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Abstract

Machine learning (ML) has achieved remarkable success in prediction tasks. In
many real-world scenarios, rather than solely predicting an outcome using an ML
model, the crucial concern is how to make decisions to prevent the occurrence of
undesired outcomes, known as the avoiding undesired future (AUF) problem. To
this end, a new framework called rehearsal learning has been proposed recently,
which works effectively in stationary environments by leveraging the influence
relations among variables. In real tasks, however, the environments are usually
non-stationary, where the influence relations may be dynamic, leading to the failure
of AUF by the existing method. In this paper, we introduce a novel sequential
methodology that effectively updates the estimates of dynamic influence relations,
which are crucial for rehearsal learning to prevent undesired outcomes in non-
stationary environments. Meanwhile, we take the cost of decision actions into
account and provide the formulation of AUF problem with minimal action cost
under non-stationarity. We prove that in linear Gaussian cases, the problem can be
transformed into the well-studied convex quadratically constrained quadratic pro-
gram (QCQP). In this way, we establish the first polynomial-time rehearsal-based
approach for addressing the AUF problem. Theoretical and experimental results
validate the effectiveness and efficiency of our method under certain circumstances.

1 Introduction

Machine learning (ML) models have found extensive application in prediction tasks [25]. However,
in contrast to a sole emphasis on prediction, it is preferred in many real-world scenarios to further
explore effective decisions if the predicted outcomes are undesired. For instance, imagine that a
factory manager has trained an ML model on features X (e.g., economic indicators) to predict the
outcome Y (e.g., monthly sales). Suppose at the beginning of a month, Y is predicted to be undesired,
i.e., the predicted sales of the month are lower than expected. In this case, the manager usually wants
to take action by altering some intermediate variables Z during the month to avoid this undesired
outcome happening, e.g., modifying the discount to attract more customers. The problem of how to
find effective actions in such situations is known as avoiding undesired future (AUF) [63].

It is worth noting that AUF tasks often involve limited opportunities for interaction with the decision
environment [63]. For instance, in the aforementioned example, the factory manager can only adjust
the selling strategy once per month. Therefore, decision-making algorithms that depend on numerous
interactions, such as conventional reinforcement learning (RL) methods [4], are not well-suited for
the AUF problem [40]. Additionally, fundamentally vital decisions need to be made with human
judgment, and therefore, it is desired to enable human decision-makers to understand why and how
some actions can change the outcome. Due to these challenges, the structural relations among
variables, which contain fine-grained information and are usually interpretable, are worth being
considered to make decisions [36, 40].
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Figure 1: Relationship among correlation,
influence, and causation [63].

Causation is such a type of structural relation [36], which
has been leveraged for some decision-making prob-
lems [5, 24, 42, 43]. Although causal relations can assist
to some extent, identifying them is challenging and gen-
erally relies on some untestable assumptions [49, 44, 28].
Besides, causation should not be viewed as a prereq-
uisite for decision-making problems, as humans can
usually make good decisions without a thorough causal
understanding [63]. Recognizing that correlation used
in prediction is inadequate for decision-making whereas causation is too luxurious to be relied on,
Zhou [63] emphasized the necessity of an intermediate relation that is stronger than correlation but
less demanding than causation; this relation was subsequently called influence relation [64]. The
relationship among correlation, influence, and causation is illustrated in Fig. 1.

Based on the influence relations, Qin et al. [40] developed the first rehearsal learning framework,
which can effectively suggest good decision actions for the AUF problem in stationary environments.
In practice, however, the method by Qin et al. [40] may lose its power when different decision
actions are associated with different costs or when the decision environment is non-stationary where
quantitative influence relations can vary. For example, modifying the discount into different levels
results in different expenses, and the quantitative influence relation between pricing and sales can
change seasonally for products such as the coat. Besides, it is worth mentioning that exact solutions
are intractable with any polynomial-time algorithm when considering decisions on multiple variables
in the previous work [40], thus exploring more efficient approaches is necessary for the decision-
suggestion problem in the AUF problem.

To tackle these issues, in this paper, we propose the AUF-MICNS approach for the AUF problem with
minimal cost in non-stationary environments. AUF-MICNS considers a multi-round decision-making
process where it suggests decisions and collects feedback data during and after each decision round.
Note that although multiple decision rounds are allowed, the limited number of rounds may still
render RL methods ineffective [40]. In contrast to Qin et al. [40], we consider the non-stationary
fact that influence relations may vary over decision rounds, and therefore, treating the round-wise
collected data as i.i.d. samples for determining the influence relations is inappropriate. To this end, we
present a sequential approach to maintain dynamic influence relations in non-stationary environments,
and further propose an online-ensemble-based [60] sequential algorithm to deal with the unknown
degree of non-stationarity. In addition, we design a cost function to quantify the costs of different
decision actions. The cost function takes into account not only (a) different unit costs associated
with different variables, but also (b) the distinct costs involved in altering a single variable to varying
extents. Further, we expect that the suggested decisions can efficiently avoid undesired outcomes
with a relatively high probability. Rather than using the sampling-based method that cannot be
solved with any polynomial-time algorithm [40], we reveal that finding decision suggestions for AUF
with minimal action cost can be modeled as a convex quadratically constrained quadratic program
(QCQP), which is solvable in polynomial time O(|V|3) with respect to the number of variables
|V|. Combining the parts above, we prove that our proposed approach can (a) accurately capture
the dynamic influence relations with errors bounded by an exponentially decreasing term, and (b)
efficiently suggest effective decision actions with minimal cost for the AUF problem.

Our main contributions are summarized as follows.
1. We try to tackle the AUF problem with minimal cost in non-stationary environments. Our modeling

approach considers, for the first time, the decision action cost and the non-stationary fact that
influence relations can vary over time in the AUF problem.

2. We present a novel sequential methodology to maintain dynamic influence relations. Theoretical
results guarantee that the estimate error can be bounded by an exponentially decreasing term, as
well as a fixed small value related to the problem difficulty.

3. We develop the AUF-MICNS algorithm, which is the first polynomial time rehearsal-based
approach that can suggest effective decision actions for the formulated AUF problem. Our
experimental results validate the effectiveness and efficiency of the method.

Organization. In Sec. 2, we review basic concepts and introduce our notation. In Sec. 3, we provide
the formulation of AUF problem and provide the AUF-MICNS algorithm for solving the problem,
together with theoretical guarantees. In Sec. 4, we introduce some related studies. In Sec. 5, we show
the experimental results. At last, we discuss the limitations and conclude our work in Sec. 6.
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Figure 2: Fig. 2(a) is a rehearsal graph, and Fig. 2(b)⇠ Fig. 2(d) illustrate the corresponding alteration
graphs with different alterations. Note that when an alteration occurs to certain variables, all incoming
arrows to those variables are removed while other graph structures are maintained.

2 Preliminaries

A novel probabilistic graphical model called structural rehearsal model (SRM) is proposed by Qin
et al. [40] to characterize influence relations among variables in the AUF problem. The SRM consists
of a set of rehearsal graphs and corresponding structural equations {hGt,✓ti}t (t denotes the decision
round). The detailed definition of SRM is listed in Appendix B.1.

A rehearsal graph, denoted by G = (V,E), models the qualitative influence relations among variables.
Specifically, the vertices V denote the variable set of the AUF problem and the edges E denote the
influence relation among vertices. There are two types of edges in the rehearsal graph, the directional
edge X ! Y means that X influences Y , and the bi-directional edge X $ Y means that X and Y
are mutually influenced. Additionally, the corresponding structural equations of variable Vjs can be
parameterized by

�
�j,t, �2

j,t

 |V|

j=1
✓ ✓t that:

Vj,t := fj

⇣
PAGt

j ; �j,t

⌘
+ "j,t, (1)

where Vj 2 V denotes the j-th vertex in Gt, PAGt
j , {u | u ! Vj in Gt} represents the parents

of Vj in Gt, and the noise "j,t follows the distribution N (0, �j
2) for all t. Note that on one hand,

causal relations are not always necessary in real world decision-making problems [63]; on the other
hand, causal models are sometimes insufficient for capturing the full scope of relationships between
variables. For instance, the pressure and the temperature within a fixed volume of ideal gas are
mutually influenced, as changes in either one of them affect the other. Such bi-directional influence
relations are not well-represented by causal models, but can be naturally expressed by SRM [40].

Besides, finding suitable alterations is involved in addressing the AUF problem. An alteration ⇠
means a decision action that is specified by human decision-makers, denoting by a set of vertex-value
pairs, e.g., ⇠ = {Z2 = z2} in Fig. 2(b). Meanwhile, rehearsal operation, denoted as Rh(·), represents
executing a certain alteration, which changes the original graph structure as illustrated in Fig. 2(b)-
Fig. 2(d). Specifically, rehearsal operation breaks original influence links that point into any vertices
contained in ⇠, and fixes the values in ⇠ to their associated vertices; while this operation maintains
influence relations among other vertices in the associated alteration graph G. Since alteration and
rehearsal operations are always considered together in the AUF problem, for simplicity, we will use
the term alteration exclusively throughout the paper, unless otherwise specified.

3 The proposed approach

This section is dedicated to addressing the aforementioned AUF problem. In Sec. 3.1, we provide the
probelm formulation. In Sec. 3.2, we propose the AUF-MICNS method for AUF. Later in Sec. 3.3,
theoretical results are provided to ensure the effectiveness of our approach.

3.1 Formulation

This paper focuses on suggesting decisions to avoid undesired futures when an undesired outcome
is predicted by an ML model. Since effective prediction models are widely applied in various
domains [25] and work well even in non-stationary environments [62], we consider the case that the
predictive ML model is always available and are not concerned about how to train it.

We formulate the AUF problem with minimal cost in non-stationary environments as a multi-round
online decision-making process, where the decision-maker should perform round-wise alterations to
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avoid undesired outcomes. In each decision round, there are two essential time points, the time that
the ML prediction is made, and the time just before the generation of the concerned outcome Y. As
separated by the two time points, the variables fall into three consecutive time segments: X, Z, and
Y as illustrated in Fig. 2(a). In t-th round, a decision-maker first observes variables Xt = xt, and an
ML model provides a prediction Ŷt as the outcome subsequently. Denote the desired region of Yt as
S, if Ŷt 62 S, the decision-maker would perform alterations on Zt (only once) based on the whole
historical data, and the true Yt will occur after the alteration.

It is worth mentioning that in decision round t, two crucial concerns for making decisions are
(a) how to perform effective alterations that make Yt 2 S with high probability; and (b) how
to minimize the alteration cost as much as possible. For the former, we seek to ensure that
P (Yt 2 S | ✓t,xt, Rh(⇠t)) � ⌧ ; where ⇠t is the selected alteration, and ⌧ is the expected probability
that the alteration can successfully avoid the undesired outcome. For the latter, we generalize a con-
tinuous cost function from the discrete cost measure [61] to quantify the cost for different alterations.
The cost function is defined as the sum of the respective costs associated with each altered variable,
and follows the increasing marginal cost property (see Appendix B.2 for details) in economics [32],
properly measuring the alteration cost. Given the expectation that the future outcome will likely fall
into S after performing the alteration, the decision maker consistently prefers the alteration with the
least alteration cost. Thus, the AUF problem can be ideally formulated as follows in practice:

min
⇠t

X

Zi2⇠t

wi

⇣
Z⇠t

i � Z0
i

⌘2

s.t. P (Yt 2 S | #?
t ,xt, Rh(⇠t)) � ⌧,

(2)

where wi > 0 represents the cost coefficient for each intermediate variable Zi 2 Z, Z⇠t
i represents

the values of Zi after alteration ⇠t while Z0
i is the datum point that associates with the minimum

alteration cost relatively. Besides, #?
t = arg min# E"k#� ✓tk is the ideal estimation of ✓t since ✓t

is not available in practice. Note that wis and Z0
i s are user-specified because the cost of the same

decision alteration can vary for different decision-makers.

In the following, we focus on a basic but essential class of the AUF problem, where the structural
equations ft in Eq. (1) are linear but dynamic, the desired set S in Eq. (2) is a convex polytope, and the
rehearsal graph G is known and fixed (i.e., Gt , G) for a convenient illustration. Let d 2 Rs,M 2
Rs⇥|Y|, �j 2 R|PAG

j |⇥1, dynamic structural equations and the desired region can be formulated as:

Vj,t := �T
j,t PAj,t +"j,t, S =

n
y 2 R|Y| | My  d

o
. (3)

Note that #?
t in Eq. (2) is usually not available as discussed later in Sec. 3.2.1, thus finding surrogate

estimations ✓̂t with bounded error E"k✓̂t � ✓tk is necessary. Noticing that the noise distributions for
"j,ts in Eq. (3) do not change over time, the variances of "j,ts can be estimated by various Bayesian
learning methods [6]. Thus, we mainly focus on estimating influence parameters �j,ts in what follows,
and we use ✓t to represent {�j,t}s only unless otherwise specified. Another challenge lies in how
to efficiently solve the optimization Eq. (2) under the probabilistic constraint, since the sampling
method used in the previous work has been proven to be time-consuming [40]. In Sec. 3.2, we
propose the AUF-MICNS algorithm to tackle the aforementioned two challenges. AUF-MICNS
can maintain the dynamic influence relations accurately and suggest alterations to avoid undesired
outcomes effectively, and the performance can be guaranteed by theoretical results in Sec. 3.3.

3.2 Our proposed AUF-MICNS algorithm

In this subsection, we propose the AUF-MICNS algorithm to address the AUF problem as formulated
in Eq. (2). AUF-MICNS consists of two components, influence maintenance and alteration suggestion.
We first introduce the components respectively, then we discuss how to combine them together.

3.2.1 Dynamic influence maintenance

As illustrated in Eq. (2), the precondition for making effective decisions in the AUF problem lies
in the accurately estimated ✓ts. Specifically, to accurately estimate the parameter vector �j,t 2 ✓t

in t-th decision round, we would like to minimize the expected squared loss E"j

⇥
Vj � �>

j,t PAj

⇤2,
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where Vj is the j-th vertex in rehearsal graph, and PAj denotes the parents of Vj . Ideally, according
to the law of large numbers (LLN), if we could obtain sufficient i.i.d. samples in time t, we can
estimate �j,t by minimizing the empirical error `j,t(�j,t) as a substitute:

arg min
�j,t

1

2n

nX

k=1

⇣
V k

j,t � �>

j,t PAk
j,t

⌘2
, (4)

where n is the number of samples that we can obtain in round t, and the superscript k means that it is
the k-th sample. It can be guaranteed in lemma C.3 that this estimation converges to the true value as
n increases. However, in real-world cases, we can only obtain a single sample after each decision
round, so it is inappropriate to calculate the parameters as above, since the solution to Eq. (4) is far
from accurate in this data-limited situation, where the surrogate loss is:

ˆ̀
j,t (�j,t) =

1

2

⇣
Vj,t � �j,t

> PAj,t

⌘2
. (5)

Besides, mixing the round-wise selected {Vj,t, PAj,t}T
t=1 to estimate parameter �j,t as the classic

empirical risk minimization (ERM) [34] methods do is inappropriate as well, because data selected in
different rounds possibly obeys different distributions in non-stationary environments. Fortunately, in
the field of online learning [52, 14, 17], there exist many types of algorithms to estimate parameters
sequentially with limited samples. Online gradient descent (OGD) [65, 47] is a typical class of online
learning algorithms, which takes advantage of the gradient descent idea to handle the round-wise
selected data. Once the selection of the step size (learning rate) in OGD is tailored to the varying
speed of the environment, i.e., employing a larger step size for rapid changes and a smaller one
for gradual changes, parameters can be effectively updated with limited data after each round. We
customize OGD for estimating quantitative influence relations �̂j,t 2 ✓t sequentially in Algorithm 1.

Algorithm 1 OGD-based estimator for �̂j

Input: The step size ⌘

1: Initialize �̂⌘
j,0 with any point in domain B

2: for t = 1 to T do
3: Receive (PAj,t, Vj,t); Continue if Vj,t 2 ⇠t

4: Estimate gradient ĝj,t =
⇣
PA>

j,t �̂⌘
j,t � Vj,t

⌘
PAj,t

5: Update �̂⌘
j,t+1 = ⇧B

h
�̂⌘

j,t � ⌘ĝj,t

i

Output: estimated {�̂⌘
j,t}T

t=1

By using the OGD-based approach
in Algorithm 1, we can obtain a se-
quence of estimates {�̂j,1, . . . , �̂j,T }
for j 2 [|V|]. Roughly speaking, the
quality of the estimates heavily de-
pends on the choice of step size ⌘. If
we have full prior knowledge of the
non-stationarity degree, such as the
changing speed of the influence rela-
tions, we can pre-determine an opti-
mal step size ⌘? to achieve favorable
estimates. However, in practical sce-
narios, ⌘? is not available, and the random choice of the step size leads to unstable estimators.
Since bad estimators of the influence relations will affect the accuracy of the estimated distribution
P(Yt 2 S | ✓̂t,xt, Rh(⇠t)), which will further affect the effectiveness of the suggested decisions for
the AUF problem, thus the choice of the step size needs to be carefully considered.

Algorithm 2 Online-ensemble-based estimator for �̂j

Input: base estimators’ number Nj , weight parameter ↵

1: Set a set of learning rates Hj =
�
⌘i | i = 1, . . . , Nj

 

2: Initialize weight vector w⌘
t = 1

Nj
for each ⌘ 2 Hj

3: Activate estimators E⌘s for all ⌘ 2 Hj by OGD with ⌘
4: for t = 1 to T do
5: Receive �⌘

j,t from each E⌘

6: Output �̂j,t as
P

µ2Hj
wµ

t �µ
j,t

7: Update weights as

8: w⌘
t+1 =

w⌘
t exp(�↵ˆ̀

j,t(�
⌘
j,t))P

µ2Hj
wµ

t exp(�↵ˆ̀
j,t(�

µ
j,t))

9: Receive (PAj,t, Vj,t) and send to each E⌘

Output: estimated {�̂j,t}T
t=1

To avoid this risk, we turn to use
online-ensemble [60] based methods.
Online ensemble is a type of algo-
rithm that combines the idea of en-
semble and sequential updating, main-
taining multiple base learners and en-
sembling them together. Specifically,
as illustrated in Algorithm 2, we main-
tain Nj base estimators with a weight
vector w. After each round, all experts
update their estimates by the collected
data, and the weight vector w will be
updated as well by different losses re-
lated to different experts. By ensem-
bling all experts with the weight w,
we can obtain the final estimator.
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3.2.2 Efficient alteration suggestion

In t-th decision round, since we can obtain the estimation ✓̂t for true ✓t by Algorithm 2, then we
substitute #? with ✓̂t in Eq. (2). To suggest alterations efficiently and effectively, another crucial
aspect is finding ways to delineate the feasible domain of the probabilistic constraint in Eq. (2). We
first present a supporting result in Lemma 3.1 as follows, which is needed in our method to find the
alteration that can make Yt 2 S with an expected probability ⌧ .
Lemma 3.1 (Qin et al., 2023). Given xt, ✓t, it holds that:

Yt = Axt + Bz⇠
t + C"t,

where A,B,C are constant matrices of appropriate shapes based on ✓t, "t = ["1,t, . . . , "|V|,t] ⇠
N (0,⌃), and z⇠

t are intermediate variables with alteration ⇠.

Recall from Eq. (2) that we want to find alterations that satisfy P(Yt 2 P | ✓t,xt, Rh(⇠t)) � ⌧ .
Recognizing that solving optimization with probabilistic constraint is generally intractable and the
previous sampling method is time-consuming, we attempt to construct a surrogate deterministic
constraint that can be handled efficiently to replace the probabilistic constraint. Fortunately, this idea
is feasible because Lemma 3.1 shows that once the alteration is selected, the randomness of Yt only
arises from "t, since xt has been observed and A,B,C are constant matrices given ✓t. Thus, the
probability density function (PDF) of Yt is available and we can directly analyze the PDF to find
probability regions as in Prop. 3.2, which aids in constructing the surrogate deterministic constraint.
Proposition 3.2. The following probability region P satisfies P(Yt 2 P | ✓t,xt, Rh(⇠t)) = ⌧ :

P =
n
µyt +

�
��1(⌧)C⌃C>

� 1
2 u

�� kuk2  1
o

,

where µyt = Axt + Bz⇠
t , u is an arbitrary point in the unit sphere in R|Yt|, and ��1(·) denotes the

quantile function of the �2 distribution with degrees of freedom � = |Yt|.

The proof of Prop. 3.2 is provided in Appendix C.4. We raise the power of 1/2 to the matrix
because it is always positive semi-definite since ��1(·) � 0 and C⌃C> ⌫ 0 (⌃ is the covariance

(a) Samples from Fyt (b) Probability region P̂

Figure 3: An example of estimated P̂ with ⌧ = 0.9

matrix). In practical scenarios where ⌃ is
not available, the estimation ⌃̂ can be used
as replacements. Let Fyt denote the cu-
mulative distribution function (CDF) of Yt,
Fig. 3 illustrates a 2-dimensional example of
samples from Fyt , together with the estima-
tion of the associated region P̂ . It illustrates
that P̂ can properly draw the probabilistic
region of Fyt with expected probability ⌧ .

Moreover, recognizing that the desired region S defined in Eq. (3) is a convex polytope, i.e.,
S =

�
y 2 R|Y| | My  d

 
, we utilize the defined probability region P in Prop. 3.2, and use

a deterministic constraint to replace the original probabilistic constraint in Eq. (2). In this case, the
alteration-suggestion method can be formulated as follows:

min
z
⇠t
t

⇣
z⇠t

t � z0
t

⌘>

W
⇣
z⇠t

t � z0
t

⌘

s.t. MAxt + MBz⇠t
t + kMPk2,row  d,

(6)

where P =
�
��1(⌧)C⌃C>

� 1
2 , k · k2,row means an operator that takes 2-norm for each row of

the matrix thus outputs a row-dimensional vector. The objective to be minimized is the vector
representation of the cost function as explained in Eq. (2), where W = diag(w1, . . . , w|z⇠t

t |) is
positive definite since the cost is non-negative, i.e., wi > 0 for 8i.

Note that W is positive definite and the constraint is linearly associated with z⇠t
t , thus Eq. (6) is a

convex QCQP, which can be cast as a second-order cone program [35, 30]. Specifically, it can be
solved in polynomial time O(|Z⇠t

t |3 · L) by interior-point method [2], where L is the iteration rounds
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for solving the QCQP and is not associated with |Z⇠t
t |. Meanwhile, constructing matrices A,B,C

needs an element-wise traverse thus O(|V|2) time and constructing the probability region P as in
Prop. 3.2 runs under O(|V||Y|2) because of the matrix multiplication, so the whole running time of
alteration suggestion is O(|V|3) as |Z⇠t

t | = ⇥(|V|), |Y| = ⇥(|V|) and L is a constant.

3.2.3 AUF-MICNS

Algorithm 3 AUF-MICNS
Input: sequential coming data {xt, zt,yt}T

t=1

1: Initialize {�̂j,0}|V|

j=1 for Algorithm 2
2: for t = 1 to T do
3: Select alteration ⇠t by solving Eq. (6)
4: Receive yt and sent {xt, z

⇠t
t ,yt} to Algorithm 2

5: Update {�̂j,t}|V|

j=1 by Algorithm 2

Output: suggested alterations {⇠t}T
t=1

By combining the influence mainte-
nance step and the alteration sugges-
tion step, our proposed approach for
addressing the AUF problem with
minimal cost in non-stationary en-
vironments is formulated in Algo-
rithm 3, which attempts to avoid unde-
sired outcomes in each decision round.
Specifically, in t-th round, the algo-
rithm first receive Xt = xt, then if
the predicted outcome Ŷt 62 S, the
algorithm performs the suggested alteration ⇠t on Zt by solving Eq. (6). Subsequently, true Yt = yt

occurs, and the algorithm collects {xt, z
⇠t
t ,yt} to update influence relations by Algorithm 2. By

using this algorithm, one can tackle the formulated AUF problem with the suggested alterations.

3.3 Theoretical results

In this subsection, we present the theoretical analysis of our proposed method. All proofs are given in
Appendix C. First, we can determine the dynamic influence relations in non-stationary environments
with theoretical guarantees. Specifically, by using Algorithm 1 to estimate �j,t 2 ✓t, the error gap
between the estimate and the true parameter value (E"jk�̂j,t � �j,tk2) is proved to be bounded by
an exponentially decreasing term, as well as a fixed value related to the choice of step size and the
inherent problem difficulty. It reveals that the performance of Algorithm 1 depends on the choice of
step size ⌘ heavily, and is detailed in Thm. 3.3, where {`j,t(·)}T

t=1s are defined in Eq. (4).

Theorem 3.3. Let �j,t (j 2 [|V|]) denote the true parameter value of �j in time t, and choose
⌘j 2 (0, 1/2Lj ] as the step size used in Algorithm 1, then it can be bounded that:

E
����̂j,t � �j,t

���
2
. (1 � µj⌘j)

t
m

����̂j,0 � �j,0

���
2

+ �j with �j =

✓
m�j

µj⌘j

◆2

+
⌘j�2

µj
,

where µj and Lj are the minimal and maximal eigenvalues of {`j,t(·)}T
t=1’s Hessian matrices, �2

upper-bounds the variance of ĝj,t, �j � maxt k�j,t+1 � �j,tk upper-bounds the varying speed of
the environment, and m is the longest continuously altered rounds of Vj , for most of the Vjs, m = 1.

In Thm. 3.3, it holds that µj⌘j 2 (0, 1/2], which derives that (1 � µj⌘j) 2 [1/2, 1). This shows that
as time progresses, the OGD estimator �̂j,t will gradually converge towards the true value �j,t in the
expected sense. Specifically, (a) the convergence speed depends on the choice of the initial point �̂j,0,
and is limited by the inherent difficulty of the problem implied in µj/Lj ; and (b) the convergence
result will suffer a �j gap from the true value, depending on the varying speed of the environment
(�j) and the choice of step size ⌘j . If ⌘j is appropriately chosen, the gap �j will be small, e.g., if all
hyperparameters are available and �j 6= 0, choosing ⌘?

j = min{1/2Lj ,
3
p

2( m�j
p

µj� )
2
3 } can achieve

the smallest �j . Meanwhile, the hyperparameter m appears in the bound according to the properties
of alterations shown in Fig. 2. If Vj is continuously altered in m rounds, all incoming arrows of Vj

will be removed and the parameters associated with the arrows will not be updated in those rounds.
Because only a part of vertices in Zt might be altered in any rounds, m = 1 holds for most of the Vjs.

In practice, we do not know exact parameters such as �j , thus ⌘? is not pre-available. Recognizing
that the random choice of ⌘ leads to unstable estimations, we turn to use Algorithm 2 to estimate
�̂j,ts. Though we do not know ⌘? as well, by using the online-ensemble-based Algorithm 2, we can
get more stable estimations as guaranteed by the following regret bound in Prop. 3.4.
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Proposition 3.4. Assume {ˆ̀
j,t(·)}T

t=1s are bounded for 8�i 2 B and t 2 [T ]; then for any ⌘ 2 Hj ,
estimations �̂j,ts from Algorithm 2 satisfies that

TX

t=1

ˆ̀
t

⇣
�̂j,t

⌘
�

TX

t=1

ˆ̀
t

�
�⌘

j,t

�
 O

⇣p
T ln Nj

⌘
;

by choosing ↵ =
p

ln Nj/T in Algorithm 2, where Nj is the number of base-learners, �⌘
j,t is the

estimation from any expert ⌘ in expert set Hj in Algorithm 2.

Prop. 3.4 shows that the cumulative loss of the estimation obtained by Algorithm 2 is comparable
with the best expert in Hj , thus by Thm. 3.3, though ✓̂t may be far from ✓t at the first few rounds, it
will converge towards ✓t. Meanwhile, in some certain cases, the best step size ⌘?

j in Thm. 3.3 can be
included in Hj with Nj = O(log T ) [60]. Due to these, Algorithm 2 provides more stable estimates
for the influence relations, which can further aid in making decisions to address the formulated AUF
problem. As to the decision-making processes, AUF-MICNS can suggest alterations with theoretical
guarantees. Specifically, the suggested alterations are guaranteed by Thm. 3.5.
Theorem 3.5. By using the suggested alterations ⇠t from Eq. (6), it can be guaranteed that:

P
⇣
Yt 2 S | ✓̂t,xt, Rh(⇠t)

⌘
� ⌧.

Thm. 3.5 illustrates that the suggested alterations ⇠t by the AUF-MICNS algorithm can effectively
avoid the undesired outcomes as the formulated AUF problem expects, under the distribution con-
ditioned on estimation ✓̂t rather than true ✓t. Note that it is guaranteed in Thm. 3.3 and Prop. 3.4
that ✓̂t is not far from ✓t. Meanwhile, we provide the experimental analysis in Sec. 5 to show that
P (Yt 2 S | ✓t,xt, Rh(⇠t)) � ⌧ holds practically. Besides, this method achieves a super-exponential
improvement over the time complexity of the previous method [40] as discussed in Sec. 3.2.2.

4 Related work

RL Methods. RL approaches have demonstrated success in numerous domains [51], particularly
in game-playing [33] and autonomous control [21]. However, the Markov Decision Process (MDP)
formalism in RL abstracts decision-making processes into states, actions, and rewards, potentially
overlooking useful fine-grained structural information. While hybrid online and offline RL methods
have been introduced [48, 37], they overlook fine-grained structural information as well and require
large offline datasets in practice. Moreover, it is worth noting that a fundamental limitation of
applying RL to the AUF problem is that RL methods require a substantial number of interactions,
which may be too luxurious or simply not tolerated in many real-world applications.

Causality. Identifying causal systems from observational and interventional data has been exten-
sively studied [44, 50, 7, 58, 9], but these methods typically do not actively select interventions.
Furthermore, significant research has focused on identifying causal structures or effects in interactive
environments [18, 22, 53, 55, 39, 54, 57, 41], which predominantly aim to identify causal structures
or effects. To incorporate additional utilities for decision-making, causal bandits and causal RL
methods have been proposed to determine where to intervene [5, 24, 46, 26, 59, 12, 31]. The afore-
mentioned methods generally rely on causal modeling, which may be luxurious or restrictive in some
real-world decision-making cases [63, 40]. As identifying causations rely on some strong restrictions
or assumptions, it is possible that we cannot find a feasible alteration. Conversely, correlation, which
underpins most ML models, falls short of providing a solid foundation for making decisions. As a
middle ground between causation and correlation, the influence relations form a more practical basis
for decision-making [63]. Building on this concept, we employ the SRM developed by Qin et al. [40],
which can adapt to dynamically evolving decision systems. In particular, our approach incorporates
the context xt into decision-making, and can sugggest decision alterations effectively even when the
parameters of the system are non-stationary and the actions come with varying associated costs.

Other related topics. Our approach builds upon several classic ML techniques. The action cost
measure employed in our method generalizes principles from cost-sensitive learning [13, 61]. Ad-
ditionally, we adapt the online ensemble methodology [60] to update the SRM parameters. Online
emsemble framework has been used in several areas, such as online convex optimization [56], online
label shift [38], and reinforcement learning [27]. Further exploration and advancements in these
techniques hold the potential to enhance our approach as well.
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Figure 4: Results of Market-managing data (row 1) and Bermuda data (row 2) respectively. Bars and
bands depict the standard deviations.

5 Experiments

We evaluate the proposed AUF-MICNS algorithm on two datasets and focus on four aspects including
(a) success frequency for Yt 2 S; (b) average alteration cost; (c) average executing time; and (d)
mean square error of the estimated parameters ✓̂t. For each dataset, we repeat experiments with
100 rounds 20 times. The observational dataset size is set to 10. We compare our proposed method
with previous rehearsal learning approach (QWZ23 [40]), and we also compare with several classic
RL methods including DDPG [29], PPO [45], and SAC [15]. Experimental details and additional
experiments are listed in Appendix D.

Market-Managing Data. We abstract a dynamic SRM from a market-managing scenario, where a
manager of the market needs to make decisions to promote the total profit (TPF) and the number of
customers (NCT). We consider variables that may affect TPF and NCT, the pricing for the product (P),
the pricing of the competitor market (E), the cost of raw materials (C), etc. We assume the manager
can alter two variables, P and C. There exist mutually influenced variables in the scenario: If P is
set to be small, then E will also be small to stay competitive on price; and vice versa. The sizes of
Xt, Zt, and Yt are 2, 4, and 2 respectively. The parameters of the dynamic structural equations are
manually set according to the domain knowledge. For example, parameters associated with variable
C vary over time with a periodic term, i.e., �C,t = �̄C(1 + a sin(wt)). The feasible alteration values
are [�3, 3] for centralized P and C, associated with cost coefficients 1.0 and 2.0 respectively since
altering P is easier than C. We want to maintain high TPF and high NCT at the same time, so the
desired region S is set to be S = {TPF � s1, NCT � s2, TPF + NCT � s3}, and more than 80% of
the original data falls outside this range, as shown in Fig. 7(a).

Bermuda Data. This is an ecology dataset that records environment variables in Bermuda [10],
and the generation order of variables is available [3]. The sizes of Xt, Zt, and Yt are 3, 7, and
1. The structural equations are obtained by fitting linear models on normalized data [40], and we
manually add the varying trend, e.g., considering the annual increase in CO2 emissions, we posit that
there is an increasing trend in the influence relation between temperature and CO2 concentration,
i.e., �CO2,t = �̄CO2,t · (1 � a e�wt). We assume that 5 variables in Zt are actionable [1] and the
feasible alteration values are [�1, 1] for each of them with different cost coefficients. The concerned
outcome Yt represents the net coral ecosystem calcification (NEC) in Bermuda. To make the coral
reef ecosystem healthy, a relatively large NEC is preferred, so the desired region S is set to be
S = {0.5  NEC  2}, and more than 75% of the original data falls outside it, as shown in Fig. 7(b).

Fig. 4 shows the full experimental results. The desired probability is set to ⌧ = 0.7. Two rows of
figures denote the results of the Market data and the Bermuda data respectively. Specifically, the first
column of Fig. 4 shows that (a) the success frequency of making the concerned outcome Yt falls into
the desired region S; and (b) relative alteration cost among methods, i.e., the normalized cost among
different methods. The proposed AUF-MICNS algorithm outperforms other competitors in both
aspects. If we increase the interaction rounds T , RL methods can achieve satisfying performance,
e.g., DDPG achieves 0.6955 average success frequency when T = 4000 on the Market data.
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The second column of Fig. 4 shows the mean-square error of estimates for �NCT in Market data
and estimates for �CO2 in Bermuda data respectively. The exponential convergence speed and the
convergence error (�j) in Thm. 3.3 are illustrated in these two figures. Specifically, for Market-
managing data, the online-ensemble-based sequential method can achieve a similar convergence
speed like OGD with ⌘ = 0.025 does when T  20, and it results in a smaller �j as illustrated by the
enlarged part (T � 40). For Bermuda data, OGD with ⌘ = 2.5 outperforms other step sizes, since
⌘ = 1.0 converge slowly, and ⌘ = 5.0 suffers a notably bigger gap �j . By using the online-ensemble-
based sequential method, we can obtain a comparable performance with the best step size ⌘ = 2.5.
These results illustrate that our proposed method mitigates the risk substantially, as the inappropriate
choice of ⌘ will affect the practicality of the estimation and ⌘? is not available practically. Meanwhile,
the third column of Fig. 4 shows true parameter values and the estimates by the online-ensemble-based
method. The superscript (1)/(2) means the first/second dimension of the associated parameter vector.
It shows that the error gap between �̂j,t and �j,t converges to a small value rapidly, which guarantees
accurate estimates of the quantitative influence relations in possibly non-stationary environments.

Table 1: Average running time (s).
Dataset DDPG PPO SAC QWZ23 MICNS

Market 7.89 0.05 0.03 63.14 2.81
Bermuda 9.63 0.06 0.04 386.44 1.71

At last, the average whole-executing time
of the 20-times experiments is recorded in
Table 1. We mainly focus on the compar-
ison between AUF-MICNS and QWZ23
since both of them maintain influence re-
lations other than purely suggesting deci-
sions. It shows that our proposed method is more time-efficient than QWZ23.

6 Conclusion

Practically, different decision actions might correspond to different costs, and the influence relations
might vary over time in non-stationary environments. In this paper, we try to tackle the AUF problem
considering the aforementioned aspects. Specifically, we propose the AUF-MICNS algorithm that can
capture the dynamic influence relations in non-stationary environments and suggest actions based on
the influence relations. This method can suggest decision actions under polynomial time. Meanwhile,
theoretical results show that the suggested actions can effectively avoid the undesired outcomes
with probability larger than ⌧ , and the suggested actions get more accurate as time progresses.
Experimental results validate the effectiveness and efficiency of our proposed method.

Our approach primarily focuses on scenarios where the influence relations among variables are linear
and is currently not applicable to non-linear cases. Additionally, selecting the hyperparameter ⌧ in
existing frameworks remains a significant challenge, as an inappropriate ⌧ may lead to the failure
of solving Eq. (6). To address these limitations, we plan to develop methods that handle non-linear
cases and reduce sensitivity to the hyperparameter ⌧ in future work.
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A Discussion

A.1 Discussion on the AUF-MICNS algorithm

Two crucial points should be discussed in this approach, i.e., (a) dynamic influence modeling; and (b) the
defined cost function for alterations. For the former, we consider a linear case with additive noise, and for more
complicated scenarios than linear ones, one can modify the structural equations in Eq. (3) by using methods
such as the kernel method [20]. Note that Theorem 3.3 always holds as long as the new loss functions `j,t(·)s
are still µ-strongly convex and L-smooth in those cases, similar to Eq. (4). For the latter, we use a quadratic
cost function in this paper. Since the alteration cost is user-specified, in certain problems, if the quadratic
cost is not appropriate, one can replace it with any other convex functions under the increasing marginal cost
(IMC) property [32]. In those cases, the alteration selection method is a convex optimization as well, similar to
Eq. (6). It is worth noting that our work mainly focuses on cases where samples are rare, thus only user-specified
hyperparameters {wj , z

0
j }j2[|V|] can be relied upon. If we can obtain a sufficient number of halteration, costi

pairs, hyperparameters {wj , z
0
j }j2[|V|] can be accurately estimated using quadratic fitting techniques [16].

Additionally, for the probabilistic constraint in Eq. (2), if the noise is not assumed to be normal anymore,
one can analyze the CDF of the noise distribution to find a new probability region with a similar approach.
This can further assist in constructing a substitute constraint. Moreover, there are instances where the feasible
domain of the constraint in Eq. (6) may not exist due to its stringent nature, e.g., one aims to completely avoid
undesired futures with 100% probability, or the desired region S is not practically achievable. In such cases, the
decision-maker should consider verifying specified region S or reducing hyperparameter ⌧ to some extent.

Last but not least, though we mainly focus on the scenario where the graph structure is fixed and known, i.e.,
Gt = G, however, our approach can be straightforwardly adapted to the case where Gt = G but unknown as
assumed in Qin et al. [40] as detailed in Appendix A.3. We also provide a simple comparable experiment on
Bermuda data in the setting of Qin et al. [40], as illustrated in Appendix D.1.

A.2 Comparation with causality

The SRM and Rh(·) operations are similar to their counterparts in causal inference but have different applicating
scenarios. The differences between rehearsal learning and causal learning are listed as follows:

1 Most of the causal learning problems focus on structure or effect identification, while the decision-
making process is not directly involved in the modeling. In contrast, rehearsal learning mainly focuses
on a class of decision-making problems that specializes in the goal of avoiding undesired future using
SRM-based modeling.

2 Causal learning utilizes the SCM. In contrast, rehearsal learning uses the SRM (a new probabilistic
graphical model [40]) to model the influence relations between the variables toward addressing the
AUF problem. The modeling granularity of SRM is more flexible, as the influence relationship can be
evolved, and mutually influenced. Specifically,

• Possible dynamic influence relationships. For instance, the influence relationship between pricing
and sales of coats can vary cyclically and trend-wise over time. Thus, a given price may result
in fewer sales during summer compared to winter. In addition, the coat’s style may gradually
become outdated, leading to reduced sales at the same price a year later compared to the present.

• Possible mutually influenced relationships. For instance, the ideal gas law states that the pressure
p, volume V , amount of substance n, and absolute temperature T obey the equation pV = nRT

(R is the ideal gas constant). When a fixed volume V of an ideal gas is considered, with n and R

held constant, the pressure p and volume V can be represented as a pair of mutually influenced
variables within an SRM modeling.

A.3 Possible types of graph structures

There are four possible cases of the graph structure, specifically:

1 Gt fixed, known. It’s the setting in our paper.

2 Gt fixed, unknown. It’s the setting in Qin et al. [40]. Our method can be straightforwardly adapted
to this case. Technically, since the distribution P(G) is discrete, we can initialize and update the
probability mass function (PMF) P(G) in the same manner as Qin et al. [40]. Thus, when we want
to select decision alterations, the maintained PMF P(G) can be utilized to marginalize G from
P(Y 2 S | G, · · · ). thereby the expectation of matrices A,B,C in Eq. (6) can be obtained and used.

3 Gt not fixed, known. Our method can be directly used because once the graph structure is known, G is
not a stochastic component. Thus, matrices A,B,C in Eq. (6) can be obtained in the same manner. It
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is worth noting that the changing graph structure will lead to the birth of new parameters at each round.
Therefore, though the method can be directly used in such case, establishing theoretical guarantees is
difficult.

4 Gt not fixed, unknown. In this case, neither ✓ nor PG can be accurately estimated as there is only one
sample per round. Thus, dealing with such a case may need to additional assumptions. For example,
consider there are a sufficient number of samples per round. In this case, our method can model ✓ and
PG accurately, thereby suggesting good decisions.

B Definitions

B.1 Details about Structural Rehearsal Models

In this section, we present full definitions and discussions for the Structural Rehearsal Model (SRM), which is a
probabilistic graphical model proposed by [40] to characterize the influence relations among variables.

• Definition of the Rehearsal Graph

Definition B.1 (Mixed graph, [40]). Let G = (V,E) be a graph, where V denotes the vertices and E the edges.
G is a mixed graph if for any distinct vertices u, v 2 V, there is at most one edge connecting them, and the edge
is either directional ( u! v or u v ) or bi-directional (u$ v).
Definition B.2 (Bi-directional clique, [40]). A bi-directional clique C = (Vc

,E
c) of a mixed graph G =

(V,E) is a complete subgraph induced by V
c ✓ V such that any edge e 2 E

c is bi-directional. C is maximal
if adding any other vertex does not induce a bi-directional clique.

Definition B.3 (Rehearsal graph, [40]). Let G = (V,E) be a mixed graph. Let {Ci}li=1 denote all maximal
bi-directional cliques of G, where Ci = (Vc

i ,E
c
i ). G is a rehearsal graph if and only if:

1. V
c
i \V

c
j = ; for any i 6= j.

2. 8i 2 [l], if there is any edge pointing from some u 2 V\Vc
i to some v 2 V

c
i , then 8v 2 V

c
i , u! v.

3. There exists a topological ordering for {Ci}li=1 following the directions of directional edges between
Cis.

It can be found that the topological ordering for bi-directional cliques {Ci}li=1 in the rehearsal graph reflects the
time order of the generation process of variables.

• Discussion of the Structural Equations

In this paper, we present the definition of dynamic structural equations in Eq. (1), which provides a quantitative
computational formulation for the influence relations in non-stationary environments.

In fact, the structural equations are defined among the bi-directional cliques {Ci}li=1 as detailed in Qin et al.
[40]. Specifically, the dynamic structural equations can be denoted as ✓t, which consists of the set of parameter
matrices {�i,t}Tt=1 and the covariance matrix ⌃i of each clique Ci in the rehearsal graph G. It is noteworthy
that the quantitative influence relationship of a directional edge A ! B for A 2 Ca, B 2 Cb at time t is
modeled in the parameter matrix �b,t since the topological ordering for bi-directional cliques reflects the time
order of the generation process; while the quantitative influence relationship of a bi-directional edge D1 $ D2

for D1, D2 2 Cd at time t is modeled in the covariance matrix ⌃d since they are in the same bi-directional
clique which is viewed as happening in the same time.

We present a simplified version of the definition of dynamic structural equations in Eq. (1) for a convenient
presentation, which defines the dynamic structural equations on the variable level rather than the clique level.
Note that for each variable Vj 2 Ci, the associated parameter vectors {�j,t}Tt=1 can be directly found in
the corresponding parameter matrices {�i,t}Tt=1; while the variance �2

j of each variable Vj 2 Ci can be
derived from the corresponding covariance matrix ⌃i by marginalizing the desired dimension out, since the
marginalization operator for multi-normal distribution is available.

B.2 Increasing Marginal Cost with an Example

In this section, we introduce the increasing marginal cost (IMC) property. Increasing marginal cost (IMC), or
rising marginal cost, is an important property in microeconomics [23, 32]. We first present a famous example in
the field of microeconomics, called Thirsty Thelma’s Lemonade Stand.
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Lemonade Stand is a business simulation game devised in 1973 by Bob Jamison under the Minnesota Educational
Computing Consortium. It offers players the experience of managing a lemonade stand across multiple rounds.
At the commencement of each round, players make decisions regarding their stock, pricing, and advertising
based on their current financial standing. The outcomes in each round are determined by the player’s choices;
and are further influenced by random events like thunderstorms and street closures. After each round, a summary
of the current status of the player is provided, and the game concludes after 12 rounds. In this game, an essential
quantity is the total cost of lemonade per glass, which will increase in a quadratic way, as it has a linearly
increasing derivative (named the marginal cost) as shown in Fig. 5.

Figure 5: Thirsty Thelma’s Total-Cost and Marginal-Cost Curves

This phenomenon is commonly observed in real-world scenarios, and the upward slope of the total cost curve
reflects the property of the law of diminishing marginal product [32]. When Thirsty Thelma produces a small
quantity of lemonade, her workforce is limited, and much of her equipment remains idle. The ease of utilizing
these unused resources results in a substantial marginal product for an additional worker and a corresponding
small marginal cost for producing an extra glass of lemonade. In contrast, as she increases lemonade production,
her shop becomes crowded with workers, and most of her equipment is fully utilized. While additional workers
can contribute to increased production, they must operate in crowded conditions and may face delays in
equipment usage. Consequently, when the quantity of lemonade produced is already high, the marginal product
of an extra worker diminishes, leading to a significant increase in the marginal cost of producing an extra glass
of lemonade. It is a famous and widely used example in the field of microeconomics, and it has many similarities
with the AUF scenario. In our proposed cost-minimal AUF problem, when the decision-maker decides to alter
some variables in Zt, the cost associated with different alterations vary. For the same variable, the cost of altering
it from a datum point should have a similar shape to the total cost curve in Fig. 5, varying with an increasing
derivative. That is how we define the cost function in this paper. The cost function could be replaced by any
other convex function in different situations.

C Proofs

In this section, we provide proof for claims in the main text.

C.1 Proof for Proposition 3.2

Lemma C.1. If ⌃ is a symmetric positive definite matrix, the following two sets are equivalent:
n
x : x>

⌃
�1

x  1
o
,
n
x : x = ⌃

1
2u | kuk2  1

o
,

where x and u are vectors with a center at the origin of the coordinate system O.

Proof. Assume P1 =
�
x : x>

⌃
�1

x  1
 

and P2 =
n
x : x = ⌃

1
2u | kuk2  1

o
. Then what we need to

prove is equivalent to:

(1) Points contained in P1 have to be contained in P2.

(2) Points contained in P2 have to be contained in P1.

For (1), it holds that x>
⌃

�1
x  1, which is equivalent to (⌃�

1
2 x)>(⌃�

1
2 x)  1. Thus, let u = ⌃

�
1
2 x, it

can be derived that x = ⌃
1
2u where kuk2  1, and (1) is proved.

For (2), we replace x
>
⌃

�1
x with x = ⌃

1
2u, then it can be derived that:

x
>
⌃

�1
x = u

>
⌃

1
2⌃

�1
⌃

1
2u = u

>
u  1,
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which shows that points contained in P2 are also contained in P1, so (2) is proved. In conclusion, the lemma is
proved.

Proposition 3.2. The following set P is a probability region that satisfies P(Yt 2 P | ✓t,xt, Rh(⇠t)) = ⌧ :

P =

⇢
µyt +

⇣
�
�1(⌧)C⌃C

>

⌘ 1
2
u

���� kuk2  1

�
,

where µyt = Axt +Bz
⇠
t , u is an arbitrary point in the unit sphere in R|Yt|, and ��1(·) denotes the quantile

function of the �2 distribution with degrees of freedom � = |Yt|.

Proof. Recall from Lemma 3.1 that:

"t ⇠ N (0,⌃) , Yt = Axt +Bz
⇠
t +C"t.

From the property of multi-normal distributions, it holds that:

Yt ⇠ N
⇣
Axt +Bz

⇠
t ,C⌃C

>

⌘
.

Let µyt = Axt +Bz
⇠
t , then we normalize the distribution above, it can be derived that:

⇣
C⌃C

>

⌘
�

1
2
(Yt � µyt) ⇠ N (0, I) .

So it can be derived that:
(Yt � µyt)

>

⇣
C⌃C

>

⌘
�1

(Yt � µyt) ⇠ �
2
�,

where the �2 distribution has the degrees of freedom � = |Yt|.
Let ��1(·) denote the quantile function of the distribution �2

� above, then P can be given as:

P =

⇢
� : (� � µyt)

>

⇣
C⌃C

>

⌘
�1

(� � µyt)  �
�1(⌧)

�
,

which is equivalent to:

P =

⇢
� : (� � µyt)

>

⇣
�
�1(⌧)C⌃C

>

⌘
�1

(� � µyt)  1

�
,

By lemma C.1, it is equivalent to:

P =

⇢
� : � = µyt +

⇣
�
�1(⌧)C⌃C

>

⌘ 1
2
u

���� kuk2  1

�
,

where µyt = Axt +Bz
⇠
t , and u is an arbitrary point in the unit sphere in R|Yt|.

C.2 Proof for Theorem 3.3

Lemma C.2 (Theorem 3 of Cutler et al. [11]). Consider a sequence of stochastic optimization problems
min� ft(�) indexed by time t 2 N. Let ĝt denote the estimation for the gradient of ft, and �?

t denote the
minimizer of the L-smooth and µ-strongly convex function ft. Suppose it holds that maxt ĝt  �2

<1 and
maxt Ek�?

t+1 � �?
t k  � <1. Then the produced {�t}Tt=0 with iterates �t+1 = ⇧B(�t � ⌘ĝt) (B = R|�|)

and constant learning rate ⌘  1/2L satisfies:

E k�t � �?
t k2 . (1� µ⌘)t k�0 � �?

0k2| {z }
optimization

+
⌘�

2

µ|{z}
noise

+

✓
�
µ⌘

◆2

| {z }
drift

.

Lemma C.3 (Convergence of LSE). Let �j,t denote the true parameter value of �j in time t, and �̂lse
j,t denote

the estimation according to Eq. (4). For 8 > 0, 9n > 0 that holds:

E
����̂lse

j,t � �j,t
���
2

2
  

Proof. Let Pj,t =
⇥
PA1

j,t . . . PAn
j,t

⇤
> and vj,t =

⇥
V

1
j,t, . . . , V

n
j,t

⇤
>. Then the optimization in Eq. (4) is

equivalent to:
argmin

�j,t

kvj,t �Pj,t�j,tk22 .
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Since PAj represents the true parents of the generation process for variable Vj , Pj,t is guaranteed to have full
column rank. For 8n � |PAj |, the solution to the optimization above is:

�̂
lse
j,t =

⇣
P

>

j,tPj,t

⌘
�1

P
>

j,tvj,t.

Because vj,t = Pj,t�j,t + "j where "j ⇠ N
�
0,�

2
j In

�
according to Eq. (3), we have:

�̂
lse
j,t = �j,t +

⇣
P

>

j,tPj,t

⌘
�1

P
>

j,t"j .

Due to the linear combination property of the Gaussian distribution, it holds that:

�̂
lse
j,t � �j,t ⇠ N

✓
0,�

2
j

⇣
P

>

j,tPj,t

⌘
�1
◆

Thus, it can be derived that:

E
����̂lse

j,t � �j,t
���
2

2
= tr

✓
�
2
j

⇣
P

>

j,tPj,t

⌘
�1
◆

= �
2
j

|PAj |X

i=1

�i

✓
�is are eigenvalues of

⇣
P

>

j,tPj,t

⌘
�1
◆

 �max · �2
j |PAj | =

����
⇣
P

>

j,tPj,t

⌘
�1
����
2

· �2
j |PAj |

Because
���
�
P

>

j,tPj,t

��1
���
2
·
��P>

j,tPj,t

��
2

���
�
P

>

j,tPj,t

��1
P

>

j,tPj,t

���
2
= 1, we have:

E
����̂lse

j,t � �j,t
���
2

2


�
2
j |PAj |��P>

j,tPj,t

��
2


�
2
j |PAj |2
P|PAj |

i=1 �i

⇣
�is are eigenvalues of

���P>

j,tPj,t

���
2

⌘

=
�
2
j |PAj |2

tr
�
P

>

j,tPj,t

� =
�
2
j |PAj |2

P|PAj |

i=1

Pn
k=1 p

2
ik


�
2
j |PAj |2

nmink
P|PAj |

i=1 p2ik

So for 8 > 0, 9n = �
2
j |PAj |2

⇣
 mink

P|PAj |

i=1 p
2
ik

⌘
�1

that holds E
����̂lse

j,t � �j,t
���
2

2
  .

Lemma C.4 (Positive-definite Property). Consider a set of m-dimensional vectors {vi}ni=1, n � m. If it
contains at least one set of basis vectors in space Rm, then the following matrix is positive-definite:

M =
nX

i=1

viv
>

i

Proof. Let {uk}mk=1 ✓ {vi}ni=1 denote a set of basis vectors, and let x 2 Rm denote an arbitrary m-
dimensional points in the same space as vis. Then it can be derived that:

x
>
Mx =

nX

i=1

⇣
x
>
vi

⌘2

�
mX

k=1

⇣
x
>
uk

⌘2
> 0,

because there at least exists one basis vector uh that holds x>
uh 6= 0. So M is positive-definite (thus M is

full-rank).

Theorem 3.3. Denote the true parameter of �j in time t as �j,t (j 2 [|V|]) and choose ⌘j 2 (0, 1/2Lj ] as the
step size used in Algorithm 1, it can be bounded in G that:

E
����̂j,t � �j,t

���
2
. (1� µj⌘j)

t
m

����̂j,0 � �j,0
���
2
+ �j with �j =

✓
m�j

µj⌘j

◆2

+
⌘j�

2

µj
,

where µj and Lj are the minimal and maximal eigenvalues of {`j,t(·)}Tt=1’s Hessian matrices respectively, �2

upper-bounds the variance of ĝj,t used in Algorithm 1, �j � maxt k�j,t+1 � �j,tk upper-bounds the varying
speed of the environment, and m is the longest continuously altered rounds of Vj , for most of the Vjs, m = 1.
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Proof. For Eq. (4), the Hessain matrix of `j,t(·) can be derived that:

Hj,t = r2`j,t =
1
n

nX

k=1

PAk
j,t PA

k
j,t

>

Since n� |PAj | and PAk
j,ts are n discrete samples from a continuous distribution, so

�
PAk

j,t

 n
k=1

contains a

set of basis vectors in space R|PAj | with probability 1. By Lemma C.4, {Hj,t}Tt=1 are positive-definite.

Let µj denote mint � (Hj,t) and Lj denote maxt � (Hj,t) respectively, then {`j,t(·)}Tt=1 are all Lj-smooth

and µj-strongly convex. By Lemma C.2 and consider alterations on Vj , estimations
n
�̂j,t

oT

t=1
obtained from

Algorithm 1 hold that:

E
����̂j,t � �?

j,t

���
2
. (1� µj⌘j)

t/m
����̂j,0 � �?

j,0

���
2
+

 
m�̂j

µj⌘j

!2

+
⌘j�

2

µj
;

where �2 upper-bounds the variance of ĝj,t used in Algorithm 1, �̂j � maxt k�?
j,t+1 � �?

j,tk upper-bounds
the varying speed of the minimizer of `j,t, and m is the longest continuously altered rounds of Vj , for most of
the Vjs, m = 1. This holds because m�̂j � mmaxt k�?

j,t+1 � �?
j,tk � maxt

Pm
k=1 k�

?
j,t+k � �?

j,t+k�1k �
maxt k�?

j,t+m��?
j,tk. Note that if Vj is continuously altered m rounds, it can be viewed as its corresponding

parameters are updated per m rounds.

Besides, since �̂lse
j,t , �

?
j,t+1 in such case, let �j � maxt k�?

j,t+1 � �
?
j,tk, by Lemma C.3, it holds that

�̂j . �j ,
����̂j,0 � �?

j,0

���
2
.
����̂j,0 � �j,0

���
2
, E
���?

j,t � �j,t
��2   ; and we have:

E
����̂j,t � �j,t

���
2
. E

����̂j,t � �?
j,t

���
2
+ E

���?
j,t � �j,t

��2

. (1� µj⌘j)
t/m

����̂j,0 � �j,0
���
2
+

✓
m�j

µj⌘j

◆2

+
⌘j�

2

µj

C.3 Proof of Proposition 3.4

Lemma C.5 (Hoeffding, 1963). Let X be a random variable with a  X  b. Then, for any s 2 R,

ln E
h
e
sX
i
 sE[X] +

s
2(b� a)2

8
.

Proposition 3.4. Assume {`j,t(·)}Tt=1s are bounded for 8�i 2 B and t 2 [T ]; then for any ⌘ 2 Hj , estimations
�̂j,ts from Algorithm 2 satisfies that

TX

t=1

ˆ̀
t

⇣
�̂j,t

⌘
�

TX

t=1

ˆ̀
t

�
�
⌘
j,t

�
 O

⇣p
T lnNj

⌘
;

by choosing ↵ =
p

lnNj/T in Algorithm 2, where Nj is the number of base-learners, �⌘
j,t is the estimation

from any expert ⌘ in expert set Hj in Algorithm 2.

Proof. Following previous studies [8] (Theorem 2.2 and Exercise 2.5), we define:

L
⌘
t =

tX

i=1

ˆ̀
j,i

�
�
⌘
j,i

�
, and Wt =

X

⌘2Hj

w
⌘
1e

�↵L⌘
t .

From the updating rule in Algorithm 2, it is easy to verify that:

w
⌘
t =

w
⌘
1e

�↵L⌘
t�1

P
µ2H

w
µ
1 e

�↵Lµ
t�1

, t � 2. (7)

First, it can be derived that:

lnWT = ln

0

@
X

⌘2Hj

w
⌘
1e

�↵L⌘
T

1

A � ln

✓
max
⌘2Hj

w
⌘
1e

�↵L⌘
T

◆
= �↵ min

⌘2Hj

✓
L

⌘
T +

1
↵
ln

1
w

⌘
1

◆
. (8)
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Next, the related quantity ln (Wt/Wt�1) can be bounded as follows when t � 2:

ln

✓
Wt

Wt�1

◆
= ln

0

@
P

⌘2H
w

⌘
1e

�↵L⌘
t

P
µ2Hj

w
µ
1 e

�↵Lµ
t�1

1

A

= ln

0

@
X

⌘2Hj

0

@ w
⌘
1e

�↵L⌘
t�1

P
µ2Hj

w
µ
1 e

�↵Lµ
t�1

e
�↵ˆ̀

j,t(�⌘
j,t)

1

A

1

A

(7)
= ln

0

@
X

⌘2Hj

w
⌘
t e

�↵ˆ̀
j,t(�⌘

j,t)

1

A .

When t = 1, it holds that lnW1 = ln
⇣P

⌘2H
w

⌘
1e

�↵ˆ̀
j,1(�⌘

j,1)
⌘

, thus it can be derived that:

lnWT = lnW1 +
TX

t=2

ln

✓
Wt

Wt�1

◆
=

TX

t=1

ln

0

@
X

⌘2Hj

w
⌘
t e

�↵ˆ̀
j,t(�⌘

j,t)

1

A

 �↵
X

⌘2Hj

w
⌘
t
ˆ̀
j,t

�
�
⌘
j,t

�
+
↵
2
c
2

8
(c is a constant as ˆ̀

j,t(·) is bounded)

 �↵ˆ̀j,t

0

@
X

⌘2Hj

w
⌘
t �

⌘
j,t

1

A+
↵
2
c
2

8
= �↵ˆ̀j,t

⇣
�̂j,t

⌘
+
↵
2
c
2

8
,

(9)

where the inequality in the second line is due to Lemma C.5, and the inequality in the second line is due to
Jensen’s inequality. By combining Eq. (8) and Eq. (9), it can be derived that:

TX

t=1

ˆ̀
j,t

⇣
�̂j,t

⌘
� min

⌘2Hj

 
TX

t=1

ˆ̀
j,t

�
�
⌘
j,t

�
+

1
↵
ln

1
w

⌘
1

!
 ↵Tc

2

8

Since we choose w
⌘
1 = 1

Nj
in Algorithm 2, thus for ⌘ 2 Hj , by choosing ↵ =

p
lnNj/T , it holds that:

TX

t=1

ˆ̀
j,t

⇣
�̂j,t

⌘
�

TX

t=1

ˆ̀
j,t

�
�
⌘
j,t

�
. ↵T +

1
↵
lnNj = O

⇣p
T lnNj

⌘

C.4 Proof for Theorem 3.5

Theorem 3.5. By using the suggested alterations from Eq. (6), it can be guaranteed that:

P
⇣
Yt 2 S | ✓̂t,xt, Rh(⇠t)

⌘
� ⌧.

Proof. Recall that Eq. (6) suggests alterations as follows:

min
z
⇠t
t

⇣
z
⇠t
t � z

0
t

⌘
>

W

⇣
z
⇠t
t � z

0
t

⌘

s.t. MAxt +MBz
⇠t
t + kMPk2,row  d,

where P =
�
�
�1(⌧)C⌃C

>
� 1

2 , and k · k2,row means an operator that takes 2-norm for each row of the matrix
thus outputs a row-dimensional vector. We omit the subscript 2 of the norm in the following discussions.
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Let �i denote the i-th row-vector of matrix MP and r denote the row-dimension of MP, then it can be derived
that:

d �MAxt +MBz
⇠t
t + kMPk2,row

= MAxt +MBz
⇠t
t +

�
1 · k�1k , · · · , 1 · k�rk

�
>

�MAxt +MBz
⇠t
t +

⇣
sup

kuk1
k�1k kuk cosh�1,ui, · · · , sup

kuk1
k�rk kuk cosh�r,ui

⌘>

= MAxt +MBz
⇠t
t +

⇣
sup

kuk1
h�1,ui, · · · , sup

kuk1
h�r,ui

⌘>

= sup
kuk1

MAxt +MBz
⇠t
t +MPu

= sup
kuk1

M

✓
µyt +
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in this case). Thus, Prop. 3.2 has been proved because (a) it has been derived that for 8yt 2 P it holds that
d �Myt; and (b) the desired region S defined in Eq. (3) is S =

n
y 2 R|Y| | My  d

o
.

D Experimental details

The experiments are done by using macOS Monterey, Apple M1 Pro. All algorithms are running under the same
environment.

D.1 Comparison experiment in the setting of Qin et al. [40]

We provide a comparison experiment in the setting of Qin et al. [40], where G ⇠ P(G) and P(G) are unknown.
Results on Bermuda data provided in the following table show that our approach exhibits a comparable
performance with the result under the scenario where Gt = G.

Success Frequency Cost Time (s)
Gt = G 0.711 ± 0.018 1.46 ± 0.05 1.71 ± 0.34
Gt ⇠ PG 0.698 ± 0.021 1.43 ± 0.07 1.99 ± 0.46

D.2 Market-Manage Data

In this section, we provide details about the Market-Manage data. The variables included in the generation
process are:

• Featureour: The feature used to predict the raw cost of our market;

• Featurecpt: The feature used to predict the raw cost of the competitor market;

• Cour: The raw cost of our market;

• Ccpt: The raw cost of the competitor market;

• Pour: The product price of our market;

• Pcpt: The product price of the competitor market;

• NCT: Customer numbers of our market;

• TPF: Total profit of our market.

The rehearsal graph for the variables is illustrated in Fig. 6. The presumed actionable variables that can be altered
by the manager are Cour and Pour. The hyperparameters associated with the cost function are set as Z0

Cour = 0.75,
wCour = 2.0; and Z0

Pour = 0.0, wPour = 1.0. The desired region S is shown in Fig. 7(a). We shade dynamic edges
with red color.
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Figure 6: The rehearsal graph for market-manage data.

(a) Y in nature and region S for Market data (b) Y in nature and region S for Bermuda data

Figure 7: The desired regions Ss of two datasets.

D.3 Bermuda Data

In this section, we provide details about the Bermuda data. The Bermuda data is an environment dataset that
involves some environmental variables in Bermuda [10]. The variables included in the generation process are:

• Light: Light levels at the bottom;
• Temp: Temperature at the bottom;
• Sal: Sea surface salinity;
• DIC: Dissolved inorganic carbon of seawater;
• TA: Total alkalinity of seawater;
• ⌦A: Saturation with respect to aragonite in seawater;
• Chla: Chlorophyll-a at sea surface;
• Nut: PC1 of NH4, NiO2 + NiO3, SiO4;
• pHsw: pH of seawater;
• CO2: PCO2 of seawater;
• NEC: Net ecosystem calcification.
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The rehearsal graph for the variables is illustrated in Fig. 8. The presumed actionable variables that can be
altered by the decision-maker are DIC, TA, ⌦A, Chla, and Nut according to Aglietti et al. [1], Qin et al. [40].
The hyperparameters associated with the cost function are set as Z0

DIC = Z0
TA = Z0

⌦A
= Z0

Chla = Z0
Nut = 0.0; and

wDIC = 10.0, wTA = 8.0, w⌦A = 3.0, wChla = 5.0, wNut = 10.0. The desired region S is shown in Fig. 7(b).
We shade dynamic edges with red color.
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Figure 8: The rehearsal graph for Bermuda data.
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