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Abstract
A maximal ancestral graph (MAG) is widely used
to characterize the causal relations among observ-
able variables in the presence of latent variables.
However, given observational data, only a partial
ancestral graph representing a Markov equiva-
lence class (MEC) of MAGs is identifiable, which
generally contains uncertain causal relations. Due
to the uncertainties, MAG listing, i.e., listing all
the MAGs in the MEC, is critical for many down-
stream tasks. In this paper, we present the first
polynomial-delay MAG listing method, where de-
lay refers to the time for outputting each MAG,
through introducing enumerated structural knowl-
edge in the form of singleton background knowl-
edge (BK). To incorporate such knowledge, we
propose the sound and locally complete orienta-
tion rules. By recursively introducing singleton
BK and applying the rules, our method can output
all and only MAGs in the MEC with polynomial
delay. Additionally, while the proposed novel
rules enable more efficient MAG listing, for the
goal of incorporating general BK, we present two
counterexamples to imply that existing rules in-
cluding ours, are not yet complete, which motivate
two more rules. Experimental results validate the
efficiency of the proposed MAG listing method.

1. Introduction
Recently, causality has gathered significant attention in arti-
ficial intelligence. In this field, a causal graph characterizing
causal relations plays a vital role. On one hand, a causal
graph provides a profound insight into underlying physical
mechanism (Cai et al., 2018; Runge et al., 2019). On the
other hand, it serves as a crucial tool for estimating causal
effects (Pearl, 2009), which are essential in applications.
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Figure 1: Fig. 1(a): a DAG D including a latent confounder
L and a selection variable S. Fig. 1(b): The MAGM char-
acterizing the causal relations over the observable variables
in D. Fig. 1(c): The PAG P representing the MEC ofM.
Fig. 1(d): When orienting A→ B, there must be B → C.

A directed acyclic graph (DAG) is a classical graphical
model to characterize causal relations when all relevant
variables are fully observable. In practice, however, latent
variables generally exist, including latent confounders and
selection variables. A latent confounder is a latent variable
that influences more than one observed variable, e.g., genes
influence both whether a person smokes and whether this
person develops lung cancer, which are typically latent. A
selection variable is a latent variable influenced by multiple
observed variables and plays a role in determining whether
the data is collected. E.g., whether a person goes to a hos-
pital S depends on both whether he is ill and whether he
is alive. If the data is collected only from the hospital, it is
conditioned on S = 1, indicating the distribution of the col-
lected data differs from the overall population distribution.

In the presence of latent variables, maximal ancestral graph
(MAG) is generally used to characterize the causal relations
among observable variables (Richardson et al., 2002). Given
a DAG in Fig. 1(a) with latent confounder L and selection
variable S, the corresponding MAG is as Fig. 1(b). However,
existing theoretical results imply that a DAG/MAG is not
identifiable from observational data (Spirtes et al., 2000), un-
less introducing model or functional assumptions (Shimizu
et al., 2006; Zhang & Hyvärinen, 2009). In the presence of
latent variables, only a Markov equivalence class (MEC) of
MAGs, which encode the same conditional independence,
can be identified from observational data. This MEC is rep-
resented by a partial ancestral graph (PAG), which contains
uncertain structures denoted by circles (◦) as Fig. 1(c).

Given that only a PAG with uncertainties is identifiable,
MAG listing, i.e., listing all the MAGs in the MEC repre-
sented by the PAG, is crucial for many downstream tasks.
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For example, when uncovering causal relations within a
MEC by introducing active interventions, minimizing the
number of interventions is often desirable due to their high
cost. The maximal entropy criterion is often employed (He
& Geng, 2008; Wang et al., 2023b), requiring entropy esti-
mation based on all graphs in the MEC, necessitating MAG
listing. Additionally, in some studies on structure learning
with additional structural knowledge (Kocaoglu, 2023; Ger-
hardus, 2024), MAG listing is also required. Despite its
importance, MAG listing has received relatively limited at-
tention in the literature, unlike DAG listing, which addresses
a similar task in the absence of latent variables (Chickering,
1995; Chen et al., 2016; Wienöbst et al., 2023). Inherently,
MAG listing is more challenging than DAG listing due to
the existence of bi-directed edges and undirected edges.

For MAG listing, it is necessary to determine all possible
orientations of the uncertain structures (circles) in the given
PAG. However, directly enumerating the orientation com-
binations of all circles is computationally prohibitive. A
more feasible approach is to recursively introduce structural
knowledge and utilize orientation rules. In each round, we
enumerate a part of circles. The enumerated orientation can
serve as background knowledge (BK), which is then used
to orient other circles by orientation rules, thereby reducing
redundant enumeration. For example, consider a PAG P in
Fig. 1(c), if we enumerate the circle atB as an arrowhead on
A◦−◦B, it followsB → C according to the orientation rules
of Zhang (2008), making it unnecessary to enumerate the
circles on the edge between B and C. Notably, the above
idea for MAG listing must be applied cautiously: When BK
is introduced, the orientation rules need to be sound and
complete to orient the circles that may be enumerated later,
otherwise we may obtain some extra MAGs inconsistent
with the PAG.1 However, despite extensive efforts in the lit-
erature (Andrews et al., 2020; Mooij et al., 2020; Wang et al.,
2023b; 2024b; Venkateswaran & Perkovic, 2024), it remains
unclear what orientation rules are sound and complete for
incorporating BK in the presence of latent variables.

To the best of our knowledge, Wang et al. (2024a) proposed
the first MAG listing method MAGLIST that avoids exhaus-
tive search. However, its computational complexity has not
been formally analyzed. In this paper, we consider the com-
putational complexity of MAG listing. An important metric
for evaluating algorithmic complexity is delay (Johnson
et al., 1988), which refers to the time required to produce
each output. We demonstrate that MAGLIST incurs an ex-
ponential delay, because it enumerates all circles of a vertex
simultaneously at each step, resulting in significant computa-
tional overhead. To address this issue, we propose a refined
approach that enumerates only one circle at each step. The
enumerated orientations are termed singleton BK. To ensure

1We provide a detailed illustration in Sec. 3.1.

consistency between the generated MAGs and the PAG, we
introduce orientation rules that are sound and locally com-
plete for incorporating singleton BK. Building upon these
orientation rules, we develop the first polynomial-delay al-
gorithm for MAG listing and prove that it outputs all and
only the MAGs in the MEC represented by the given PAG.

Beyond MAG listing, as discussed earlier, it remains un-
clear what orientation rules are sound and complete for
incorporating general BK in the presence of latent variables,
which is crucial for solving the open problem of causal rela-
tion identification from observational data and BK (Zhang,
2008). The novel orientation rules in this paper highlight the
incompleteness of existing rules. Furthermore, we provide
two counterexamples to demonstrate that the existing rules,
including ours, are not yet complete for incorporating BK.
These counterexamples motivate two more orientation rules
on incorporating BK. Our contributions are threefold.

(1) We present three novel orientation rules to incorporate
singleton background knowledge which is involved in
MAG listing, and prove that the rules are sound and
locally complete for a broad class of graphical models.

(2) Building upon the orientation rules, we propose the
first polynomial-delay MAG listing algorithm, which
can output all and only the MAGs in the given MEC.
Experiments validate the effectiveness and efficiency.

(3) Beyond MAG listing, we demonstrate that the existing
orientation rules including ours are not yet complete
for incorporating BK by two counterexamples, which
further motivate two more rules on incorporating BK.

2. Preliminary
In this paper, we denote a vertex by uppercase letter and a
set of vertices by boldface letter. The set of vertices/edges
in a graph G is denoted by V(G)/E(G). For a set of ver-
tices V′ ⊆ V(G), the subgraph of G induced by V′ is the
graph consisting with V′ and the edges connecting V′ in G,
denoted by G[V′]. Denote G[V(G)\V′] by G[−V′].
A graph is mixed if it consists of undirected, directed, and
bi-directed edges. The endpoints of an edge are referred
to as marks. If a graph contains the three kinds of marks
- arrowheads, tails, and circles, it is a partial mixed graph
(PMG). We use ∗ to denote a wildcard of anyone of the three
marks. A structure Vi∗→ Vj ←∗Vk is a collider, and we
further say it is unshielded if Vi is not adjacent to Vk.

For two vertices in a PMG H , Vi is a parent of Vj if there
is Vi → Vj in H . Vi ◦−◦ Vj is a circle edge. Consider a
path p = 〈V1, V2, · · · , Vd〉. p is a directed/circle/possible di-
rected path if for each edge connecting Vi and Vi+1, 1 ≤ i ≤
d−1, there is Vi → Vi+1/Vi◦−◦Vi+1/no arrowhead at Vi and
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Figure 2: Fig. 2(a): a PMG with an unbridged path V0 ◦−◦
· · · ◦−◦ Vn relative to {C1, C2}. Fig. 2(b)/2(c)/2(d): MAGs
consistent with the PMG in Fig. 2(a).

no tail at Vi+1. p is uncovered if ∀1 ≤ i ≤ d− 2, Vi is not
adjacent to Vi+2. p is minimal if any two non-consecutive
vertices are not adjacent. Vi is an ancestor/possible ances-
tor of Vj if there is a directed/possible directed path from
Vi to Vj or Vi = Vj . Descendant/possible descendant is
defined similarly. Denote the set of vertices that are par-
ents/ancestors/descendants/possible descendants of V in H
by Pa(V,H)/Anc(V,H)/De(V,H)/PossDe(V,H). Vi ∈
Anc(V, H) if there is V ∈ V such that Vi ∈ Anc(V,H).

We guide readers to Richardson et al. (2002) for ancestral
and maximal property. If a mixed graph fulfills ancestral and
maximal property, it is a maximal ancestral graph (MAG),
denoted byM. A partial ancestral graph (PAG), denoted
by P , represents a MEC of MAGs. Based on P , we could
obtain a PMG H by orienting some circles as arrowheads
or tails, a MAGM is consistent with H if it belongs to the
MEC represented by P and has the non-circle marks in H .
Given background knowledge (BK),M is consistent with
BK ifM has the marks contained in the BK.

Definition 1 (Unbridged path relative to V′; (Wang et al.,
2024b)). Let V′ be a subset of vertices in a PMG H . A
path p : V0 ◦−◦ · · · ◦−◦ Vn is an unbridged path relative to
V′ if there is C1, C2 ∈ V′ such that there is a minimal path
C1 ←◦V0 ◦−◦ V1 ◦−◦ · · · ◦−◦ Vn◦→ C2 except for an edge
C1 ↔ C2 in H .

We present unbridged path in Def. 1, with an example in
Fig. 2(a). Intuitively, given a PMG H , unbridged path rela-
tive to V′ describes a case that in any MAGM consistent
with H , each vertex V in the unbridged path is always an
ancestor of V′. See Fig. 2, in any MAG consistent with
the PMG in Fig. 2(a), since there cannot be new unshielded
colliders introducing additional conditional independence,
the MAG can only be as Fig. 2(b), 2(c), or 2(d), where each
Vi, 0 ≤ i ≤ n is always an ancestor of either C1 or C2.

To learn a PAG with observational data, Ali et al. (2005a);
Zhang (2008) presented some orientation rules. Further,
rules for incorporating specific types of BK, such as tiered
BK (Andrews et al., 2020) and local BK (Wang et al., 2023b),
were proposed, along with others (Wang et al., 2024b;
Venkateswaran & Perkovic, 2024). These rulesR1 −R13

are provided in App. A. Specifically, tiered BK organizes

AX

BC
(a) PAG

AX

BC
(b) Tiered BK

AX

BC
(c) Local BK

AX

BC
(d) Singleton BK

Figure 3: Given a PAG in Fig. 3(a), Fig. 3(b), 3(c), and 3(d)
depict tiered BK where {X} precedes {A.B,C}, local BK
regarding X , and singleton BK regarding X , respectively.

vertices into ordered components, where relations between
components are known, while those within each component
remain uncertain. In contrast, local BK provides full struc-
tural knowledge regarding several vertices. Consider a PAG
in Fig. 3(a). Fig. 3(b) and Fig. 3(c) depict tiered BK where
{X} precedes {A.B,C} and local BK regarding X .

Finally, we introduce a broad class of PMGs, PMG compat-
ible with local transformation, in Def. 4 in App. B. Briefly
speaking, if a PMG fulfills chordal, balance, complete, and
constructive conditions, then it is a PMG compatible with
local transformation. See App. B for details. Evidently, the
PAG fulfills the four conditions, thus PAG is a special case
of PMG compatible with local transformation.

3. The Proposed Method
In Sec. 3.1, we revisit existing MAG listing approach, and
identify the bottleneck leading to redundant computational
complexity. To overcome the limitation, we investigate sin-
gleton BK, a critical component in MAG listing. In Sec. 3.2,
we propose three novel orientation rules to incorporate sin-
gleton BK. Building on these rules, we present a polynomial-
delay MAG listing algorithm in Sec. 3.3. Discussions are
presented in Sec. 3.4. All the proofs are given in App. D.

3.1. Revisiting MAGLIST

In this part, we revisit the MAG listing method MAGLIST
proposed by Wang et al. (2024a) and briefly explain the
reasons behind its exponential delay, which motivates the
development of our polynomial-delay method.

Given a PAG P learned from observational data, MAGLIST
obtains all MAGs consistent with P by recursively enumer-
ating the circles of each vertex. A copy of the realization
process of MAGLIST is shown in App. C. Briefly speak-
ing, in each round, MAGLIST selects a vertex with circles,
denoted by X , then (a) enumerates all the circles at X as
non-circles; (b) updates the graph based on the enumera-
tions. In step (a), each enumerated non-circle configuration
at X dictates a local structure of X . Wang et al. (2024a)
presented the graphical condition to determine whether it is
valid, i.e., whether there is a MAG consistent with P and
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Figure 4: Two examples to show the incompleteness of the existing orientation rules. A PAG P1 is shown in Fig. 4(a) where
there must be X → F when introducing BK C1∗→ X ←∗C2. For contradiction, suppose there is X ↔ F , as shown in
Fig. 4(b), the blue edges T1◦→ X ←◦T2 are oriented byR12, which form an unshielded collider. Another PAG P2 is shown
in Fig. 4(c), where there is also X → F but is not identifiable by existing rules when introducing BK C1∗→ X ←∗C2.

the local structure. Each enumerated valid local structure
introduces local BK regarding X . Hence, the existing ori-
entation rules for incorporating local BK can soundly and
completely update the graph in step (b). It is proved that
the graph obtained after each round is a PMG compatible
with local transformation, enabling the process to be recur-
sively executed for every vertex. Let d denote the number
of vertices. In step (a), the enumeration of the circles at X
has a complexity of O(2d), while the number of valid local
structures could be O(d), leading to an exponential delay.2

Hence, the simultaneous enumeration of all the circles at
X is the main bottleneck for the undesired complexity. To
develop a polynomial-delay method, it is essential to elimi-
nate the redundant enumeration in step (a). We focus on this
step. A direct idea is to enumerate each circle at X one by
one, instead of simultaneously. After transforming a circle,
we apply the orientation rules to update the graph, thereby
avoiding redundant enumeration. For example, given a
PMG in Fig. 1(c), consider enumerating the circles at B. If
we first orient A◦→ B, then B → C follows by the rules as
Fig. 1(d), avoiding enumerating the circle at B on B ◦−◦ C.

However, the above idea cannot be applied directly. It might
not only introduce additional computational overhead but,
more importantly, result in outputting MAGs inconsistent
with P . This is because when we enumerate only one or a
proper subset of circles at X , the existing orientation rules
are not locally complete to update the graph, i.e., some
circles at X that should have been identified as tails or
arrowheads might remain unidentified. In such cases, we
will obtain extra MAGs by subsequent enumerations. See
Fig. 1(c) for an example. Consider enumerating the circle at
B onA◦−◦B as an arrowhead. Since the rules are not locally
complete, suppose the circle atB onB◦−◦C is not identified,
which should have been identified by R1 given A◦→ B.
In this case, we would subsequently enumerate the circle

2We provide an example to demonstrate that MAGLIST could
incur an exponential delay in Sec. 3.4.

at B on B ◦−◦ C as an arrowhead, leading to a PMG with
A◦→ B ←◦C. All the MAGs obtained from this PMG are
inconsistent with P , as the additional unshielded colliders
relative to P indicate extra conditional independencies.

As discussed above, when enumerating each circle at X one
by one, it is vital to establish sound and locally complete
orientation rules to transform the circles at X . Each trans-
formation at X can be viewed as a type of BK. Hence, we
study orientation rules to incorporate such BK in Sec. 3.2.

3.2. The proposed rules to incorporate singleton BK

In this part, we propose the orientation rules for incorporat-
ing singleton BK into a PMG, where singleton BK refers to
the additional structural information regarding a singleton
vertex. Using the rules, during MAG listing process, we can
update the graph with the enumerations of circles regarding
the selected variable. Since a PAG can be identified from
observational data (Zhang, 2008), we make a convention
that when we say PMG, it refers to a PAG or a PMG ob-
tained based on a PAG, i.e., the PMG at least contains the
structural information in a PAG. We assume BK is correct,
ensuring the existence of MAGs consistent with P and BK.
Definition 2 (singleton BK). Given a PMG H and BK, BK
is singleton if the BK only directly indicates the orientation
of some circles regarding one vertex.

Singleton BK implies only the orientation of circles regard-
ing one vertex, as shown in Fig. 3(d) where BK regardingX
is introduced. Note that singleton BK does not necessarily
indicate the orientation of all the circles regarding the vertex.
It is the main distinction between singleton and local BK.

As discussed earlier, given singleton BK, an important ques-
tion for MAG listing is whether the existing orientation
rules are sound and locally complete for incorporating such
BK. We demonstrate the incompleteness by presenting two
counterexamples in Fig. 4. Consider a PAG in Fig. 4(a) and
singleton BK regarding X as C1∗→ X ←∗C2. Using the
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existing rules, no new orientations are triggered; however,
X → F should be identified. We illustrate it by contradic-
tion. Suppose a PMG H1 as Fig. 4(b) satisfies the singleton
BK but includes X ↔ F . For the left shaded region in
H1, T1◦→ X is oriented by R12 (see App. A for R12), as
there is an unbridged path K1 ◦−◦K2 relative to {C1, F}.
Similarly, for the right shaded region, T2◦→ X is oriented.
Consequently, a new unshielded collider T1◦→ X ←◦T2
is formed. However, introducing new unshielded colliders
relative to P is forbidden, as it implies conditional inde-
pendence that differs from P such that any MAGs with
this structure are inconsistent with P . If we examine why
X ↔ F is impossible in Fig. 4(b) given the singleton BK
regarding X , orienting X◦→ F as X → F will lead to new
arrowheads at X byR12, forming new unshielded colliders
that are forbidden. Beyond R12, similar issues may arise
with R2 and R11. To formalize the introduction of new
arrowheads byR2,R11,R12, we define prior to in Def. 3.
Definition 3. Consider a PMG H . For two vertices A,B
with A ∗−◦X ◦−∗B, we say that A is prior to B relative to
X if there exists a set of vertices F0(= A), F1, · · · , Ft(=
B), t ≥ 1 such that for any 0 ≤ i ≤ t− 1, there is Fi ∗−◦X ,
and one of the three following conditions holds:

(1) there is an edge Fi → Fi+1 in H ,

(2) there is an uncovered possible directed path
〈X,Fi, · · · ,M〉 and an edge M → Fi+1 in H ,

(3) there is an unbridged path 〈K1, · · · ,Km〉 relative to
SFi+1

in H[−SFi+1
] , and for every vertex Kj ∈

{K1, · · · ,Km}, there exists an uncovered possible
directed path 〈X,Fi, · · · ,Kj〉 (Fi 6= Kj), where
SFi+1 = {V ∈ V(H)|V ∗→ X in H} ∪ {Fi+1}.

Intuitively, for vertices Fi and Fi+1 in Def. 3 fulfilling one
of the three conditions, if there is X ←∗Fi+1, then X ◦−∗Fi

is transformed to X ←∗Fi by R2/R11/R12, of which the
corresponding conditions are shown in Fig. 5. Hence, if
A is prior to B relative to X as Def. 3, when X ◦−∗ B is
transformed to X ←∗B, X ◦−∗A will be finally transformed
to X ←∗A by repeatedly triggeringR2,R11,R12.

Based on Def. 3, we present R14, which is inspired by
the counterexamples. Intuitively, if T1 and T2 are prior to
B relative to X in R14, orienting X ←∗B implies X ←
∗T1 and X ←∗T2. In this case, given the conditions in
R14 that (a) there is an unbridged path F1 ◦−◦ · · · ◦−◦ Fk

relative to {T1, T2} such that X ◦−∗ Fi, ∀Fi,1≤i≤k, or (b)
T1 is not adjacent to T2, there must be new unshielded
colliders introduced, which is forbidden in the process of
incorporating BK. The example for case (b) inR14 has been
provided in Fig. 4(a). For case (a), we give another example
in Fig. 4(c). In this example, T1 is adjacent to T2, but there
is an unbridged path F1 ◦−◦ F2 relative to {T1, T2}. In this
case, there is X → F oriented as well.

Fi+1

X Fi

(a) By R2

Fi

uncovered p.d.
X

Fi+1

M

(b) By R11

C

Fi+1

X Fi

K1

K2

(c) By R12

Figure 5: Examples of that Vi is prior to Vi+1 relative to X .
If we orient X ◦−∗Fi+1 as X ←∗Fi+1 in Fig. 5(a)/5(b)/5(c).
X ◦−∗ Fi will be oriented as X ←∗Fi byR2/R11/R12.

R14 Suppose an edge X◦→ B in a PMG H , if there is
T1 ∗−◦X ◦−∗ T2 where both T1 and T2 are prior to B
relative to X , and there is either (a) an unbridged path
F1 ◦−◦· · · ◦−◦Fk relative to {T1, T2} such thatX ◦−∗Fi,
∀Fi,1≤i≤k, or (b) T1 is not adjacent to T2, then orient
X◦→ B as X → B.

R15 IfA−∗B → R, andA◦→ R, orientA◦→ R asA→ R.
(generalization ofR8)

R16 If A∗→ B −◦R or A∗→ B ◦−R, then orient B −◦R or
B ◦−R as B → R or B ← R.

Additionally, two additional rulesR15,R16 are introduced
to accommodate the presence of undirected edges. Here-
after, the term proposed orientation rules refers toR1−R16.
Prop. 1 implies thatR14 −R16 are sound for incorporating
BK. The soundness of the remaining rules has been demon-
strated in previous studies (Ali et al., 2005b; Zhang, 2008;
Wang et al., 2024b; Venkateswaran & Perkovic, 2024).

Proposition 1. R14 − R16 are sound for incorporating
background knowledge to a PMG.

In fact, R8 and R10 are special cases of R15 and R14,
respectively. Since R8 and R10 are canonical rules, we
introduce new rules to extend their scope. Next, we present
our main result in Thm. 1, demonstrating that the proposed
rules are locally complete for incorporating singleton BK
into any PMGs compatible with local transformation.

Theorem 1 (Locally complete). Consider a vertex X in a
PMG M compatible with local transformation, the proposed
orientation rules R1 −R16 are locally complete for intro-
ducing singleton BK regarding X into M. That is, in the
PMG H obtained from M using the singleton BK and ori-
entation rules, if there is an edge X ◦−∗ F1 in H , there must
exist two MAGsM1,M2 consistent with M and singleton
BK, such that there is X ←∗F1 inM1 and X −∗F1 inM2.

Despite being locally complete, the proposed rules are not
necessarily complete for incorporating singleton BK. Local
complete property ensures that by applying the orientation
rules, we can identify all marks at X that are identifiable,
but it imposes no restrictions on the identification of marks
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at other vertices. In Sec. 3.3, we demonstrate that locally
complete rules suffice to develop a polynomial-delay MAG
listing algorithm. We discuss the completeness in Sec. 4.

The complexity of implementing the rules. In this paper,
we do not touch much on the computational complexity to
implement the rules. We provide a rough analysis. Sup-
pose a PMG has d vertices and m edges. For R11, there
are O(m) edges A ◦−∗B that can be possibly transformed.
Finding SA and every vertex that can be Ki requires O(d)
and O(m), respectively. The total complexity is O(m2d).
For R12, there are O(d) variable where circles are trans-
formed. Finding each vertex Ki takes O(m), and detecting
the existence of unbridged paths requiresO(m2). Hence the
total complexity is O(m3d). ForR14, For each variable X ,
there areO(d2) pairs of Vi, Vj such that Vi ∗−◦X ◦−∗Vj ,
and detecting whether Vi is prior to Vj (or vice versa) rel-
ative to X takes O(m3d). Additionally, there are O(d)
variables X such that X◦ → V is possibly oriented by
R14. For each such X , since we already know which vari-
ables are prior to V relative to X , enumerating each pair
T1, T2 prior to V takes O(d2), and detecting conditions (a)
and (b) in R14 takes O(m). Hence, the total complexity is
O(d)∗O(d2)∗O(m3d)+O(d)∗O(d2)∗O(m) = O(m3d4).
For R16, the complexity is O(m2). For R17, there are
O(m) edges that can be D∗→ C. To find the vertices A,B,
the complexity is O(d2). Hence the total complexity is
O(md2). The complexity of implementingR1−R10 is less
than O(m3d4). Thus, the overall complexity of implement-
ing the rules is O(m3d4). The complexity is significantly
higher than that of R1 −R10, which implies the intrinsic
difficulty of incorporating BK with latent variables.

3.3. Polynomial-delay MAG listing

In this part, based on the rules for incorporating singleton
BK, we present our MAG listing method MAGLIST-POLY.

The algorithm is detailed in Alg. 1. Starting from a PAG
P learned from observational data, the method operates
through two nested loops implemented as recursive func-
tions. In the outer loop (Function ORIENTGRAPH), each
iteration selects a vertex with circles, denoted as X , and
invokes the inner loop. In the inner loop (Function LOCAL-
TRANSFORM), each iteration enumerates a circle at X as
an arrowhead and a tail. The resulting two graphs are then
updated using the proposed orientation rules. This process
continues recursively until there are no circles at X . The
obtained graphs are passed back to the outer loop. The outer
loop stops when there is no vertex with circles. Notably,
all the graphs obtained on Line 17 are PMGs compatible
with local transformation.3 Therefore, in each round of
outer loop, the input graph is a PMG compatible with local
transformation, in which case the condition of Thm. 1 holds.

3We detail it in the proof of Thm. 2.

Algorithm 1 MAGLIST-POLY

Require: A PAG P
1: S = ∅ . Record all the MAGs consistent with P
2: ORIENTGRAPH(P)
3: function ORIENTGRAPH(M,S)
4: if there are no circles in M then .M is a MAG
5: S ← S ∪ {M}
6: else
7: Select a variable X where there are circles in M
8: I = ∅ . Record all the PMGs without circles at
X obtained from M

9: LOCALTRANSFORM(M, X)
10: for M′ in I do
11: ORIENTGRAPH(M′,S)
12: end for
13: end if
14: end function
15: function LOCALTRANSFORM(H,X)
16: if there are no circles at X in H then
17: I ← I ∪ {H}
18: else
19: Select a vertex V with an edge X ◦−∗ V in H
20: Obtain H ′ from H by orienting X −∗V and

using the proposed orientation rules
21: LOCALTRANSFORM(H ′, X)
22: Obtain H ′′ from H by orienting X ←∗V and

using the proposed orientation rules
23: LOCALTRANSFORM(H ′′, X)
24: end if
25: end function
Ensure: S

The realization process of an inner loop is shown in Fig. 6
using a search tree. Suppose X is the selected vertex where
circles are being transformed. The root is a PMG compatible
with local transformation. In the first round, we enumerate
the circle at X on X◦→ A. Enumerating it as an arrowhead
and a tail yields two graphs, shown in the first and fourth
graphs in the second layer. These graphs are further updated
using the orientation rules, resulting in the two additional
graphs in this layer. In the second round, we enumerate
the circle at X on X ◦−◦ B. Due to space limit, only the
graphs obtained after both enumerating a circle at X and
using the rules are displayed in the third and fourth layers.
The shaded graphs denote the PMGs without circles at X ,
which are passed back to outer loop. For the PMGs with
circles at X , we continue enumerating. Through the search
process, we obtain all valid orientations of circles at X .

Finally, for MAGLIST-POLY, Thm. 2 guarantees that it can
find all and only the MAGs consistent with P , and Thm. 3
ensures the polynomial delay. These results establish the
theoretical effectiveness and efficiency of MAGLIST-POLY.
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Figure 6: A realization process of Line 9 of Alg. 1, which transforms the circles at X given a PMG compatible with local
transformation. In the first/second/third round, we transform the circle at X on the edge between X and A/B/C. After
each transformation, we further use the rules to update. Shaded graphs denote the PMGs without circles at X , where the
inner loop stops and the outer loop is executed to select the next vertex with circles. Due to space limit, we show the circle
transformation at X (colored by red) and the update with rules (colored by blue) respectively only for the first round.

Theorem 2. Algorithm 1 is valid to list all and only the
MAGs consistent with P .

Theorem 3. Given a PAG P with d vertices and m edges,
suppose there are N MAGs consistent with P . Denote the
complexity of implementing Alg. 1 for P by T (N, d). Then
T (N, d)/N ≤ O(m3d4).

3.4. Discussions on MAG listing

According to the results above, we have demonstrated that
using sound and locally complete rules for incorporating
singleton BK suffices to develop a polynomial-delay MAG
listing algorithm. Next, we present an example to illustrate
that MAGLIST proposed by Wang et al. (2024a) can incur
exponential-delay. Consider a PAG P in Fig. 7. When
MAGLIST is applied, the method selects X and enumerates
the circles at X . In this case, the method will enumerate 2d

possible orientations, resulting in a total complexity of at
leastO(2d). Next, consider the number of MAGs consistent
with P . Since no additional unshielded colliders can appear
in these MAGs, the number of valid local structures of X is
d+ 1. The delay is O(2d/d), indicating exponential delay.

Compared to MAGLIST, our method achieves polynomial
delay by transforming one circle at a time. This raises a
natural question: is the locally complete property of the
rules necessary for achieving polynomial delay? If the rules
are not locally complete, then for each local transformation
obtained from transforming the circles one by one at a vari-

X

Y

V1 V2 Vd−1 Vd

……V3 Vd−2

Figure 7: An example to show that MAGLIST proposed
by Wang et al. (2024a) could incur an exponential delay.

able, we need to perform an additional validity check using
Lemma 2 in App. D, which is costly yet effective for MAG
listing. In such cases, extra time is spent detecting and dis-
carding invalid transformations, which could be avoided by
using locally complete rules. Now, it is unclear whether this
extra computation leads to a delay exceeding polynomial
time. The main challenge lies in that the number of MAGs
consistent with a given PAG is unknown, making it difficult
to analyze the delay introduced by the extra computations.

Regarding the calculation of the number of MAGs consistent
with a given PAG, a related task in the DAG setting, known
as DAG counting, aims to determine the number of DAGs
within a MEC. This problem has been extensively stud-
ied (He et al., 2015; Ganian et al., 2022), and can be solved
with a complexity of O(d4) (Wienöbst et al., 2023). How-
ever, for the analogous task of MAG counting, to the best of
our knowledge, there are no relevant studies. There are two
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main challenges for generalizing DAG counting to MAG
counting: (1) Bi-directed edges in ancestral graphs prevent
using an order to describe uncertain edge orientations, and
it is unclear what mathematical tool could replace order in
this context; (2) The orientation of ◦→ connecting different
circle components can affect the orientation within a circle
component. For example, consider A ◦−◦B◦→ C ←◦A. If
there is B ↔ C ← A, there must be A∗→ B, illustrating
that the orientations within a component are not independent
of those outside. Determining the size of the MEC in the
presence of latent variables remains an open problem.

4. Additional Rules for Incorporating BK
Beyond MAG listing, establishing sound and complete rules
for incorporating BK into an MEC is a fundamental problem
in causal inference (Zhang, 2008). It is essential for deter-
mining which causal relations can be identified from BK
and observational data, with BK derived from interventions
or human expertise. In the absence of latent variables, the
canonical Meek rules are sound and complete (Meek, 1995);
but it remains unresolved in the presence of latent variables.

C

D A

B

(a) PAG P1

C

D A

B

(b) PMG H1

T

D AB

T1

2

(c) PAG P2

D AB

T2

T1

(d) PMG H2

Figure 8: Examples to show the incompleteness of the pro-
posed rules. Given PAG P1 in Fig. 8(a), when we add BK
D −◦B as Fig. 8(b), the proposed rules (R1 −R16) cannot
identify C −◦A. Given P2 in Fig. 8(c), when we add BK
D ↔ B as Fig. 8(d), the rules cannot identify A↔ B.

In Sec. 3.2, to develop a polynomial-delay MAG listing
method, we propose novel orientation rules, and prove that
they are sound and locally complete for incorporating sin-
gleton BK into a PMG compatible with local transformation.
The additional rulesR14−R16 reveal the incompleteness of
the existing rules, as singleton BK is a specific type of BK.
A direct question arises as to whether the rules in this paper
achieve completeness for incorporating BK. To address this,
we extend our investigation to the completeness of these
rules beyond the MAG listing algorithm. Unfortunately, the
rules are not yet complete. We present two examples in
Fig. 9 implying the incompleteness, highlighting the need
for further study. Motivated by the examples, we present
two additional rules, whose soundness is ensured by Prop. 2.

R17 Suppose D −∗C ∗−∗ A ∗−∗ D and C −∗B ∗−◦ A in a
PMG H , if D is not adjacent to B, then orient A ◦−∗B
as A−∗B.

R18 If A◦→ B ↔ D, there are two minimal possible
directed paths 〈D,T1, · · · , A〉 and 〈D,T2, · · · , A〉, if
(a) there is an unbridged path F1 ◦−◦ · · · ◦−◦Fk relative
to {T1, T2} such that D ◦−∗ Fi,∀Fi,1≤i≤k, or (b) T1 is
not adjacent to T2, then orient A◦→ B as A↔ B.

Proposition 2. R17,R18 are sound for incorporating BK.

5. Related Works
Dealing with latent variables is vital in causal inference.
One line is to recover latent variables and discover causal
relations among observed and latent variables (Xie et al.,
2022; Li et al.). Another line focuses on identifying causal
relations or causal effects among observed variables with-
out explicitly recovering the latent variables (Tian & Pearl,
2002; Miao et al., 2018; Lee et al., 2019; Jung et al., 2023).
For example, Wang et al. (2023a) proposed a method for
determining the set of possible causal effect of a variable X
on a variable Y given a MEC with latent confounders. Wang
& Miao (2024) presented sound average causal effect identi-
fication result with unmeasured confounders under the light-
tailedness assumption. Ancestral graphs are such a kind of
graphical model to characterize causal relations among ob-
served variables (Richardson et al., 2002), and many studies
are developed based on ancestral graphs (Cheng et al., 2022;
Hu & Evans, 2024; Park et al., 2025).

Causality attracts extensive attention in decision tasks (Lee
& Bareinboim, 2018; Ruan et al., 2024). Recently, a de-
cision problem called avoiding undesired future (AUF) is
studied, i.e., if an ML model predicts an undesired event,
how to find effective actions to prevent it. Considering that
causal relations are often hard to identify in practice and,
even when identifiable, may not be helpful if they are un-
actionable, Zhou (2023) proposed the concept of influence
relation, which lies between correlation and causation, to
address AUF problems (Zhou, 2022). Based on graphical
models characterizing influence relations, some efforts are
made for AUF problems (Qin et al., 2023; Du et al., 2024).

6. Experiments
In this section, we evaluate the effectiveness and efficiency
of the proposed MAG listing algorithm. Our method,
MAGLIST-POLY, is compared with MAGLIST and BRUTE-
FORCE, which are presented by Wang et al. (2024a).

We follow the experimental setup of (Wang et al., 2024a),
focusing on MAG listing under varying parameters. There
are two parameters: the number of vertices d and graph den-
sity ρ - the probability of an edge between two vertices. For
each combination of d and ρ, we generate 100 Erdös-Rényi
graphs as DAGs. For each DAG, three vertices are randomly
selected as latent variables to generate a MAGM charac-
terizing the causal relations among the observed variables.
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Figure 9: The logarithmic running time and number of listed MAGs within 3600 seconds for BRUTE-
FORCE/MAGLIST/MAGLIST-POLY in 100 simulations under each combination of the number of vertice d ∈
{6, 8, 10, 12, 14} including 3 latent variables and the graph density ρ ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. The vertical line
represents the 95% confidence interval generated by bootstrap sampling. It is determined by the 2.5th and 97.5th percentiles
of 1000 estimates from the random sample of equal size with replacement from the original sample.

We then derive the PAG P representing the MEC to which
M belongs and use P as the input for the experiment.

We implement BRUTEFORCE, MAGLIST, and MAGLIST-
POLY for each PAG, recording the number of MAGs re-
turned and the time required to list them. To handle cases
with extremely long computation times, we impose a maxi-
mum running time of 3600 seconds per experiment. If the
time limit is exceeded, the process is forcibly terminated,
and the MAGs listed up to that point are returned.

When d ≥ 10, the three methods may require more than
3600 seconds to complete. In such cases, the running time is
capped at 3600 seconds. These results are excluded from the
average runtime calculations since they do not accurately
reflect actual execution times. The experimental results are
shown in Fig. 9. When d < 10, all the methods return
identical set of MAGs, demonstrating the effectiveness of
MAGLIST-POLY. Moreover, MAGLIST-POLY consistently
outperforms the other methods in runtime, highlighting its
efficiency. These results validate that the method by trans-
forming the circles one by one and applying the proposed
rules significantly reduces computational complexity.

Finally, we conduct an experiment using real data processed
from Wang et al. (2017) consisting of 7466 measurements
of the abundance of phosphoproteins and phospholipids
recorded under various experimental conditions. The dataset
includes both observational and interventional data. We fo-
cus on causal discovery and apply our MAG listing method
to support interventional variable selection by maximal en-
tropy criterion (ME) (He & Geng, 2008). ME is compared

with random strategy (RS). For RS, a variable with circles is
randomly selected to intervene. For ME, interventional vari-
able is selected based on maximizing HV =

∑M
i=1

li
L log li

L ,
where li denotes the number of MAGs with i-th local struc-
ture of V and L denotes the total number of MAGs. Three
variables are randomly selected as latent variables. We
calculate the number of marks that are identified by 2 inter-
ventions in the two strategies. Repeat the process above for
10 times, the number of marks identified by ME is 98, which
is more than 81 by RS. It demonstrates that the maximal
entropy criterion is useful in causal discovery, where the
MAG listing algorithm is needed to find all MAGs.

7. Conclusion
In this paper, we consider a specific kind of BK, singleton
BK. We present the sound and locally complete orientation
rules for incorporating singleton BK into a PMG compatible
with local transformation. Based on the rules, we propose
the first polynomial-delay MAG listing algorithm. Experi-
ments validate the effectiveness and efficiency. Finally, we
present two examples to demonstrate the incompleteness of
existing rules for general BK, and further propose two rules.

While this paper focuses on MAG listing, we highlight the
five novel proposed rules. Establishing sound and complete
orientation rules for incorporating general BK remains an
open problem for a long time. The proposed rules in this
paper can serve as a part of the complete ones in the future,
which could be helpful for many areas such as causal dis-
covery, causal effect estimation, and experimental designs.
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A. Existing Orientation Rules
In this section, we show the existing orientation rules. Zhang (2008) proposed the sound and complete rulesR1 −R10 for
causal discovery with observational data in the presence of latent variables. R12 is proposed by Wang et al. (2024b). R13

andRnew are proposed by Venkateswaran & Perkovic (2024). Since in this paper we only focus on the orientation rules
for incorporating singleton BK, in which case Rnew is not utilized, we do not denote it by a rule with a number. R11 is
proposed by Wang et al. (2024b) and Venkateswaran & Perkovic (2024) independently.

R1: If A∗→ B ◦−∗R, and A and R are not adjacent, then orient the triple as A∗→ B → R.

R2: If A→ B∗→ R or A∗→ B → R, and A ∗−◦R, then orient A ∗−◦R as A∗→ R.

R3: If A∗→ B ←∗R, A ∗−◦D ◦−∗R, A and R are not adjacent, and D ∗−◦B, then orient D ∗−◦B as D∗→ B.

R4: If 〈K, . . . , A,B,R〉 is a discriminating path between K and R for B, and B ◦−∗ R; then if B ∈ Sepset(K,R),
orient B ◦−∗R as B → R; otherwise orient the triple 〈A,B,R〉 as A↔ B ↔ R.

R5: For every (remaining) A ◦−◦ R, if there is an uncovered circle path p = 〈A,B, · · · , D,R〉 between A and R s.t.
A,D are not adjacent and B,R are not adjacent, then orient A ◦−◦R and every edge on p as undirected edges.

R6: If A−B ◦−∗R (A and R may or may not be adjacent), then orient B ◦−∗R as B −∗R.

R7: If A−◦B ◦−∗R, and A,R are not adjacent, then orient B ◦−∗R as B −∗R.

R8: If A→ B → R, and A◦→ R, orient A◦→ R as A→ R.

R9: If A◦→ R, and p = 〈A,B,D, . . . , R〉 is an uncovered possible directed path from A to R such that R and B are
not adjacent, then orient A◦→ R as A→ R.

R10: Suppose A◦→ R, B → R← D, p1 is an uncovered possible directed path from A to B, and p2 is an uncovered
possible directed path from A to D. Let U be the vertex adjacent to A on p1 (U could be B), and W be the vertex
adjacent to A on p2 (W could be D). If U and W are distinct, and are not adjacent, then orient A◦→ R as A→ R.

R11: Suppose an edgeA◦−∗B in a PMGH . Let SA = {V ∈ V(H)|V ∗→ A in H}∪{A}. If inH there is an uncovered
possible directed path 〈A,B, · · · ,K〉, where K ∈ Anc(SA, H), then orient A ◦−∗B as A←∗B.

R12: Suppose an edge A ◦−∗ B in a PMG H . Let SA = {V ∈ V(H)|V ∗→ A in H} ∪ {A}. If there is an unbridged
path 〈K1, · · · ,Km〉 relative to SA in H[−SA] and for every vertex Ki ∈ {K1, · · · ,Km}, there exists an uncovered
possible directed path 〈A,B, · · · ,Ki〉 (B 6= Ki), then orient A ◦−∗B as A←∗B.

R13:Suppose D∗→ C ∗−∗A ∗−∗D and C−∗B ∗−◦A in a PMG H , if D is not adjacent to B, then orient A ◦−∗B as A−∗B.

Rnew: If 〈Q0, Q1, · · · , Qk(= A), B〉 is an almost discriminating path for A in a PMG H and there is A ◦−∗ B in H ,
then orient A ◦−∗B as A→ B.

B. Some Definitions
The circle component of a graph G is the subgraph of G that only remains all the vertices and all the circle edges. A graph is
chordal if any cycle with more than four vertices has a chord that connects two vertices.

Next, we introduce PMG compatible with local transformation in Def. 4 proposed by Wang et al. (2024a). A PMG
compatible with local transformation is initially introduced to represent the PMGs, which are obtained from incorporating
local BK into PAGs and using the orientation rules to soundly and completely update the PMGs.
Definition 4. A PMG M is called a PMG compatible with local transformation if it satisfies the four conditions:

(Chordal) The circle component in M is chordal.

(Balance) For any three verticesA,B,C in M, ifA∗→ B ◦−∗C, then there is an edge betweenA and C with an arrowhead
at C, namely, A∗→ C. Furthermore, if the edge between A and B is A→ B, then the edge between A and C is either
A→ C or A◦→ C (i.e., it is not A↔ C). And if A−◦B ◦−∗ C, then A is adjacent to C. Furthermore, if A−◦B ◦−◦ C,
then A−◦C; if A−◦B◦→ C, then A→ C or A◦→ C.

12
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(Complete) For each circle at A on A ◦−∗ B in M, there exist MAGsM1 andM2 consistent with M with A ←∗B
∈ E(M1) and A−∗B ∈ E(M2).

(Constructive) We can always obtain a MAG consistent with M by transforming −◦ /◦→ to→ and transforming the
circle component into a DAG without new unshielded colliders.

C. The Realization Process of MAGLIST

Here, we briefly introduce the MAG listing method MAGLIST proposed by Wang et al. (2024a). All the figures and
illustrations directly refer to Wang et al. (2024a). We guide the readers to Wang et al. (2024a) for details.

MAGLIST is a recursive method. In each round, they select one vertex with circles, denoted by X . They enumerate all
the circles at X simultaneously (As discussed in Sec. 3.1, this part leads to the undesired exponential delay), which is
called local structures of X . And they present the graphical conditions to determine whether the local structure is valid, i.e.,
whether there is a MAG consistent with the given PAG P and this local structure. For each valid local structure, the local
structure can be seen as a local BK, thus they use the established sound and complete orientation rules to incorporate the
local BK. The implementation example of MAGLIST in the format of a search tree is shown in Fig. 10. The graph in the
root node denotes a PAG P . They aim to list all the MAGs consistent with P . In the first round, they consider the local
structures of A. According to their result for determining the valid local structures, they can determine that there are six valid
local structures of A, and thus obtain six PMGs on the second line according to the marks implied by the local structures
of A. Then they update these six graphs using the proposed rules and obtain the graphs on the third line. After the local
transformation and the updates with rules, the implementation in the first round completes. In the second round, they further
consider the local structures of B, and based on the valid local structures of B, they update the graph with the proposed
rules. There are some PMGs without any circles, which are MAGs consistent with P . They shade these graphs with green
color. For the unshaded graphs, they are updated in the third round by considering the local structures of C. Some branches
are omitted (those unshaded but unexpanded) for brevity. The algorithm stops until there are no new unshaded leafs.

 

Figure 10: A realization process of MAGLIST. The graph in the root node denotes a PAG P . The graphs in the
first/second/third round are obtained from the previous round by introducing the valid local structures of A/B/C. There are
two parts in a round: introduce the valid local structures and update the graph using the proposed orientation rules. The two
parts are separately shown for only the first round. The shaded graphs denote the MAGs that are output by MAGLIST.
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D. Proofs
D.1. Proof of Proposition 1

Proof. ForR14, when the conditions inR14 hold, suppose X ↔ B for contradiction. Following Def. 3, it is direct that if T1
is prior to B relative to X , then there exists a series of vertices J0(= T1), J1, · · · , Jt−1, Jt(= B), t ≥ 1 such that for any
Ji, Ji+1, one of the three conditions in Def. 3 holds. When X ◦−∗Jt(= B) is oriented as X ←∗Jt(= B), if the first condition
of Def. 3 holds for Jt−1 and Jt, there is Jt−1 → Jt, thus X ◦−∗ Jt−1 can be oriented as X ←∗Jt−1 by R2; if the second
condition of Def. 3 holds for Jt−1 and Jt, X ◦−∗ Jt−1 can be oriented as X ←∗Jt−1 byR11; if the third condition of Def. 3
holds for Jt−1 and Jt, X ◦−∗ Jt−1 can be oriented as X ←∗Jt−1 byR12. Due to the soundness ofR2,R11,R12, if there is
X ←∗Jt(= B) and one of the three conditions in Def. 3 holds for Jt−1 and Jt, there must be X ←∗Jt−1. Recursively, we
can conclude that there must be X ←∗J0(= T1). Similarly, we can also conclude that there is X ←∗T2. In this case, if T1 is
not adjacent to T2, there is a new unshielded collider T1∗→ X ←∗T2 relative to H , contradiction. If there is an uncovered
path T1 ←◦F1 ◦−◦ · · · ◦−◦ Fk◦→ T2 such that there is X ◦−∗ Fi for every Fi, 1 ≤ i ≤ k. Consider the structure comprised
of T1, F1, F2, X , where T1 is not adjacent to F2 and there is T1∗→ X . According toR13, there is F1 → F2 in any MAG
consistent with H and BK. Using R1, there is F1 → F2 → · · · → Fk → T2 oriented. Due to the ancestral property and
T2∗→ X , there is Fk−1∗→ X inM. Hence there is an additional unshielded collider Fk−1∗→ X ←∗T2 inM relative to
H , which contradicts with the fact thatM is consistent with P . Hence X ↔ B is impossible.

ForR15, suppose A↔ R for contradiction. There is A−∗B → R↔ A, where ancestral property will always be violated
no matter it is A→ B or A−B.

R16 directly follows the ancestral property that there cannot be an arrowhead into an undirected edge.

D.2. Proof of Theorem 1

We first introduce some existing results, which support the proof of the main theorem.
⊕

denotes concatenation of paths.

Lemma 1 (Wang et al. (2024a)). Consider a PMG M compatible with local transformation. If there is a possible directed
path from A to B in M, then there is a minimal possible directed path from A to B in M.

Definition 5 (Bridged relative to V′ in H , Wang et al. 2023b). Let H be a partial mixed graph. Let G denote a subgraph of
H induced by a set of vertices V. Given a set of vertices V′ in H that is disjoint of V, two vertices A and B in the circle
component ofG are bridged relative to V′ if in each minimal circle path fromA toB inG as V0(= A)◦−◦V1◦−◦· · ·◦−◦Vn(= B),
there exists one vertex Vs, 0 ≤ s ≤ n, such that Fi ⊆ Fi+1, 0 ≤ i ≤ s − 1 and Fi+1 ⊆ Fi, s ≤ i ≤ n − 1, where
Fi = {V ∈ V′ | V ∗−◦ Vi in H}. Evidently, both case A = B and case that A and B are not connected in the circle
component are the trivial cases that A and B in G are bridged relative to V′. Further, G is bridged relative to V′ in H if
any two vertices in the circle component of G are bridged relative to V′.

Lemma 2 (Wang et al. (2024a)). Suppose M a PMG compatible with local transformation. Given a set of vertices
C ⊆ {V |X ◦−∗ V in M}, let Z = {V ∈ V(M)|V = X , or there is V −◦ · · · −◦ V ′ −◦X in M and V ′ 6∈ C}. There exists a
MAGM consistent with M with X ←∗V for ∀V ∈ C and X −∗V for ∀V ∈ {V | X ◦−∗ V in M}\C if and only if

(1) PossDe(Z,M[−C]) ∩ Pa(C,M) = ∅;

(2) the subgraph M[C] of M induced by C is a complete graph;

(3) M[PossDe(Z,M[−C])\Z] is bridged relative to C ∪ Z in M;

(4) either Z\{X} or {V ∈ V(M)|V ∗→ X in M or V ∈ C} is empty.

Next, we first present some results.

Proposition 3. Denote a PMG compatible with local transformation by M. Suppose there is a set of vertices V′ ⊆ V(M)
and a minimal circle path p in M[−V′] which is not bridged relative to V′ as Def. 5. If no variables in V1, · · · , Vm are
ancestors of V′ in M, and any two vertices C1, C2 ∈ V′ are adjacent in M, then there must be at least one sub-path of p
which is an unbridged path relative to V′ as Def. 1.

Proof. According to Def. 5, suppose there is a sub-path of p as p1 : 〈V1, · · · , Vm〉, whereC1 ∈ F1\F2 andC2 ∈ Fm\Fm−1,
where Fi = {V ∈ V′ | V ∗−◦ Vi in M}. Without loss of generality, suppose p1 is a minimal sub-path such that p1 is not
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bridged relative to V′, i.e., for any proper sub-path of p1, it is bridged relative to V′. Note this supposition is reasonable, since
if there is a proper sub-path of p1 which is not bridged relative to V′, then we consider this path instead of p1. Note for any
vertex Vi ∈ {V2, V3, · · · , Vm}, there cannot beC1∗→ Vi, for otherwise there must beC1∗→ V,∀V ∈ {V1, V2, V3, · · · , Vm}
due to R1 and the balance property of M, contradicting C1 ∈ F1; there cannot be C1 ∗−◦ Vi in M, for otherwise there is
C1 ∈ Fi, such that the subpath of p from Vi to Vm is not bridged relative to V′, contradicting with the supposition. Hence if
Vi is adjacent to C1, there must be C1 ∗−Vi.
Next we consider the adjacency of each vertex and C1. Suppose V2 is adjacent to C1. We consider the edge. Note that
it has been proved to be as C1 ∗−V2. We first prove that the edge cannot be C1 − V2. Suppose there is C1 − V2. Due to
V2 ◦−◦ V3, and we have proven that there is not C1∗→ V3 or C1 ∗−◦ V3 in M, there must be C1 − V3 in M due to the balance
and complete property. Repeatedly, we conclude that there is C1 − Vm. In this case there cannot be C2 ∗−◦ Vm in M, for
otherwise there is C2 ∗−Vm by R6, contradicting with C2 ∈ FVm . Hence there cannot be C1 − V2. We then prove the
impossibility of C1 ◦−V2. Consider V1 ◦−◦V2−◦C1 and C1 ∈ FV1 , there is V1 ◦−◦V2−◦C1 ∗−◦V1, the balance property of M
is not satisfied, contradiction. Thus C1 ◦−V2 is impossible. According to the condition, there is no C1 ← V2 since no vertex
in p are ancestors of V′. Hence there cannot be C1 ← / ◦−/ − V2. We conclude that C1 is not adjacent to V2. We then
prove that C1 is not adjacent to V3. If they are adjacent, according to the proof above, the edge is as C1 ∗−V3. Note there is
a sub-structure comprised of C1, V1, V2, V3 such that non-consecutive vertices are not adjacent except an edge between C1

and V3. In this case eitherR5 is triggered to transform all the edges into undirected edges, or there is an unshielded collider
V3◦→ C1 ←◦V1 due to V1 ◦−◦ V2 ◦−◦ V3. For the former case, there is V1 − V2 oriented, contradiction. For the latter case,
there is C1 ← V1 oriented byR9, contradicting with C1 ∈ FV1

. Hence C1 is not adjacent to V3. Recursively, we can prove
that C1 is not adjacent to V2, V3, · · · , Vm. Similarly, we can prove that C2 is not adjacent to Vm−1, Vm−2, · · · , V1.

Further, since C1 is adjacent to C2, we consider the sub-structure comprised of C1, V1, V2, · · · , Vm, C2. There must be a
collider in this structure, for otherwise all the edges are oriented as undirected edges byR5. Consider V1 ◦−◦ · · · ◦−◦ Vm,
there must be a collider as C2∗→ C1 ←◦V1 or C1∗→ C2 ←◦Vm. Suppose there is only C2∗→ C1 ←◦V1, in this case,
there must be C2 → C1 ← V1 by R9, contradicting with C1 ∈ FV1

. Hence there must be both C2∗→ C1 ←◦V1 and
C1∗→ C2 ←◦Vm. Thus there is V1◦→ C1 ↔ C2 ←◦Fm.

We conclude there is a minimal path C1 ←◦V1 ◦−◦ · · · ◦−◦Vm◦→ C2 except for an edge C1 ↔ C2 in M, where C1, C2 ∈ V’,
thus p1 is an unbridged path relative to V′.

Lemma 3. Consider a vertex X in a PMG M compatible with local transformation. Suppose we obtain a PMG H by
introducing non-empty singleton BK regarding X and using the proposed orientation rules (R1 −R16). If C = {V |V ∗→
X in H}\{V |V ∗→ X in M}, then there exists a MAGM consistent with M with X ←∗V for ∀V ∈ C and X −∗V for
∀V ∈ {V | X ◦−∗ V in M}\C.

Proof. It suffices to show that the set C satisfies the four conditions in Lemma 2, then we conclude the desired result
according to Lemma 2.

We first prove that either Z\{X} or {V ∈ V(M)|V ∗→ X in M or V ∈ C} is empty. Suppose both Z\{X} and
{V ∈ V(M)|V ∗→ X in M or V ∈ C} are not empty. There is Z −◦X and C∗→ X in H , which is impossible due toR16.

Then, we prove that the subgraph M[C] of M induced by C is a complete graph. According to the soundness of the rules,
the additional arrowheads at X in H relative to M are from either BK or the orientation rules, and the rules are sound.
Hence, if M[C] is not complete, there must be additional unshielded colliders at X in any MAGs consistent with BK relative
to M. Thus there are not MAGs consistent with M and BK, violating the correctness of BK.

Then, we prove that PossDe(Z,M[−C]) ∩ Pa(C,M) = ∅. Suppose F ∈ PossDe(Z,M[−C]) ∩ Pa(C,M). Suppose
there is F → C1 in M, where C1 ∈ C. According to the BK, there is C1∗→ X . If F is adjacent to X in M, as
F ∈ PossDe(Z,M[−C]), there cannot be X ←∗F in H . If there is X −∗F in H , the structure X −∗F → C1∗→ X violates
the ancestral property. If there is X ◦−∗F in H , there must be X ◦−∗F in M, F → C1∗→ X ◦−∗F in M violates the balance
property of M. Hence F cannot be adjacent to X . However, if F is not adjacent to X in M, according to Lemma 1, there is
a minimal possible directed path from X to F in M and F → C1∗→ X , which is impossible sinceR11 would transform
the circle at X in the minimal possible directed path to an arrowhead. Hence that F is adjacent to X is also impossible.
Thus there is PossDe(Z,M[−C]) ∩ Pa(C,M) = ∅.
Finally, we prove that M[PossDe(Z,M[−C])\Z] is bridged relative to C ∪ Z in M. Suppose M[PossDe(Z,M[−C])\Z] is
not bridged relative to C ∪ Z in M for contradiction. We have proven that either Z\{X} or C is an empty set. Suppose
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Z\{X} is non-empty. Then there must be two vertices Z1, Z2 ∈ Z such that F1 ◦−◦ F2 ◦−◦ · · · ◦−◦ Fk, k ≥ 2 is not bridged
relative to {Z1, Z2}. We omit the tedious proof for that Z1 must be adjacent to Z2. The main idea is, according to the
definition of Z, if there is a path Z1 −◦ · · · −◦Z2 −◦ · · · −◦X (or swap Z1 and Z2 in the path), then we could prove that the
sub-structure comprised of Z1 ∗−◦F1 ◦−◦ · · · ◦−◦Fk ◦−∗Z2 and a minimal tail-circle path Z1−◦ · · · −◦Z2 between Z1 and Z2

in M will never appear due to the balance and complete property of M; if there is not such a path Z1−◦ · · ·−◦Z2−◦ · · ·−◦X ,
then there must be a path Z1 −◦ · · · −◦X ◦− · · · ◦−Z2, we could prove that for each vertex between X and Z2 in the path, it
must be adjacent to Z1, for otherwise the balance and complete property of M is not fulfilled. Additionally, there cannot be
an arrowhead into Z1, Z2, for otherwise the −◦ edges will be transformed to→ in M due to ancestral property. Hence, if
there are Z1, Z2 ∈ Z such that F1 ◦−◦ F2 ◦−◦ · · · ◦−◦ Fk, k ≥ 2 is not bridged relative to {Z1, Z2}, according to Def. 5
and Prop. 3, there are Z1 ↔ Z2, which is impossible since there cannot be an arrowhead into Z1, Z2. We conclude the
impossibility of Z\{X} 6= ∅.
In the following it suffices to consider the case that C is non-empty. Suppose there are two vertices C1, C2 ∈ C such that
p1 : F1 ◦−◦F2 ◦−◦· · ·◦−◦Fk, k ≥ 2 is not bridged relative to {C1, C2}. We have proved that for any two vertices C1, C2 ∈ C,
they are adjacent. Additionally, every vertex V in p1 cannot be an ancestor of C1 in M, for otherwise there must be V ∈ C
when C1 ∈ C according toR2 orR11. Similarly, we conclude V is not an ancestor of C2. Hence, according to Def. 5 and
Prop. 3, there exists an unbridged path p = F1 ◦−◦ F2 ◦−◦ · · · ◦−◦ Fm,m ≥ 2 relative to {C1, C2}, where C1, C2 ∈ C and
there is an edge C1 ↔ C2.

Due to the soundness of the orientation rules and the correctness of BK, for any MAGM consistent with M and BK, there
is C1∗→ X ←∗C2 inM. Since there is C1 ←◦F1 ◦−◦ · · · ◦−◦ Fm◦→ C2 in M, it is evident that ∀F ∈ {F1, · · · , Fm}, F is
an ancestor of either C1 or C2 in the corresponding path of p inM.

Next, we first prove that X cannot be adjacent to any vertex in F1, · · · , Fm. Without loss of generality, suppose Fi is
adjacent to X . Hence, according to Prop. 3, Fi is not adjacent to C2 (if i = 1, then we consider C1 instead of C2). Hence
there must be C2∗→ X → Fi inM, for otherwise there are new unshielded colliders at X inM relative to M. However, we
have proven that Fi is an ancestor of either C1 or C2 in the corresponding path of p inM. Given C∗→ X → Fi → · · · → C,
where C ∈ {C1, C2}, the ancestral property are not fulfilled, which contradicts with the correct BK assumption. We thus
conclude that X cannot be adjacent to any vertex in F1, · · · , Fm.

Next, due to F1 ∈ PossDe(Z,M[−C])\Z, according to Lemma 1, there is a minimal possible directed path p′ =
〈X,K1, · · · ,Kt−1,Kt(= F1)〉, t ≥ 1 from X to F1 in M[PossDe(Z,M[−C])]. Since p′ is a minimal possible directed
path, and X is not adjacent to F2, 〈X,K1〉

⊕
p′′ is a minimal possible directed path from X to F2, where p′′ is a sub-path

of p[K1,Kt(= F1)]
⊕〈F1, F2〉. Hence, there is a minimal possible directed path from X to F2, where K1 is the vertex

adjacent to X in the path. Similarly, we could prove that for any vertex F ∈ {F1, · · · , Fm}, there is a minimal possible
directed path from X to F , where K1 is the vertex adjacent to X in the path. In this case,R12 should be triggered to orient
X ←∗K1, that is K1 ∈ C, contradicting with K1 ∈ PossDe(Z,M[−C]).

Hence, the four conditions in Lemma 2 are satisfied. We conclude the desired result according to Lemma 2.

Lemma 4. Consider a vertex X in a PMG M compatible with local transformation. Suppose we obtain a PMG H by
introducing non-empty singleton BK regarding X and using the proposed orientation rules (R1 −R16). If there is an edge
X ◦−∗ T in H , then there is a MAGM consistent with M and BK such that there is X ←∗T inM.

Proof. According to Lemma 3, we could always obtain a MAGM with X ←∗V for ∀V ∈ C and X −∗V for ∀V ∈ {V |
X ◦−∗ V in M}\C by the procedure in the proof of Lemma 2. Consider the edge X ◦−∗ T in H . We will prove that there is a
MAGM with an edge X ←∗T consistent with M and the BK. Suppose we can obtain a PMG H ′ from H by introducing
X ←∗T with the orientation rules R2,R11,R12,R16. Note here when we apply R16, we only consider the case that if
there is A∗→ B ◦−R, then orient B ◦−R as B ← R, as here we only introduce an additional arrowhead at X and care about
the identification of the marks at X .

Denote C′ = {V |V ∗→ X in H ′}\{V |V ∗→ X in M}. Evidently, we can divide C′ into two disjoint sets C1 and C2, where
C1 denotes the set of vertices C in Lemma 3, and C2 denotes the set of vertices {V |V ∗→ X in H ′}\{V |V ∗→ X in H}.
As we introduce X ←∗T based on H , C2 is not empty. It suffices to show that there is a MAGM consistent with M
such that C′ = {V |V ∗→ X inM}\{V |V ∗→ X in M}. Next, we adopt the similar ideas with Lemma 3. We will prove
that C′ fulfills the four conditions in Lemma 2. Note that the proof here is quite different from that of Lemma 3, as
here there is no correct BK assumption when we further incorporate X ←∗T . Note according to the definition of Z that
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Z = {V ∈ V(M)|V = X , or there is V −◦ · · · −◦ V ′ −◦X in M and V ′ 6∈ C}, Z relies on C. When we consider C′, to
distinguish them, we denote Z′ = {V ∈ V(M)|V = X , or there is V −◦ · · · −◦ V ′ −◦X in M and V ′ 6∈ C′}.
We first prove that either Z′\{X} or {V ∈ V|V ∗→ X in M or V ∈ C′} is empty. Suppose both Z′\{X} and {V ∈
V|V ∗→ X in M or V ∈ C′} are not empty. Suppose in H there is Z −◦X . According to Lemma 3, there is not a vertex
C ∈ C1 such that there is C∗→ X in H . It suffices to consider C ∈ C2. In this case there must be X ◦−∗ C in H . C must
be adjacent to Z, for otherwise there is X −∗C in H due toR7, contradiction. In this case, there is Z → X in H ′ due to
R16, thus Z ∈ C2. There cannot be Z ∈ Z′, contradiction. Hence, for any vertex V with an edge V −◦X in H , there is
V → X in H ′. In this case Z′\{X} = ∅, contradiction. We get the desired result.

Then, we will prove that PossDe(Z′,M[−C′])∩Pa(C′,M) = ∅. SupposeF ∈ PossDe(Z′,M[−C′])∩Pa(C′,M). Evidently
C′ is not empty, thus Z′\{X} is empty and F ∈ PossDe(X,M[−C′]) ∩ Pa(C′,M). Suppose there is C ∈ C′ such that
there is F → C. According to the proof of Lemma 3, C 6∈ C1, thus there is C ∈ C2. Due to F ∈ PossDe(X,M[−C′]),
there is a minimal possible directed path p from X to F in M. Suppose p = 〈X,F1, · · · , Fk(= F )〉, k ≥ 1. As
F ∈ PossDe(X,M[−C′]) and M satisfies the complete property, p is either X −∗F1 · · · −∗Fk in M or X ◦−∗ F1 · · ·Fk in
M. For the former case, there cannot be X ◦−∗ C in M, for otherwise the complete property of M is violated since there
cannot be X ←∗C in any MAGs consistent with M given Fk → C. Thus there must be X → C in M, which contradicts
with C ∈ C2. For the latter case, since C ∈ C2, if there is X ◦−∗ F1 in H , X ◦−∗ F1 should be oriented as X ←∗F1 byR2

orR11, which implies that F1 ∈ C2, contradicting with F1 ∈ PossDe(Z′,M[−C′]). If there is X −∗F1 in H , there must
be Fk−1 → C,Fk−2 → C, · · · , X → C in H triggered by R15 due to Fk → C (we omit the details), contradicting with
C ∈ C2. Hence F ∈ PossDe(Z′,M[−C′]) ∩ Pa(C′,M) is impossible.

Then, we prove that the subgraph M[C′] is a complete graph. According to the proof of Lemma 3, for any vertex
C1, C2 ∈ C1, C1 are adjacent to C2; for any vertex C1 ∈ C1 and C2 ∈ C2, C1 are adjacent to C2, for otherwise there is
X → C2 in H due to C1∗→ X , contradicting with C2 ∈ C2 which means that there is X ◦−∗ C2 in H .

We then prove that for C1, C2 ∈ C2, it is impossible that C1 is not adjacent to C2. Note X ◦−∗T is firstly oriented as X ←∗T
based on H . Since we only use the orientation rules R2,R11,R12,R16 to obtain H ′ based on H , the other additional
arrowheads at X are only triggered byR2,R11,R12,R16. We first consider the case that C1, C2 6= T . We consider which
rules triggers the transformation of X ◦−∗ C1 to X ←∗C1. For simplicity, we say vertex C is triggered by rule Ri if Ri

triggers the transformation of X ◦−∗ C to X ←∗C. It is impossible that there is C1 −◦X ◦−C2 in H , for otherwise there
is C1 −X − C2 in H due to R7. Note after we orient X ◦−∗ T as X ←∗T , we only apply R2,R11,R12,R16, in which
process there are no tails introduced. Hence if there is C1 −◦X in H ′, there must be C1 −◦X in H . Similarly, if there is
C2 −◦X in H ′, there must be C2 −◦X in H . Thus there is C1 −◦X ◦−C2 in H , contradiction. Hence it is impossible that
both C1, C2 are triggered byR16.

If C1 is triggered byR16 and C2 is triggered byR2,R11,R12. As we do not introduce new tails in H ′ relative to H , there
is C1 −◦X . Since C1 is not adjacent to C2, hence there cannot be C2 ∗−◦X , contradiction. Hence neither of C1, C2 could
be triggered byR16.

Note if a vertex V is triggered byR16, then an edgeX ◦−V is oriented asX ← V . Note this edge will not be a necessary part
of the sub-structures whereR2,R11,R12 are triggered, because the necessary arrowhead at X that activatesR2,R11,R12

is on an edge in the form of X◦→ V . Hence, in the following, we only need to consider the transformation triggered by
R2,R11,R12. Then, according to Def. 3, if X ←∗T triggers orienting X ◦−∗ T ′ as X ←∗T ′ byR2,R11, orR12, then T ′ is
prior to T . Recursively, we conclude that either (a) C1 and C2 are prior to T or (b) C1 or C2 is T . If both C1 and C2 are
prior to T , C1 and C2 are not adjacent, then according toR14, there is X → T in H , contradicting with X ◦−∗ T in H .

Then we consider the case that one of C1, C2 is T . Without loss of generality, suppose C1 = T . R2,R11, andR12 cannot
trigger a transformation of X ◦−∗ C2 to X ←∗C2 due to X ←∗C1 where C1 and C2 are not adjacent. If C2 is triggered
by R16, then there is X ◦−C2 in H , in which case there cannot be X ◦−C1(= T ) in H and C1 is not adjacent to C2,
contradiction.

Till now, we have proven the impossibility of all possible cases that C1 is triggered by R2,R11,R12,R16 and C2 is
triggered byR2,R11,R12,R16. Hence M[C′] is a complete graph.

In the following we will prove that M[PossDe(Z′,M[−C′])\Z′] is bridged relative to C′ ∪ Z′ in M. Suppose
M[PossDe(Z′,M[−C′])\Z′] is not bridged relative to C′ ∪Z′ in M for contradiction. Based on the similar proof process as
that for Lemma 3, according to Def. 5 and Prop. 3, there must exist an unbridged path p = F1 ◦−◦F2 ◦−◦ · · · ◦−◦Fm,m ≥ 2
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relative to {C1, C2}, where C1, C2 ∈ C′.

We then prove that X cannot be adjacent to any vertex in F1, · · · , Fm. Suppose X is not adjacent to F1, · · · , Fi−1 but
adjacent to Fi, i ≥ 2. There is a sub-structure comprised X,C1, F1, · · · , Fi, X , where any two non-consecutive vertices are
not adjacent. Note there must be a collider in this sub-structure and F1 ◦−◦ F2 ◦−◦ · · · ◦−◦ Fi in M. If there is not collider
C1∗→ X ←∗Fi in M, there will be only a collider F1 → C1 ← Fi due toR9, contradicting with C1 ∈ C′. Hence there is
X ←∗Fi in M, contradicting with Fi ∈ PossDe(Z′,M[−C′])\Z′. Hence if X is adjacent to some vertex in F1, · · · , Fm,
then X is adjacent to any vertex in F1, · · · , Fm.

Here we consider the case that X is adjacent to F1, · · · , Fm. According to the proof of Lemma 3, we have proven the
impossibility of C1, C2 ∈ C1. If C1 ∈ C1 and C2 ∈ C2, considering C1 is not adjacent to F2, there must be X → F2 and
F1 → F2 · · · → · · ·Fm → C2 in H according toR13. Thus there is X → C2 according toR8, contradicting with X ◦−∗C2

in H . We then consider the case that C1, C2 ∈ C2. Due to the complete graph M[C′], C1 is adjacent to C2. We consider
the sub-structure comprised of C1, F1, · · · , Fm, C2, where any two non-consecutive vertices are not adjacent except for an
edge connecting C1 and C2. In this case, if there is no unshielded collider F1∗→ C1 ←∗C2, there must be Fm → C2 ← C1

in M by R9, which contradicts with C2 ∈ Fm. Hence, there is an unshielded collier F1∗→ C1 ←∗C2 in M. Similarly,
there is an unshielded collider Fm∗→ C2 ←∗C1 in M. Hence there is C1 ↔ C2 in M. In the following, we will prove the
impossibility of C1 ↔ C2 in M.

We first consider the case C1 = T or C2 = T . Without loss of generality, suppose C1 = T . Consider the transformation
series is as J0(= T ), J1, · · · , Jt(= C2), t ≥ 2, i.e., when orienting X ◦−∗ T as X ←∗T , the orientation of X ◦−∗ Ji−1
triggers the transformation of X ◦−∗ Ji to X ←∗Ji by R2,R11,R12. Next, we will prove the impossibility of C1 ↔ C2.
We first consider the edge connecting J0 and J1. When X ◦−∗ J0 is oriented as X ←∗J0, X ◦−∗ J1 is oriented as X ←∗J1
byR2,R11,R12 (there are arrowheads at C2 thusR16 cannot trigger the transformation, and we have proven before that
R16 will not trigger the transformation ofR2,R11,R12). We discuss the rules that trigger the orientation. If it isR2, then
there must be J1 → J0 in M. If it isR11, then there must J1◦→ J0 in M (we omit some details here, which can be proved
according to the balance and completer property of M). If it is R12, then there must be J1◦→ J0 in M. Hence, there is
J1 → J0 or J1◦→ J0 in M. Similarly, we could prove that there is J2 → J1 or J2◦→ J1. As M[C′] is a complete graph,
J0 must be adjacent to J2. According to the balance property and the rules, there can only be J2 → J0 or J2◦→ J0 in
M. Recursively, for any vertex Ji, 1 ≤ i ≤ t, we could prove that there is Ji → J0 or Ji◦→ J0 in M. Hence there is
Jt(= C2) → J0(= T ) or Jt(= C2)◦→ J0(= T ), which contradicts with C2 ↔ T in M. Hence C1 = T or C2 = T is
impossible.

If C1 6= T and C2 6= T , then there is an unbridged path 〈F1, · · · , Fk〉 relative to {C1, C2} such that X ◦−∗ Fi for every
Fi, 1 ≤ i ≤ m. According to R14, there should be X → T in H , contradicts with X ◦−∗ T in H . Hence, X cannot be
adjacent to any vertex in F1, · · · , Fm.

Next, due to F1 ∈ PossDe(Z′,M[−C′]), according to Lemma 1, there is a minimal possible directed path p′ =
〈X,K1, · · · ,Kt−1,Kt(= F1)〉, t ≥ 1 from X to F1 in M[PossDe(Z′,M[−C′])]. Since p′ is a minimal possible di-
rected path, and X is not adjacent to F2, 〈X,K1〉

⊕
p′′ is a minimal possible directed path from X to F2, where p′′ is a

sub-path of p[K1,Kt(= F1)]
⊕〈F1, F2〉. Hence, there is a minimal possible directed path from X to F2, where K1 is

the vertex adjacent to X in the path. Similarly, we could prove that for any vertex F ∈ {F1, · · · , Fm}, there is a minimal
possible directed path from X to F , where K1 is the vertex adjacent to X in the path. In this case,R12 should be triggered
to orient X ←∗K1, that is K1 ∈ C′, contradicting with K1 ∈ PossDe(Z′,M[−C′]).
Hence, we have proven that the four conditions in Lemma 2 are satisfied. We conclude the desired result according to
Lemma 2. There is a MAGM consistent with M and BK such that there is X ←∗T inM.

Proof of Theorem 1. Combining Lemma 3 and Lemma 4, we conclude the desired result in Theorem 1.

D.3. Proof of Theorem 2

Proof. For MAGLIST-POLY and MAGLIST, they have the same outer loop that selects a vertex with circles and transforms
all the circles at this vertex. The only difference is, for MAGLIST, in each outer loop they enumerate all possible local
structures of the selected vertex and determine the validity of each local structure, while for MAGLIST-POLY, there is an
inner loop as shown in Function LOCALTRANSFORM of Alg. 1 to find all valid local structures. We will get the desired
result by proving that MAGLIST-POLY and MAGLIST obtain the same set of PMGs after each round of outer loop. Suppose
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in this outer loop, the input graph is a PMG M compatible with local transformation. Without loss of generality, suppose in
this round, we select vertex X and transform the circles at X . We consider MAGLIST-POLY in the following. We will prove
(a) by the inner loop MAGLIST-POLY can find all the valid local structures of X in the form of PMGs on Line 17 of Alg. 1,
where a valid local structure of X implies that there is a MAGM consistent with M such thatM has this local structure of
X , (b) the obtained graphs on Line 17 of Alg. 1 are PMGs compatible with local transformation.

(a) Denote C ⊆ {V |V ∗−◦X in M}. For a given set C, it dictates a local structure of X based on M such that the circle at
X on an edge between X and V is oriented as an arrowhead if V ∈ C and the circle is oriented as a tail if V 6∈ C. Hence,
we use {C}ours and {C}local to represent the local structures obtained by LOCALTRANSFORM and Wang et al. (2024a),
respectively. In the following we will prove that {C}ours set

= {C}local.
Since M is a PMG compatible with local transformation, M fulfills the complete condition, i.e., for every circle at X , it
could be an arrowhead in a MAGM1 consistent with M and a tail in a MAGM2 consistent with M. Hence it is valid to
enumerate it as an arrowhead and a tail, and the proposed rules are sound to incorporate singleton BK into M according
to Prop. 1. Without loss of generality, suppose we first enumerate X ◦−∗ V1 as X ←∗V1 and obtain an updated graph H1

using the proposed orientation rules. If there are circles at X in H1, suppose it is X ◦−∗ V2 without loss of generality, as
the proposed rules are locally complete for incorporating singleton BK into a PMG compatible with local transformation,
there must be MAGs consistent with H1 with X ←∗V2 and X −∗V2. Hence it is valid to enumerate the circle at X on
the edge between X and V2 as an arrowhead and a tail, and the proposed rules are also sound to incorporate singleton
BK into M. Suppose we enumerate X ◦−∗ V2 as X ←∗V2 and obtain an updated graph H2 using the proposed orientation
rules. Essentially, the process above is that we incorporate the singleton BK V1∗→ X ←∗V2 into M. Due to the locally
completeness of the proposed rules, it is also valid to enumerate another circle at X as an arrowhead and a tail. Repeat the
process above, for all the obtained local structures, it must be a valid local structure since the rules are locally complete, thus
{C}ours ⊆ {C}local.
For a valid local structure represented by C in {C}local, without loss of generality, suppose C = {V1, V2, · · · , Vk}.
Consider we enumerate the circles at X . In the first round, when we enumerate X ◦−∗ V1 as X ←∗V1, as the rules are
sound, we will not introduce a mark which contradicts with the valid local structure dictated by C. Hence, there is either
X ◦−∗ V2 or X ←∗V2 obtained by using the orientation rules. For the former case, we continue considering the circle at
X on the edge between X and V2. By enumerating it as an arrowhead and a tail, we will obtain a local structure with
X ←∗V2. And since the rules are sound and locally complete, we will not introduce a mark which contradicts with the valid
local structures dictated by C. For the later case, there have been X ←∗V2. Repeat the process above for V1, V2, · · · , Vd,
LOCALTRANSFORM can find a local structure represented by C. Thus there is {C}ours ⊇ {C}local.

Hence there is {C}ours set
= {C}local. That implies that LOCALTRANSFORM can find all and only the valid local structures

of X .

(b) In the process of updating the graph based on singleton BK regarding X with the proposed orientation rules, we use
the rulesR1 −R16. And after transforming all the circles at X , essentially, we introduce the local BK regarding X . Note
the rules used in MAGLIST are a proper subset ofR1 −R16, and Wang et al. (2024a) proved that the rules are sound and
complete for incorporating local BK into a PMG compatible with local transformation (Theorem 2 of Wang et al. (2024a)).
Hence, by usingR1 −R16 or the rules of Wang et al. (2024a), we can obtain the same PMGs. Since the obtained graph
by MAGLIST is a PMG compatible with local transformation, the obtained graph on Line 17 of Alg. 1 is also a PMG
compatible with local transformation.

In light of the fact that the input PAG P is a PMG compatible with local transformation, given the results (a) and (b) above,
we get the desired result by mathematical induction.

D.4. Proof of Theorem 3

Proof. According to Alg. 1, there are two nested loops. In each outer loop, we select one variable/vertex with circles. Then,
in each inner loop, we transform a circle at this vertex. Without loss of generality, suppose in the i-th round of outer loop,
the circles at Vi are transformed to non-circles. And we suppose the outer loop runs for more than one round. It is a trivial
case that the outer loop finishes in one round.

As discussed in the main paper, the complexity of implementing the orientation rules is O(m3d4), where m denotes the
number of edges and d denotes the number or vertices. For brevity, we denote this complexity by S.
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We first consider the complexity for an inner loop, i.e., the complexity of implementing Line 9 of Alg. 1 in one round. In
this round V1 is selected. Suppose there are k1 kinds of local structures of V1. Hence, by implementing Line 9 of Alg. 1, we
will find k1 PMGs. When the function LOCALTRANSFORM is triggered, a circle at V1 will be enumerated as an arrowhead
and a tail, hence we could use a binary tree Twithin to denote the process of finding all k1 PMGs, where each node denotes
a PMG obtained by enumerating a circle at V1 and using the orientation rules, and only the leaf node denotes the PMGs
with no-circles at V1. The binary tree is as Fig. 6, with only the difference that in the binary tree there are only the second
and third graphs in the second layer. Since the proposed rules are locally complete, every non-leaf node must have two
children nodes, i.e., there cannot be a non-leaf node with only one child node. In Tinner, denote the number of edges and
number of nodes by ‖E(Tinner)‖ and ‖V(Tinner)‖. Denote the number of leaf nodes and the nodes with two children by
n0 and n2. There is ‖E(Tinner)‖ = ‖V(Tinner)‖ − 1 = n0 + n2 − 1 and ‖E(Tinner)‖ = 2 ∗ n2. Hence, n2 = n0 − 1.
Since n0 = k1, there is ‖E(Tinner)‖ = 2k1 − 2. In the process of obtaining each PMG from the PMG in the parent node,
the proposed rules are incorporated. Hence the total complexity is (2k1 − 2)S.

We then consider the total complexity of implementing Alg. 1. After we incorporate the singleton BK regarding V1, we will
transform the circles at V2, · · · , Vd. Note that there are k1 local structures of X since there are k1 PMGs obtained in the
inner loop, where a local structure implies an orientation of all the circles at X . Suppose there are N MAGs consistent with
P . For the complexity T (N, d) of implementing Alg. 1 for P that contains d vertices with circles, there is

T (N, d) =

k1∑
i1=1

T (Ni1 , d− 1) + (2k1 − 2)S,

where Ni1 denotes the number of MAGs consistent with the PMG Mi1 that is obtained from P with the i1-th local structures
of V1, T (Ni1 , d− 1) denotes the complexity of implementing Alg. 1 for Mi1 .

We use an another search tree Touter to denote the process of finding all N MAGs, where each node in the j-th layer denotes
a PMG which is obtained from P and local structures of V1, · · · , Vj−1, and the leaf node denotes a MAG consistent with P .
The format of the search tree is as Fig. 10. In the second layer (j = 2), there are ki1 PMGs due to ki1 sub-structures of
V1. We consider the i1-th PMG Mi1 in the second layer. There are Ni1 MAGs consistent with Mi1 . Suppose there are k2i1
sub-structures of V2 given a PMG Mi1 . Using the calculation above, we can directly conclude that

T (Ni1 , d− 1) =

k2i1∑
i2=1

T (Ni1i2 , d− 2) + (2k2i1 − 2)S,

where k2i1 denotes the number of local structures of V2 for the PMG in the i1-th node on the second layer of Touter. Hence,
there is

T (N, d) =

k1∑
i1=1

k2i1∑
i2=1

T (Ni1i2 , d− 2) + 2S(k1 +

k1∑
i1=1

k2i1)− 4S.

Repeat the above process, we could conclude that

T (N, d) ≤ N + 2S(k1 +

k1∑
i1=1

k2i1 +

k1∑
i1=1

k2i1∑
i2=1

k3i1i2 + · · · )− 4S. (1)

Note k1 +
∑k1

i1=1 k2i1 +
∑k1

i1=1

∑k2i1
i2=1 k3i1i2 + · · · is essentially the number of edges in the search tree Touter. Hence, we

only need to consider the number of edges in Touter in the following.

Denote Z the number of edges in Touter. Denote the number of node which has j child nodes by mj . Without loss of
generality, suppose the maximum j equals to s. As Z equals to the number of edges in Touter, there are Z − 1 nodes in
Touter. Due to the completeness of the orientation rules for incorporating local BK, there does not exist a node with only
one child node. Hence m1 = 0. There is

Z = m1 + 2 ∗m2 + · · ·+ s ∗ms

= 2 ∗m2 + · · ·+ s ∗ms.
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Consider the number of nodes, there is

Z − 1 = m0 +m2 +m3 + · · ·+ms.

With the two equations above, there is

m0 =

s∑
j=2

(j − 1)mj − 1.

m0 is essentially the number of leaf nodes, which equals to the number of MAGs consistent with P . Hence,

s∑
j=2

(j − 1)mj = N + 1.

Therefore, considering there must be at least one mj 6= 0, j ≥ 2,

Z = m0 +m2 +m3 + · · ·+ms + 1

≤ m0 +

s∑
j=2

(j − 1)mj + 1

≤ 2N + 2.

Hence, according to Eq. 1, there is

T (N, d) ≤ N + 2S(2N + 2)− 4S

T (N, d)/N ≤ 1 + 4S.

Note S denotes O(m3d4), we conclude T (N, d)/N ≤ O(m3d4).

D.5. Proof of Proposition 2

Proof. We prove the soundness by contradiction.

ForR17, suppose A←∗B inM byR1. There must be A→ D inM. Due to the ancestral property and D −∗C, there can
only be D → C inM. Hence there is A→ C due to the ancestral property and C → B in any MAGM consistent with the
given PMG according toR1. Note in this case the sub-structure A→ C → B∗→ A contradicts with the ancestral property.
Hence A←∗B is impossible.

ForR18, suppose A→ B. As (a) D is a possible ancestor of T1 and D is a possible ancestor of T2, (b) T1 is not adjacent
to T2 or an unbridged path relative to {T1, T2}, (c) B ↔ D, in any MAG consistent with the given PMG, there is either
D → T1 or D → T2. Without loss of generality, suppose there is D → T1. There is D → T1 → · · · → A. In this case D is
an ancestor of B due to A→ B. However, there is D ↔ B, contradicting with the ancestral property.
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