the projection. The

deviation wk controls how significant this projection adjustment is. As zk approaches the boundary, the difference between
zk and [zk −M∇` (zk)]

Proj reflects how the Hessian’s diagonal elements may shrink or grow.

By suitable scaling arguments and using continuity of the second derivatives, we can show that there exist nonnegative
integers q1, q2 and positive constants λ1, λ2 such that every nonzero diagonal element of Hk (and thus its inverse Dk ) can
be sandwiched as follows:

λ1w
q1
k ≤ Hii

k ≤ λ2w
q2
k .

Since Dk = H−1
k , these inequalities invert to give:

1

λ2
w−q2k ≤ 1

Hii
k

≤ 1

λ1
w−q1k .

Taking all coordinates z into account and using the fact that Dk is diagonal (due to the structure imposed by zeroing out
certain offdiagonal terms), for all z ∈ Rn, we obtain:

λ1w
q1
k |z|

2 ≤ z′Dkz ≤ λ2w
q2
k |z|

2.

For the third one, `(·) is twice continuously differentiable at z∗. By definition, this means that there exists a δ > 0 such that
` is C2-smooth in the open ball

{z | ‖z− z∗‖ < δ}

This ensures that both the gradient∇`(z) and the Hessian ∇2`(z) are continuous functions in that neighborhood. Since z∗

is a local minimizer of `(·), the second-order sufficient condition for a strict local minimum states that the Hessian at z∗, i.e.,
∇2` (z∗), is positive definite.

Because ∇2` (z∗) is a symmetric positive definite matrix, it has a full set of positive eigenvalues. Let λmin (z∗) and
λmax (z∗) denote the smallest and largest eigenvalues of∇2` (z∗), respectively. We then have:
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0 < λmin (z∗) ≤ h>∇2` (z∗) h

‖h‖2
≤ λmax (z∗)

And the Hessian ∇2`(z) is continuous in z. Therefore, there exists a δ > 0 such that for all z with ‖z− z∗‖ < δ, the
Hessian ∇2`(z) remains close to ∇2` (z∗) in operator norm. This implies that the eigenvalues of ∇2`(z) are also close to
those of∇2` (z∗).

Since ∇2` (z∗) is positive definite, we can find constants m1,m2 > 0 such that for all z with ‖z− z∗‖ < δ :

m1I � ∇2`(z) � m2I,

where I is the identity matrix and � denotes the Loewner (matrix) order. Equivalently:

m1|z|2 ≤ z>∇2`(z)z ≤ m2|z|2 ∀z 6= 0 with ‖z− z∗‖ < δ.

This shows both the boundedness from above and below of the quadratic form defined by the Hessian in a neighborhood of
the minimizer. ∂`(z

∗)
∂zi > 0 ∀i ∈ B (z∗) is obviously since z∗ is local minimum and ∂`(z∗)

∂zi is continous.

Notice that in:

H
(
zξ
)

=

d∑
i=1

k>i ki ·

{ (
φ
(
−k>i zξ − bi

)
− φ

(
−k>i zξ + bi+d

))2(
Φ
(
−k>i zξ − bi

)
− Φ

(
−k>i zξ + bi+d

))2 +

{(
−k>i zξ − bi

)
φ
(
−k>i zξ − bi

)
−
(
−k>i zξ + bi+d

)
φ
(
−k>i zξ + bi+d

)}
Φ
(
−k>i zξ − bi

)
− Φ

(
−k>i zξ + bi+d

) }
,

since kT
j kj has only rank 1, the upper and lower bounds of the eigenvalues of H

(
zξ
)

can be only depended on term:

(
φ
(
−k>i zξ − bi

)
− φ

(
−k>i zξ + bi+d

))2(
Φ
(
−k>i zξ − bi

)
− Φ

(
−k>i zξ + bi+d

))2 +

(
−k>i zξ − bi

)
φ
(
−k>i zξ − bi

)
−
(
−k>i zξ + bi+d

)
φ
(
−k>i zξ + bi+d

)
Φ
(
−k>i zξ − bi

)
− Φ

(
−k>i zξ + bi+d

) .

Next, we will prove that every limit point of a sequence {zk} generated by iteration is a critical point with respect to Eq. (3).
First, we need the following lemma, which was first proven in (Bertsekas, 1982).

Lemma C.2. (Bertsekas, 1982).

Let z ≥ 0 and D be a positive definite symmetric matrix that is diagonal with respect to IProj(z). Define

z(α) = Proj[z− αD∇`(z)] ∀α ≥ 0.

1 The vector z is a critical point with respect to problem (1) if and only if

z = z(α) ∀α ≥ 0.

2 If z is not a critical point with respect to problem (1), there exists a scalar ᾱ > 0 such that

`[z(α)] < `(z) ∀α ∈ (0, ᾱ].
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Note that for all k we have

IProj
k ⊃ IProj (zk) ,

so the matrix Dk is diagonal with respect to IProj (zk). It can be shown that for all m ≥ 0, the right-hand side of Eq. (11) is
nonnegative and is positive if and only if zk is not a critical point. Indeed, since Dk is positive definite and diagonal with
respect to IProj

k , we have ∑
i∈rk

∂f (zk)

∂zi
pik ≥ 0 ∀k = 0, 1, · · · , (16)

while for all i ∈ IProj
k , given that

∂`(zk)
∂zi > 0, we have pik > 0 and thus

zik − zik(α) ≥ 0 ∀α ≥ 0, i ∈ IProj
k , k = 0, 1, · · · ,

∂` (zk)

∂zi
[
zik − zik(α)

]
≥ 0 ∀α ≥ 0, i ∈ IProj

k , k = 0, 1, · · · .
(17)

This shows that the right side of Eq. (11) is nonnegative. If zk is not a critical point, then it is clear that one of the inequalities
Eq. (16)is strict for α > 0, making the right side of Eq. (11) positive for all m ≥ 0. A slight modification of the proof
of Proposition 1(b) also shows that if zk is not a critical point, then Eq. (11) will be satisfied for all sufficiently large m,
ensuring that the stepsize αk is well-defined and can be determined via a finite number of arithmetic operations. If zk is a
critical point, then, by Lemma C.2, we have zk = zk(α) for all α ≥ 0. Furthermore, the argument given in the proof of
Proposition 1(a) shows that:

r∑
i=1

∂` (zk)

∂zi
pik = 0,

so both terms on the right side of Eq. (11) are zero. Since also zk = zk(α) for all α ≥ 0, it follows that Eq. (11) is satisfied
for m = 0, thereby implying that:

zk+1 = zk(1) = zk if zk is critical.

Now assume that there exists a subsequence {zk}k converging to a vector z̄ which is not critical. Since {` (zk)} is decreasing
and f is continuous, it follows that {` (zk)} converges to f(z̄) and therefore:

[` (zk)− ` (zk+1)]→ 0.

Since each of the sums on the right-hand side of Eq. (11) is nonnegative (cf. Eq. (16), Eq. (17)), we must have

αk
∑

i∈IProj
k

∂` (zk)

∂zi
pik → 0; (18)

and

∑
i∈rk

∂` (zk)

∂zi
[
zik − zik (αk)

]
→ 0.

Also, since z̄ is not critical andM is diagonal, we have
∣∣z̄− [z̄−M∇`(z̄)]Proj

∣∣ 6= 0, so Eq. (13) implies that the eigenvalues
of {Dk}K are uniformly bounded above and away from zero. In view of the fact that Dk is diagonal w.r.t. IProj

k , it follows
that there exist positive scalars λ̄1, λ̄2 such that for all k ∈ K that are sufficiently large, it holds that:

0 < λ̄1
∂` (zk)

∂zi
≤ pik ≤ λ̄2

∂` (zk)

∂zi
∀i ∈ IProj

k ,

λ̄1

∑
i∈Ik

∣∣∣∣∂` (zk)

∂zi

∣∣∣∣2 ≤∑
i∈Γk

pik
∂` (zk)

∂zi
≤ λ̄2

∑
i∈Ik

∣∣∣∣∂l` (zk)

∂zi

∣∣∣∣2 .
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We will show that our hypotheses so far lead to the conclusion that

lim
k→∞
k∈K

inf αk = 0. (19)

Indeed, since z̄ is not a critical point, there must exist an index i such that either

z̄i > 0 and
∂f(z̄)

∂zi
6= 0, (20)

or

z̄i = 0 and
∂f(z̄)

∂zi
< 0. (21)

If i /∈ IProj
k for an infinite number of indices k ∈ K, then Eq. (19) follows from Eq. (18),Eq. (20) and Eq. (21) . If i ∈ IProj

k

for an infinite number of indices k ∈ K, then for all those indices we must have ∂`(zk)
∂zi > 0, so Eq. (21) cannot hold.

Therefore, from Eq. (20),

z̄i > 0 and
∂`(z̄)

∂zi
> 0. (22)

Since we have [cf. Eq. (17)] for all k ∈ K for which i ∈ IProj
k , it holds that:∑

j∈Ik

∂` (zk)

∂zi

[
zjk − zjk (αk)

]
≥ ∂` (zk)

∂zi
[
zik − zik (αk)

]
≥ 0,

which follows from Eq. (18) and Eq. (22) that

lim
k→∞
k∈K

[
zik − zik (αk)

]
= 0.

Using the above relation, we obtain Eq. (19).

We will complete the proof by showing that {αk}K is bounded away from zero, thereby the subsequences {zk}K , {pk}K ,
and {zk(α)}K , α ∈ [0, 1], are uniformly bounded. Hence, by 12, there exists a scalar L > 0 such that for all t ∈ [0, 1],
α ∈ [0, 1], and k ∈ K, we have

|∇` (zk)−∇` [zk − t [zk − zk(α)]]| ≤ tL |zk − zk(α)| .

For all k ∈ K and α ∈ [0, 1], we have

` [zk(α)] = ` (zk) +∇` (zk)
′
[zk(α)− zk] +

∫ 1

0

{∇` (zk)−∇` [zk − t [zk − zk(α)]]}′ dt [zk − zk(α)] .

Hence,

` (zk)− ` [zk(α)] = ∇` (zk)
′
[zk − zk(α)] +

∫ 1

0

{∇` [zk − t [zk − zk(α)]]−∇` (zk)}′ dt [zk − zk(α)]

≥ ∇` (zk)
′
[zk − zk(α)]−

∫ 1

0

|∇` [zk − t [zk − zk(α)]]−∇` (zk)| dt |zk − zk(α)|

≥ ∇` (zk)
′
[zk − zk(α)]− L

2
|zk − zk(α)|2 .

For i ∈ IProj
k , we have zik(α) =

[
zik − αpik

]Proj ≥ zik − αpik and pik > 0, so 0 ≤ zik − zik(α) ≤ αpik. It follows,∑
i∈rk

∣∣zik − zik(α)
∣∣2 ≤ α∑

i∈rk

pik
[
zik − zik(α)

]
≤ αλ̃2

∑
i∈r′k

∂` (zk)

∂zi
[
zik − zik(α)

]
.
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Consider the sets

I1,k =

{
i | ∂` (zk)

∂zi
> 0, i /∈ IProj

k

}
, I2,k =

{
i | ∂` (zk)

∂zi
≤ 0, i /∈ IProj

k

}
.

For all i ∈ I1,k, we must have zik > εk, otherwise we would have i ∈ IProj
k . Since

∣∣z̄− [z̄−M∇`(z̄)]Proj
∣∣ 6= 0, we must

have limk→0,k∈K inf εk > 0 and εk > 0 for all k. Let ε̄ > 0 be such that ε̄ ≤ εk for all k ∈ K, and let B denote a constant
such that

∣∣pik∣∣ ≤ B for all i and k ∈ K. Then for all α ∈ [0, ε̄/B], we have zik(α) = zik − αpik for all i ∈ Ii,k, so it follows
that:

∑
i∈I1,k

∂` (zk)

∂zi
[
zik − zik(α)

]
= α

∑
i∈I1,k

∂` (zk)

∂zi
pik ∀α ∈

[
0,
ε̄

B

]
.

Also, for all α ≥ 0, we have zik − zik(α) ≤ αpik, and since ∂`(zk)
∂zi ≤ 0 for all i ∈ I2,k, we obtain

∑
i∈I2,k

∂` (zk)

∂zi
[
zik − zik(α)

]
≥ α

∑
i∈I2,k

∂` (zk)

∂zi
pik.

Combining these two equations above, we obtain

∑
i∈Ik

∂` (zk)

∂zi
[
zik − zik(α)

]
≥ α

∑
i∈Ik

∂` (zk)

∂zi
pik ∀α ∈

[
0,
ε̄

B

]
.

For all α ≥ 0, we also have ∣∣zik − zik(α)
∣∣ ≤ α ∣∣pik∣∣ ∀i = 1, · · · , n.

Furthermore, it is easily seen using Eq. (13) that there exists λ > 0 such that

∑
i∈Ik

(
pik
)2 ≤ λ∑

i∈Ik

∂` (zk)

∂zi
pik ∀k ∈ K.

Combining the last two relations, we obtain for all α ≥ 0, it holds that:

∑
i∈Ik

∣∣zik − zik(α)
∣∣2 ≤ α2λ

∑
i∈Ik

∂` (zk)

∂zi
pik ∀k ∈ K.

We now obtain for all α ∈ [0, (ε̄/B)] and k ∈ K, it holds that:

` (zk)− ` [zk(α)] ≥
(
α− α2λL

2

)∑
i∈Ik

∂` (zk)

∂zi
pik +

(
1− αλ̄2L

2

)∑
i∈Ik

∂` (zk)

∂zi
[
zik − zik(α)

]
.

Suppose α is chosen such that:

0 ≤ α ≤ ε̄

B
, 1− αλL

2
≥ σ, 1− αλ2L

2
≥ σ, α ≤ 1;

or equivalently,

0 ≤ α ≤ min

{
ε̄

B
,

2(1− σ)

λL
,

2(1− σ)

λ̄2L
, 1

}
. (23)
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Then for all k ∈ K, we have:

` (zk)− ` [zk(α)] ≥ σ

{
α
∑
i∈Ik

∂` (zk)

∂zi
pik +

∑
i∈Ik

∂` (zk)

∂zi
[
zik − zik(α)

]}
.

This means that if Eq. (23) is satisfied with βm = α, then the inequality Eq. (11) of the Armijo-like rule will be satisfied. It
follows from the way the stepsize is reduced that αk satisfies:

αk ≥ βmin

{
ε̄

B
,

2(1− σ)

λL
,

2(1− σ)

λ̄2L
, 1

}
∀k ∈ K.

This contradicts Eq. (19). From Eq. (14), since f is twice differentiable on {z | |z− z∗| < δ}, it follows that there exist
scalars L > 0 and δ1 ∈ (0, δ] such that for all z,y with |z− z∗| ≤ δ and |y − z∗| ≤ δ1, we have

|∇`(z)−∇`(y)| ≤ L|z− y|.

Also, for zk sufficiently close to z∗, the scalar wk =
∣∣∣zk − [zk −M∇` (zk)]

Proj
∣∣∣ is arbitrarily close to zero. Thus we have:[

zik − µi
∂` (zk)

∂zi

]Proj

= 0 ∀i ∈ B (z∗) ,

where µi is the i-th diagonal element of M . It follows that for zk sufficiently close to z∗, we have

zik ≤ wk = εk ∀i ∈ B (z∗) , while zik > εk ∀i /∈ B (z∗) .

This implies that there exists δ2 ∈ (0, δ1] such that

B (z∗) = IProj
k ∀k such that |zk − z∗| ≤ δ2.

Also, there exist scalars ε̄ > 0 and δ3 ∈ (0, δ2] such that

zik > ε̄ ∀i /∈ B (z∗) and k such that |zk − z∗| ≤ δ3.

By essentially repeating the argument in the proof of above that, we find that there exists a scalar ᾱ > 0 such that

αk ≥ ᾱ ∀k such that |zk − z∗| ≤ δ3.

It follows that

0 < λ̄1
∂` (zk)

∂zi
≤ pik ∀i ∈ B (z∗) and k such that |zk − z∗| ≤ δ3,

While there exists a scalar λ > 0 such that∑
i∈B(z∗)

∣∣pik∣∣2 ≤ λ ∑
i∈B(z∗)

∣∣∣∣∂` (zk)

∂zi

∣∣∣∣2 ∀k such that |zk − z∗| ≤ δ3.

Since ∂`(z∗)
∂zi > 0 for ∀i ∈ B (z∗) and ∂f(z∗)

∂zi = 0 for ∀i /∈ B (z∗), it follows that there exists a scalar δ4 ∈ (0, δ3] such that

B (z∗) = B (zk+1) and |zk+1 − z∗| ≤ δ3; ∀k such that |zk − z∗| ≤ δ4.

Thus we have

B (z∗) = B (zk+1) = IProj
k+1 ∀k such that |zk − z∗| ≤ δ4.

This to say, when |zk − z∗| ≤ δ4, we have |zk+1 − z∗| ≤ δ3, B (z∗) = B (zk+1), and the (k + 1)-st iteration of the
algorithm reduces to an iteration of an unconstrained minimization algorithm on the subspace of binding constraints at z∗.
Given the well-known quadratic convergence rate of the unconstrained Newton method, we thus obtain a guarantee on the
convergence rate.
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D. Experiments
The experiments are run on a Nvidia Tesla A100 GPU and two Intel Xeon Platinum 8358 CPUs. Besides, the RL results
(Fig. 4) are obtained by using the stable-baselines3 library (Raffin et al., 2021).

D.1. Synthetic Data

In this section, we provide details about the Market-Manage data. The variables included in the generation process are:

• Featureour: The feature used to predict the raw cost of our market;

• Featurecpt: The feature used to predict the raw cost of the competitor market;

• Cour: The raw cost of our market;

• Ccpt: The raw cost of the competitor market;

• Pour: The product price of our market;

• Pcpt: The product price of the competitor market;

• NCT: Customer numbers of our market;

• TPF: Total profit of our market.

The rehearsal graph for the variables is illustrated in Fig. 7. The presumed actionable variables that can be altered by the
manager are Cour and Pour.

feature1

Xt Zt Yt

NCT

TPF

feature1

Cour

Pour

Ccpt

Pcpt

Figure 7. The rehearsal graph for market-manage data.
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D.2. Bermuda Data

In this section, we provide details about the Bermuda data. The Bermuda data is an environment dataset that involves some
environmental variables in Bermuda (Courtney et al., 2017). The variables included in the generation process are:

• Light: Light levels at the bottom;

• Temp: Temperature at the bottom;

• Sal: Sea surface salinity;

• DIC: Dissolved inorganic carbon of seawater;

• TA: Total alkalinity of seawater;

• ΩA: Saturation with respect to aragonite in seawater;

• Chla: Chlorophyll-a at sea surface;

• Nut: PC1 of NH4, NiO2 + NiO3, SiO4;

• pHsw: pH of seawater;

• CO2: PCO2
of seawater;

• NEC: Net ecosystem calcification.

The rehearsal graph for the variables is illustrated in Fig. 8. The presumed actionable variables that can be altered by the
decision-maker are DIC, TA, ΩA, Chla, and Nut according to Aglietti et al. (2020); Qin et al. (2023); Du et al. (2024).

Light

Temp

DIC

ΩA

NEC

Sal

TA

Nut

pHsw

CO2

Chla

Xt Zt Yt

Figure 8. The rehearsal graph for Bermuda data.
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