
Vol.:(0123456789)

Machine Learning (2025) 114:94
https://doi.org/10.1007/s10994-024-06671-3

Capturing the context‑aware code change via dynamic
control flow graph for commit message generation

Yali Du1,2  · Ying Li1,2 · Yi‑Fan Ma1,2 · Ming Li1,2

Received: 27 May 2024 / Revised: 14 August 2024 / Accepted: 13 December 2024 /
Published online: 19 February 2025
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025

Abstract
Commit messages that summarize code changes of each commit in natural language help
developers understand code changes without digging into implementation details, thus
playing an essential role in comprehending software evolution. In constructing models for
automatic commit message generation, prior research has focused on extracting informa-
tion from the changed code hunks (i.e., code difference), while ignoring the unchanged
code hunks (i.e., code context). However, most studies often neglect the fact that the code
change is context-aware, that is the semantics of the code difference are heavily depend-
ent on its code context. To take the code context into account, a key challenge arises: the
extensive code context may overshadow the minuscule code difference in capturing the
changed semantics, which is a disadvantage to commit message generation. In this paper,
we propose the dynamic control flow graph (DCFG), which combines both the code con-
texts and code differences into one dynamic global–local structure. Based on DCFG, we
design a novel framework termed capturing the context-aware code change for commit
message generation ( C4

MG ), which attempts to model the changed semantics of the code
change based on the relevant code context, while avoiding being misled by the overwhelm-
ing amount of unchanged code context. Extensive experiments demonstrate that benefiting
from modeling the context-aware code change, C4

MG outperforms not only the state-of-
the-art open-source models but also the large language models (e.g., LLaMA3, GPT-4o,
and Gemini) on the commit message generation.

Editors: Kee-Eung Kim, Shou-De Lin.

 *	 Ming Li
	 lim@lamda.nju.edu.cn

	 Yali Du
	 duyl@lamda.nju.edu.cn

	 Ying Li
	 liy@lamda.nju.edu.cn

	 Yi‑Fan Ma
	 mayf@lamda.nju.edu.cn

1	 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023,
China

2	 School of Artificial Intelligence, Nanjing University, Nanjing 210023, China

https://orcid.org/0000-0001-7759-3906
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06671-3&domain=pdf

	 Machine Learning (2025) 114:9494  Page 2 of 23

Keywords  Machine learning · Commit message generation · Dynamic control flow graph

1  Introduction

When developers commit changed code to a version control system like Git, each com-
mit is supposed to be documented with a commit message. The commit message sum-
marizes the semantic change of the modified code in natural language, which makes it
easy for developers to understand the high-level intention behind the code change without
delving into the detailed implementation (Dong et al., 2022). However, manually writing
commit messages is time-consuming and labor-intensive. With modern software systems
evolving rapidly, although commit messages are vital for software maintenance, developers
often neglect the message due to the heavy burden. As the report in SourceForge1 indi-
cated, around 14% of commit messages in more than 23K open-source Java projects are
empty (Dyer et al., 2013). To tackle the ever-growing high cost of writing commit mes-
sages, commit message generation has drawn significant attention in the software mining
community.

Unlike other code understanding tasks handling one static version of code, commit mes-
sage generation is required to capture the changed semantics between the pre-changed and
post-changed versions. Hence, existing studies mostly focus on modeling the changed code
hunks (i.e., code difference), while ignoring the unchanged code hunks (i.e., code context)
for commit message generation (He et al., 2023; Wang et al., 2023). For example, CoDi-
sum (Xu et al., 2019) represents the code change by concatenating the flat token sequences
of pre-changed and post-changed code differences into one sequence. ATOM (Liu et al.,
2020) represents the code changes by concatenating the pre-changed and post-changed
paths of the abstract syntax trees (AST). However, in most modification scenarios, the
semantics of the changed code snippets have a dependency on the code context. If the code
context is discarded and only code differences are retained, the model may fall into the trap
of purely memorizing the differences without understanding their semantic meaning (Shi
et al., 2019).

Although a few works like (Xu et al., 2022) have attempted to introduce the context
as part of the input for commit message generation, the interaction of the code difference
and code context in code change learning is still limited by modeling independently before
combining and treating as equally important. However, as the code difference is only a tiny
fraction of the commit, if all the code context is retained without restriction, the huge con-
text may introduce unnecessary redundancy. For example, in the more than 25K commits
of repository tomcat,2 the changed tokens are no more than 14% of all the tokens. It indi-
cates that the code context is usually overly dominant in one commit in real-world devel-
opment, and the huge code context as one part of the input without restriction will over-
whelm the tiny code difference in the code change learning. This overwhelming misleads
the model to focus on the semantics of the code context rather than the changed semantics
of the small but critical code difference in the automatic commit message generation.

One question arises here: how to reserve the semantic dependency between the code
difference and the code context, while avoiding being misled by the overwhelming amount

1  https://sourceforge.net/
2  https://github.com/apache/tomcat.

Machine Learning (2025) 114:94	 Page 3 of 23  94

of the code context in commit message generation? Thus, we design the Dynamic Control
Flow Graph (DCFG) to emphasize the local code difference while leveraging the code
context to reserve the dependent relationship at the abstract level. The graph combines
both the code contexts and code differences into one dynamic global–local structure. In
the DCFG, the abstract control flow represents global code including code contexts, and
each node of the abstract control flow can be dynamically extended to a block-level control
flow. At the block level, the intra-block dependency can represent the code semantics of
the changed code blocks at a fine-grained level. Meanwhile, at the abstract level, the inter-
block dependency can ensure context-aware semantic correctness while avoiding redun-
dancy. This block is a compound statement (e.g., for loops, if statements, switch state-
ments) without including other compound statements internally.

As most prior methods mainly focus on the code difference of single granularity, they
are hard to directly adopt to capture the changed semantics guided by the global–local
DCFG. To this end, a new approach is proposed to capture the context-aware semantics
of the code change with the code context at the abstract level, while comparing the code
difference at a fine-grained level. Benefiting from the global–local structure information
of DCFG, a specific dynamic encoder is designed, including the block embedding module
to capture intra-block dependency, the pre-context fusion module to capture pre-changed
inter-block dependency, and the post-context fusion module to capture post-changed inter-
block dependency, respectively. Moreover, to avoid being misled by the overwhelming
amount of the code context, the code differences are amplified by the fine-grained code
difference learning module and then inputted into the message decoder to generate commit
messages. Additionally, a context invariance constraint is designed to preserve the consist-
ency of code context in the modification, that is the semantics imported by the unchanged
code context to the pre-changed block and post-changed block should be consistent.

In our work, we highlight modeling the code difference based on the relevant code con-
text, while avoiding being misled by the overwhelming amount of unchanged code context
in commit message generation. To represent the interaction in one commit, we design the
DCFG, which is a global–local graph. Benefiting from the control flow paths that reflect
the statement-level program behavior, the control flow graph provides a better representa-
tion of code semantics of the program execution (Ma et al., 2022), while the DCFG fur-
ther explores a better representation of the changed semantics for the modifications. We
propose a new framework termed capturing the context-aware code change for commit
message generation ( C4

MG ) to capture the changed semantics based on DCFG. To our
knowledge, this is the first attempt to focus on the trade-off between code differences and
code context in code change learning. Extensive experiments are conducted and the results
suggest the effectiveness of our approach. A new benchmark is constructed to expand the
application scope of the approach to file-level code changes. To summarize, we make the
following major contributions:

•	 We argue that it is crucial in commit message generation to reserve the dependency
between code difference and the code context while avoiding being misled by the over-
whelming amount of unchanged code context.

•	 We design a novel dynamic control flow graph to extract the changed semantics by
emphasizing the local code difference at the block level while leveraging the code con-
text to reserve the dependent relationship at the abstract level.

•	 We propose a new commit message generation technique termed C4MG , which cap-
tures the changed semantics compactly and adequately based on DCFG. Extensive
experiments demonstrate that C4MG outperforms not only the state-of-the-art open-

	 Machine Learning (2025) 114:9494  Page 4 of 23

source models but also the large language models (e.g., LLaMA3, GPT-4o, and Gem-
ini) on the automatic commit message generation task.

2 � Related works

The previous works on commit message generation can be categorized as rule-based,
retrieval-based, and learning-based techniques.

The rule-based techniques process code commits with pre-defined patterns or templates
to model the connections between code changes and natural languages (Buse and Weimer,
2010; Shen et al., 2016; Vásquez et al., 2015; Moreno et al., 2013). For example, Cortés-
Coy et al. (2014) processed the code commit as commit stereotype and type of changes
with metrics to fill the pre-defined template of commit messages.

The retrieval-based approaches utilize informational retrieval techniques to adopt exist-
ing commit messages with similar code commits (Huang et al., 2017; Liu et al., 2018;
Hoang et al., 2020). However, the manually specified rules or templates in rule-based tech-
niques can not work effectively for the code changes that may not apply to the rules. The
retrieval-based techniques are limited by the retrieved database, which can only provide
existing commit messages as output, rather than generating new ones.

Recently, some researchers have tried to generate commit messages through learning-
based techniques (Liu et al., 2019, 2020; Jung, 2021; Nie et al., 2021; Wang et al., 2024;
Tao et al., 2024). For example, Jiang et al. (2017) and Loyola et al. (2017) applied machine
translation models to encode the code difference and decoded commit messages using
LSTM. Inspired by the remarkable achievements in learning programs from the structural
perspective (Sun et al., 2019; Bui et al., 2021; Xie et al., 2021), several researchers cap-
tured the code change with the structural difference. Dong et al. (2022) constructed a novel
code change graph based on the ASTs, along with the edit operation relationships from the
old version to the new version to learn the semantic features. However, these works ignore
the important code context. Although Xu et al. (2022) on the GumTree (Falleri et al., 2014)
tool attempted to import code context beyond code difference, they were modeled by inde-
pendent encoders and then concatenated as inputs of the decoder. It is still limited by set-
ting them as equally important, and the huge code context would overwhelm the tiny code
difference in generation.

3 � Dynamic control flow graph

To reserve the dependency between the code difference and the code context while avoid-
ing the redundancy of the code context, the intra-block dependency of changed code blocks
should be amplified. In contrast, the inter-block dependency should be considered at the
abstract level. Therefore, we design DCFG, which is a global–local graph for compactly
representing code changes in one commit. As illustrated in Fig. 1, one code change can be
unfolded to a DCFG including an abstract control flow graph as the backbone and block-
level control flow graphs as the fine-grained expansion. Benefiting from the control flow
paths that reflect the statement-level program behavior, the control flow graph provides
a better representation of code semantics of the program execution (Ma et al., 2022),
while the DCFG further explores a better representation of the changed semantics for the
modifications.

Machine Learning (2025) 114:94	 Page 5 of 23  94

Fi
g.

 1
  

A
n

ex
am

pl
e

of
 c

on
str

uc
tin

g
th

e
D

C
FG

 o
f o

ne
 c

om
m

it,
 w

he
re

 e
ac

h
no

de
 o

f a
bs

tra
ct

ed
 c

on
tro

l fl
ow

 c
an

 b
e

ex
pl

ai
ne

d
to

 a
 b

lo
ck

-le
ve

l c
on

tro
l fl

ow

	 Machine Learning (2025) 114:9494  Page 6 of 23

Obtaining two versions of pre-changed and post-changed code files from one code com-
mit can be achieved by tools such as git diff to perform line-by-line comparisons, resulting
in code difference indicated by markers (e.g., ‘+’, ‘-’) denoting added or deleted lines and
code context without markers, respectively. For single-file changes, code modifications can
be one or multiple disjoint parts. Modeling all code in the file is theoretically reasonable,
but in reality, code files can be large, containing thousands of lines, and not all context is
relevant to code changes, resulting in noise. To adapt to different sizes of code files, we
employ program analysis techniques to extract relevant context. This method utilizes vari-
able analysis and call graph analysis. Variable analysis extracts all variable names from the
code differences and matches them within the file. Code blocks containing any variable
from the set are preserved and extracted. The call graph obtained by statistic analysis rep-
resents the relationship between methods using a directed graph, where nodes represent
methods, and the directed edge (a, b) indicates that method a calls method b. cIn the case
of Java, specific bytecode instructions may be triggered by some method invocations, such
as invokestatic for static method calls and invokeinterface for interface method calls. By
locating these instructions, the positions of the called methods are determined. All succes-
sor nodes of modified methods in the file (i.e., all nodes called by the modified method) are
retained as relevant context. The extracted parts are concatenated in the original order as
subsequent input.

Both pre-changed and post-changed versions of code files are transformed into corre-
sponding old control flow graph: Gold

0
 and new control flow graph Gnew

0
 . For nodes in Gold

0
 ,

if the current node belongs to a compound statement (e.g., for loops, if statements, switch
statements) without including other compound statements internally, nodes within the
compound statement are merged and abstracted into a new node in the pre-changed abstract
CFG Gold

a
 : ( Nold

a
 , Eold

a
 ), inheriting the connectivity with internal and external nodes, and

the dependency among the merged nodes are stored as one instance of the old block-level
CFG set G̃old

b
 . A similar abstract logic is applied to Gnew

0
 to obtain the post-changed abstract

CFG Gnew
a

 : ( Nnew
a

 , Enew
a

 ), where the new block-level CFG set is G̃new
b

 . Then the set of all the
block-level CFGs is G̃b = G̃old

b

⋃
G̃new

b
= {G1

b
,G2

b
,⋯ GI

b
} , where Gi

b
 is the i-th block-level

CFG. The resulting abstract control flow combine the graph structure of Gold
a

 and Gnew
a

 , rep-
resented as Gabs:(Nabs , Eabs).

4 � The proposed approach ( C4
MG)

As most prior methods mainly focus on the code difference of single granularity, they are
hard to directly adopt to capture the changed semantics guided by the global–local struc-
ture DCFG. Thus, a new approach C4MG is proposed to capture the semantics of the code
change with code context at the abstract level, while comparing the code difference at a
fine-grained level. As illustrated in Fig. 2, for one code change, the changed code blocks
and the related code context are extracted and further parsed into DCFG, then the dynamic
encoder is designed to model the context-aware code change, guided by the dependency
on DCFG. Moreover, a context invariance constraint is designed to maintain the context
semantic consistency, making the training reasonable and controllable.

The output of the dynamic encoder module serves as the input to the Transformer decoder
along with a classification fully connected layer, which also incorporates a pointer network
to obtain the probability distribution for the final sequence prediction. The decoder makes
auto-regressive predictions, and the predictions are compared to the ground truth using

Machine Learning (2025) 114:94	 Page 7 of 23  94

Fi
g.

 2
  

Th
e

ov
er

al
l f

ra
m

ew
or

k
of

 th
e
C
4
M
G

 , w
hi

ch
 ta

ke
s

th
e

co
m

m
it

as
 in

pu
t,

ut
ili

ze
s

dy
na

m
ic

 e
nc

od
er

 a
nd

 g
en

er
at

es
 c

om
m

it
m

es
sa

ge
 b

y
m

es
sa

ge
 d

ec
od

er
. T

he
 d

yn
am

ic

en
co

de
r i

s g
ui

de
d

by
 m

as
ke

d
at

te
nt

io
n

m
at

ric
s o

bt
ai

ne
d

fro
m

 D
C

FG
 a

nd
 c

on
str

ai
ne

d
by

 c
on

te
xt

 in
va

ria
nc

e

	 Machine Learning (2025) 114:9494  Page 8 of 23

cross-entropy loss. The commit message generation loss LCE , along with the context invari-
ance loss LInv of the context invariance constraint, is combined for joint training:

while � is the trade-off hyper-parameter.

4.1 � Dynamic encoder

At first, each token of the commit is embedded by the initial embedding layer as follows:

where |Nabs| is the number of blocks of the commit, |Ni
b
| is the number of nodes in the i-th

block-level CFG, Ki
j
 is the number of tokens in the j-th node of the i-th block. In practice,

an additional special token in {[add], [delete], [context]} is added at the beginning of each
statement, which is similar to the [cls] token used in BERT (Devlin et al., 2019).

To capture the changed semantics based on DCFG, three kinds of dependency are utilized
to guide the dynamic encoder with structural-guided attention:

1)	 intra-block dependency, which maintains the interaction between the nodes in one block
based on the block-level CFG;

2)	 pre-changed inter-block dependency, which maintains the interaction between the pre-
changed blocks and code context based on the pre-changed abstract CFG;

3)	 post-changed inter-block dependency, which maintains the interaction between the post-
changed blocks and code context based on the post-changed abstract CFG.

4.1.1 � Block embedding

The block embedding captures the intra-block dependency of the block-level CFG. The state-
ments of code files of the commit are initially encoded as statements embedding. For the
nodes of the block-level CFG, the statements of the same node are spliced together as one

sequence. A self-attention network Attnb is leveraged to model each block-level CFG. The j-th

node of Ni
b
 can unfold into a sequence t̂ij = [t1

ij
, t2

ij
,⋯ , t

Ki
j

ij
] following the order in the source

code. Then the i-th block of Nabs can be unfolded into a sequence by concatenating the embed-
dings of nodes: [t̂i1, t̂i2,⋯ , t̂i|Ni

b
|] . For each block, a self-attention module is applied to the

sequence of the nodes to learn the intra-block dependency of corresponding block-level CFGs.
The representation of the i-th block is computed as follows:

To leverage the intra-block dependency of the block-level CFG in Gi
b
 , we add a masking

matrix Mi
b
 on the attention weight of the corresponding Attnb . The value of the masking

matrix Mi
b
 relies on the node dependency in the block-level CFG. As shown in Fig. 2, each

row in the masking matrix denotes the attention masking of other nodes to the correspond-
ing node, where only nodes with white boxes placed allow being attended to. Formally, the
intra-block masked attention matrix of the i-th block-level CFG is formulated as Mi

b
:

(1)L = LCE + �LInv,

(2)tk
ij
= Embedding(tk

ij
), ∀i ∈ [1, |Nabs|], j ∈ [1, |Ni

b
|], k ∈ [1,Ki

j
],

(3)ui1
b
, ui2

b
,⋯ , u

i|Ni
b
|

b
t= Attnb([t̂i1, t̂i2,⋯ , t̂i|Ni

b
|],Mi

b
), ∀i ∈ [1, |Nabs|].

Machine Learning (2025) 114:94	 Page 9 of 23  94

where p, q are any two tokens in the block, ep,q is the edge between the node which p
belongs to and the node which q belongs to, the set Ei

b
 indicates the relation between the

nodes in the i-th block-level CFG Gi
b
 , and ep,q ∈ Ei

b
 means there is a direct edge from the

node which p belongs to to the node which q belongs to. Specifically, the masked attention
function blocks the transmission of unrelated tokens by setting the attention score to infi-
nitely negative.

Subsequently, the mean pooling is applied to unify the features of all nodes of one
block as the representation of the block in the following context fusion:

where ui
b
 denotes the representation of the i-th block of the abstract control flow of DCFG.

4.1.2 � Pre‑changed context fusion

As the code difference has a dependency on code context outside changed blocks, the
semantics of the pre-changed blocks are captured more adequately with interaction
with the code context. The pre-changed context fusion captures the pre-changed inter-
block dependency of the abstract CFG. As illustrated in Fig. 2, the representations of
blocks belonging to pre-changed code files are filtered and combined as the sequence
[u1

b
, u2

b
,⋯ , u

|Nabs|
b

] , which involves |Nold
a

| nodes of Gold
a

 . A self-attention network Attnold
fuse

is leveraged to fuse the semantics based on the pre-changed abstract-level control flow.
The pre-changed abstract embedding can be defined as:

Suppose one block belongs to Nold
a

 but not belong to Nnew
a

 , the context-ware embedding
of this block can be obtained by interaction with other blocks by the pre-changed context
fusion. We add a masking matrix Mold

a
 on the attention weight of Attnold

fuse
 . The value of the

masking matrix Mold
a

 relies on the pre-changed inter-block dependency in the pre-changed
abstract block CFG Gold

a
 . Formally, the pre-changed inter-block masked attention matrix of

the pre-changed abstract CFG Gold
a

 is formulated as Mold
a

:

where p, q are any two blocks in the pre-changed abstract CFG, ep,q is the edge between the
block which p belongs to and the block which q belongs to, the set Eold

a
 indicates the rela-

tion between the blocks in the pre-changed abstract CFG Gold
a

 , and ep,q ∈ Eold
a

 means there
is a direct edge from the block p to the block q.

(4)Mi
b
[p, q] =

⎧⎪⎨⎪⎩

0 p, q ∈ {[add], [delete], [context]} or

p, q belong to the same node or

ep,q ∈ Ei
b
;

−∞ otherwise,

(5)ui
b
=

1

|Ni
b
|

∑
l∈[1,|Ni

b
|]
uil
b
, ∀i ∈ [1, |Nabs|],

(6)
[
�
1
old
, �2

old
,⋯ , �

|Nabs|
old

]
= Attnold

fuse

(
[�1

b
, �2

b
,⋯ , �

|Nabs
a

|
b

],Mold
a

)
.

(7)Mold
a

[p, q] =

{
0 ep,q ∈ Eold

a
;

−∞ otherwise,

	 Machine Learning (2025) 114:9494  Page 10 of 23

4.1.3 � Post‑changed context fusion

The post-changed context fusion captures the post-changed inter-block dependency of the
abstract CFG. Similarly, the representations of blocks belonging to post-changed code files are
filtered and combined as the node sequence [u1

b
, u2

b
,⋯ , u

|Nabs|
b

] , which involves |Nnew
a

| nodes
of Gnew

a
 . A self-attention network Attnnew

fuse
 is leveraged to fuse the semantics based on the post-

changed abstract-level control flow. The post-changed abstract embedding can be defined as:

Similarly, suppose one block belongs to Nnew
a

 but does not belong to Nold
a

 , the context-
ware embedding of this block can be obtained by interaction with other blocks by the post-
changed context fusion. We add a masking matrix Mnew

a
 on the attention weight of Attnnew

fuse
 .

The value of the masking matrix Mnew
a

 relies on the post-changed inter-block dependency in
the post-changed abstract block CFG Gnew

a
 . Formally, the post-changed inter-block masked

attention matrix of the post-changed abstract CFG Gnew
a

 is formulated as Mnew
a

:

where p, q are any two blocks in the post-changed abstract CFG, ep,q is the edge between
the block which p belongs to and the block which q belongs to, the set Enew

a
 indicates the

relation between the blocks in the post-changed abstract CFG Gnew
a

 , and ep,q ∈ Enew
a

 means
there is a direct edge from the block p to the block q.

4.1.4 � Fine‑grained code difference learning

Fine-grained code difference learning is designed to amplify the code change by comparing
the fine-grained representations of the code difference while superimposing the context-aware
representations of the changed blocks. Usually, there is more than one changed block, all the
changed blocks are concatenated in the order of them in the source code and superposed by
the corresponding context-aware vectors.

For instance, as illustrated in Fig. 2, the i-th block is changed to the j-th block of the DCFG.
The pre-changed and post-changed context-aware vectors vi

old
 and vjnew are replicated and

superposed on the corresponding representations of the pre-changed block and post-changed
block. We define [z1

old
, z2

old
,⋯ , z

|Ni
b
|

old
] and [z1

new
, z2

new
,⋯ , z

|Nj

b
|

new] as the fine-grained representa-
tions of the pre-changed block and post-change block.

Then a self-attention network Attndiff is leveraged to capture the code difference.

(8)
[
v1
new

, v2
new

,⋯ , v|Nabs|
new

]
= Attnnew

fuse

(
[u1

b
, u2

b
,⋯ , u

|Nabs|
b

],Mnew
a

)
.

(9)Mnew
a

[p, q] =

{
0 ep,q ∈ Enew

a
;

−∞ otherwise,

(10)zl
old

= vi
old

+ uil
b
, ∀l ∈ [1, |Ni

b
|],

(11)zl
new

= vj
new

+ u
jl

b
, ∀l ∈ [1, |Nj

b
|].

(12)ẑ = Attndiff

(
[z1

old
, z2

old
,⋯ , z

|Ni
b
|

old
, z1

new
, z2

new
,⋯ , z

|Nj

b
|

new

)
.

Machine Learning (2025) 114:94	 Page 11 of 23  94

4.2 � Message decoder

The latent representations obtained by the dynamic encoder module in Sect. 4.1 are
denoted as ẑ , which serve as inputs to the message decoder module. The C4MG adopts
a standard Transformer decoder consisting of multiple decoder layers and a classification
fully connected layer. The probability distribution predicted by the decoder is combined
with the copy probability distribution obtained from the pointer network to obtain the final
probability distribution for prediction. Consistent with the baselines, which used cross-
entropy loss to compute the loss function for the sequence of tokens, the commit message
generation loss is as follows:

where m is the length of the message, yt is the t-th token embedding of the ground truth,
and ŷ<t is the first t − 1 predicted token embeddings of the generated message.

4.3 � Context invariance constraint

Abstract control flow and block-level control flow not only have a global–local relation but
also satisfy an additional constraint, that is the semantics imported by code context to the
pre-changed block and post-changed block should be consistent in the pre-changed context
fusion and post-changed context fusion. As defined above, the i-th pre-changed block is
represented as ui

b
 , and the j-th post-changed block is represented as uj

b
 . vi

old
 denotes the rep-

resentation of the i-th pre-changed block after pre-changed context fusion, and vjnew denotes
the representation of the j-th post-changed block after post-changed context fusion. Then
the following constraint holds:

To introduce this constraint into the model, this section introduces a context invariance loss
LInv that leverages the module to bridge the representations of both sides of the equation in
a high-dimensional feature space, which is calculated based on the mean square loss:

In the high-dimensional feature space, the context invariance constraint can reduce the vec-
tor distance from all directions to preserve the constraint of consistent code context, mak-
ing the training reasonable and controllable.

5 � Experiment

To evaluate our proposed model, we conduct extensive experiments on the large dataset.
In this section, we elaborate on the datasets, baselines, metrics and implementation, and
experiment results.

(13)
LCE = − logP(y�ẑ;𝜃)

= −
∑m

t=1
logP(yt�ŷ<t, ẑ;𝜃),

(14)vi
old

− ui
b
= vj

new
− u

j

b
.

(15)LInv =
((

vi
old

− ui
b

)
−
(
vj
new

− u
j

b

))2

.

	 Machine Learning (2025) 114:9494  Page 12 of 23

5.1 � Dataset

Although a few datasets of commit message generation have been proposed, a limita-
tion of most datasets is only contain code differences and lack of context. Among the
few datasets that include context (Xu et al., 2022), the granularity of code changes is
very small, typically limited to individual code blocks or primarily focused on changes
within a single function. However, code modifications exhibit hierarchical relation-
ships, where each code change can involve multiple file modifications, and each file may
have multiple block-level modifications, further extending to line-level and token-level
changes. To model the file-level code changes, a completely new dataset is constructed
to accommodate the more general application scenarios.

The file-level dataset is collected from the open-source version control platform
GitHub. After the filtering and preprocessing as described in the Appendix, a total of
110,116 commit-message pairs are reserved in the dataset. To facilitate training deep
learning models, all data in the dataset are randomly shuffled, with 80% as the train set,
10% as the validation set, and 10% as the test set. The statistics of the proposed dataset
are shown in Table 1.

5.2 � Baselines

The start-of-the-art methods in commit message generation are compared.

•	 NMT (Jiang et al., 2017; Loyola et al., 2017; Hal, 2019) adopts attention-based RNN
encoder-decoder models to generate commit messages.

•	 NNGen (Liu et al., 2018) is an information retrieval approach. It re-uses the message
from the most similar code change for a given code change.

•	 CoDiSum (Xu et al., 2019) models both code skeleton and code semantics, and it also
includes the copy mechanism.

•	 ATOM (Liu et al., 2020) models syntactic regularities by encoding the paths between
leaf nodes in the ASTs, but does not consider the naturalness of code.

•	 CoMEG (Xu et al., 2022) models code context and code difference by independent
encoders then concatenated as equal important inputs of the decoder.

•	 COMU (Wang et al., 2024) models the code change by extracting multi-grained infor-
mation from the changed code at the line and AST levels.

•	 KADEL (Tao et al., 2024) builds a commit knowledge model and designs a novel
dynamic denoising training method to achieve more effective training.

Table 1   The statistics of the proposed dataset, where avg-commit is the average length of the commits, avg-
diff is the average length of the changed blocks, avg-block is the average number of the blocks in one com-
mit, avg-node is the average number of the nodes in one block, and avg-msg is the average length of the
commit messages

partition number avg-commit avg-diff avg-block avg-node avg-msg

training 88090 271.05 13.37 24.00 1.81 8.36
validation 11013 270.57 13.70 23.93 1.79 8.37
testing 11013 268.23 13.12 23.91 1.79 8.39

Machine Learning (2025) 114:94	 Page 13 of 23  94

In addition, several widely used large pre-trained models in software mining are com-
pared as a straightforward way to treat code context and code difference as input equally,
including CodeBERT (Feng et al., 2020), DOBF (Lachaux et al., 2021), and GraphCode-
BERT (Guo et al., 2021), which are encoder-only model and they are spliced onto the same
decoder as our method to be fine-tuned. And the encoder-decoder model CodeT5 (Wang
et al., 2021) is also fine-tuned as one baseline. All the tokens including code differences
and code contexts are inputted into the pre-trained model separated by the sign tokens.
Moreover, the advanced LLMs including DeepSeek-Coder (Guo et al., 2024), Cod-
eQwen (Bai et al., 2023), LLaMA3 (Touvron et al., 2023), GPT−3.5 (Ouyang et al., 2022),
GPT-4o (Achiam et al., 2023), and Gemini (Anil et al. (2023) are also evaluated on the
dataset. For the LLMs, the proper prompts are given to elicit desired responses for the
commit message generation.

5.3 � Metrics and implementation

We employ three widely used metrics in the field of natural language generation to evalu-
ate the quality of the generated results. BLEU is the most popular lexical similar metric
in natural language processing, originated in 2002 from the machine translation research
community (Papineni et al., 2002). BLEU works by comparing n-grams in the prediction
and reference, with a penalty for overly short sentences. BLEU-1/2/3/4 correspond to the
scores of unigram, 2-grams, 3-grams, and 4-grams, respectively.

where the weights wn =
1

N
 , c, r are the lengths of the candidate and reference sequences

respectively, BP equals exp (1 − r∕c) if c ≤ r , otherwise it is 1. Rouge-L provides an
F-score based on the longest common sub-sequence (LCS), which compares the similarity
between two given texts. Meteor indicates a weighted F-score based on mapping unigrams
and a penalty function for incorrect word order, where Fmean is computed with the unigram
precision (P) and the unigram recall (R):

Penalty is levied for fragmented matches as the ratio of matched chunk number to match
the unigram number.

In the experimental setup, the embedding dimension for the vocabulary is set to 512,
and � is set as 0.1. During the training phase, the maximum number of epochs is set to 50,
and early stopping is employed to prevent overfitting. The initial embedding layer is initial-
ized by the parameters of CodeBERT (Feng et al., 2020) to accelerate the training process.
The Attnb , Attn⋅fuse and Attn⋅

diff
 are 2 layer attention networks, and each layer contains 8

attention heads, with a hidden embedding dimension of 512 and a feed-forward dimension
of 2048. The decoders consist of 6 stacked layers, with each layer containing 8 attention
heads. During the training phase, the maximum number of epochs is set to 50, and early
stopping is employed to prevent overfitting. Loshchilov and Hutter (2017) optimizer and
a multi-step learning rate scheduler are used, with an initial learning rate of 2e−4 . The

(16)BLEU-N = BP × exp

(
N∑
n=1

wn log pn

)
, N ∈ {1, 2, 3, 4}

(17)Meteor = Fmean × (1 − Penalty),

(18)Fmean =
10PR

R + 9P
.

	 Machine Learning (2025) 114:9494  Page 14 of 23

training batch size is 64 with a dropout rate of 0.1. All models are built using PyTorch on
the Ubuntu operating system and trained on 8 Nvidia Tesla V100 GPUs. All the baselines
are trained on the training set, and the hyper-parameters are chosen with the best perfor-
mance by the validation set.

5.4 � Overall performance comparison

Table 2 presents the performance of baselines on the dataset. The best experimental result
for each metric is highlighted in bold. Overall, C4MG achieves significant improvements
on all metrics and outperforms the state-of-the-art approach. Moreover, although AST-
based approaches such as ATOM, CoMEG, and COMU demonstrated notable improve-
ments compared to sequence models, the control-flow-based model in this paper gener-
ally exhibited superior performance. This indicates the dynamic control flow graph is more
effective than existing code structures for modeling the dynamic code changes in commit
message generation, and validates the importance of program execution information in
code understanding, which provides significant insights for future work.

Table 3 presents the performance of pre-trained models and large language models on
the dataset. The pre-train models are fine-tuned on the same training dataset as our method,
and the large language models are guided by the proper prompt. With the number of param-
eters increasing, the performance of large language models in commit message generation
is gradually growing. But compared with the two best performing large language models,
GPT-4o and Gemini, the C4MG have achieved comparable performance with fewer param-
eters in the specific task. The Student’s t-test is conducted between our technique and other
baselines in Table 2 and Table 3, and the results show that the improvements are significant
with p < 0.01.

5.5 � Ablation study

To validate the effectiveness of different components, various configurations of the
model are created by removing specific components. Table 4 presents the performance
of different configurations of the C4MG . Each of the components in the dynamic
encoder is removed individually to observe the changes in model performance. The

Table 2   The experimental results of the start-of-the-art methods of commit message generation

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Meteor

NMT (Loyola et al., 2017) 16.170 14.430 12.974 13.524 12.320 4.434
NNGen (Liu et al., 2018) 18.735 17.179 17.256 17.949 12.500 6.551
CoDiSum(Xu et al., 2019) 11.796 10.457 8.256 8.008 7.020 2.725
CoMEG (Xu et al., 2022) 15.717 14.040 12.777 13.440 11.385 4.453
ATOM (Liu et al., 2020) 19.168 17.637 16.517 17.393 12.215 6.568
COMU (Wang et al., 2024) 16.701 14.745 11.536 10.995 7.870 2.410
KADEL (Tao et al., 2024) 19.679 18.783 17.020 16.772 12.389 6.667
C4MG 22.486 21.182 20.387 21.497 15.021 8.731
Improvement (w.r.t best) +14.3% +12.8% +18.1% +19.8% +20.2% +31.0%

Machine Learning (2025) 114:94	 Page 15 of 23  94

removal of any of the components indeed caused a performance decrease, indicating
the rationality and effectiveness of these components. Among them, the experimental
results show that removing the fine-grained code difference learning resulted in the larg-
est decline. It is because, in the configuration of w∕o Fine-grained. , all the embeddings
of pre-changed context fusion and post-changed context fusion are concatenated as the
input of the message decoder without superposed on the changed blocks representa-
tions, which causes the model to mislead by the overwhelming amount of the code con-
text and ignore the subtle changes. The phenomenon has supported the motivation of
our work. Moreover, it can be observed that removing the context invariance leads to a
decline in all metrics. This module utilizes constraints to further restrict the invariance
of code context in the dynamic modeling process, preventing feature representations
from becoming scattered.

Table 3   The experimental results of the pre-trained models and large language models

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Meteor

Pre-trained Models
DOBF 13.491 12.048 10.117 10.126 9.657 3.189
CodeBERT 16.978 15.335 13.979 14.604 13.472 4.951
GraphCodeBERT 18.486 17.006 17.820 16.136 13.396 6.473
CodeT5 19.527 17.820 18.486 17.006 13.406 5.333
Large Language Models
DeepSeek-Coder-1.3B 6.285 5.193 5.016 5.073 3.591 2.412
DeepSeek-Coder-6.7B 17.069 13.885 13.233 13.454 9.380 5.837
CodeQwen1.5-7B 12.888 10.374 9.880 9.946 6.587 2.285
LLaMA3-8B 15.123 11.554 10.585 10.427 10.041 6.458
LLaMA3-70B-Instruct 18.049 14.637 13.700 13.524 10.365 7.173
GPT−3.5 19.637 16.196 15.657 16.225 11.028 6.100
GPT-4o 20.150 16.613 15.488 15.749 14.078 7.912
Gemini 21.555 17.712 17.775 19.677 12.083 7.030
C4MG 22.486 21.182 20.387 21.497 15.021 8.731
Improvement (w.r.t best) +4.3% +18.9% +10.3% +9.2% +6.7% +10.4%

Table 4   The performance of different configurations of C4
MG in terms of BLEU-1/2/3/4, Rouge-L, and

Meteor

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Meteor

w∕o Block Embedding 17.642 15.988 16.624 17.152 12.591 6.240
w∕o Pre Context Fusion 18.176 18.213 16.153 16.681 13.467 6.267
w∕o Post Context Fusion 18.697 16.965 17.415 18.838 14.516 6.860
w∕o Fine-grained 17.091 15.135 15.481 16.785 13.457 6.179
w∕o Context Invariance 19.245 17.837 17.297 18.983 13.407 7.035
C4MG 22.486 21.182 20.387 21.497 15.021 8.731

	 Machine Learning (2025) 114:9494  Page 16 of 23

6 � Human evaluation

To further study the quality of generated commit messages from the perspective of devel-
opers, we perform a human evaluation. We compare C4MG with the retrieval-based tech-
nique NNGen and the learning-based technique GPT−3.5. We invite ten developers to par-
ticipate in this study, who have experience in Java programming language ranging from 1
to 3 years.3

6.1 � Study design

Following previous works (Liu et al., 2020; Dong et al., 2022), we randomly select 100
commits from the testing set and design a questionnaire for human evaluation. For each
commit, the questionnaire includes the code change, the ground truth commit message, and
the commit messages generated by C4MG as well as the compared techniques. Each invited
participant is asked to score the commit messages generated by three techniques. The score
ranges from 0 to 4, and a higher score indicates a higher similarity between the generated
commit message and the ground truth commit message. We follow the existing scoring
criterion (Dong et al., 2022), and a detailed definition is reported in Table 5. To avoid bias,
all three techniques are anonymous in the questionnaire and each participant fills in the
questionnaire separately.

6.2 � Human evaluation results

For each technique, we measure the quality of its generated commit message based on the
average scores of ten participants. As shown in Table 5, C4MG exhibits the largest ratio of
high-quality commit messages while the lowest ratio of low-quality commit messages. The
average score indicates the out-performance of C4MG over NNGen and GPT−3.5 tech-
niques. Moreover, the variance of the scores is inferior, which means that the participants
agreed on the higher quality of the commit messages generated by C4MG and the lower
quality by NNGen. To confirm our observations, we further conducted the Student’s t-test
between the scores of C4MG and the other techniques. The results further confirm that the
difference is significant with p < 0.01.

7 � Case study

We further present the case in which C4MG achieves higher scores. The case includes the
code change, the ground truth, and the commit messages generated by C4MG and the com-
pared techniques (i.e., NNGen and GPT−3.5).

The example in Fig. 3 shows the code changes for fixing tests to verify debug logging.
As shown in the Figure, the messages retrieved by NNGen lack the details of the change.
The messages generated by GPT−3.5 capture the details of the code change of the about
debug logging, but it ignores the scope of the code change, which is abstracted from the
Python Decorator Test in line 124 of the code context. Compared with other approaches,

3  None of them are co-authors of this paper.

Machine Learning (2025) 114:94	 Page 17 of 23  94

Ta
bl

e 
5  

S
co

rin
g

cr
ite

rio
n

an
d

ev
al

ua
tio

n
re

su
lt

of
 h

um
an

 e
va

lu
at

io
n

Sc
or

e
D

efi
ni

tio
n

0
N

ei
th

er
 re

le
va

nt
 in

 se
m

an
tic

s n
or

 h
av

in
g

sh
ar

ed
 to

ke
ns

.
1

Ir
re

le
va

nt
 in

 se
m

an
tic

s b
ut

 w
ith

 so
m

e
sh

ar
ed

 to
ke

ns
.

2
Pa

rti
al

ly
 si

m
ila

r i
n

se
m

an
tic

s,
bu

t c
on

ta
in

s e
xc

lu
si

ve
 in

fo
rm

at
io

n.
3

H
ig

hl
y

si
m

ila
r b

ut
 n

ot
 id

en
tic

al
 in

 se
m

an
tic

s.
4

Id
en

tic
al

 in
 se

m
an

tic
s.

 M
od

el
Lo

w
(0
∼

1)
m

ed
iu

m
(2
∼

3)
hi

gh
(3
∼

4)
A

ve
ra

ge
 S

co
re

Va
ria

nc
e

N
N

G
en

48
.2

%
43

.4
%

8.
4%

1.
60

8
1.

34
6

G
PT

−
3.

5
34

.2
%

53
.2

%
12

.6
%

1.
96

4
0.

91
8

C
4
M
G

30
.8

%
47

.4
%

21
.8

%
2.

27
0

1.
04

2

	 Machine Learning (2025) 114:9494  Page 18 of 23

Fi
g.

 3
  

A
n

ex
am

pl
e

of
 th

e
co

m
m

it
m

es
sa

ge
s g

en
er

at
ed

 b
y

di
ffe

re
nt

 te
ch

ni
qu

es

Machine Learning (2025) 114:94	 Page 19 of 23  94

C4MG not only captures the changed details but also successfully predicts the scope of fix-
ing bugs in Test. It has shown the effectiveness of C4MG in utilizing the code context to
generate commit messages of better quality.

8 � Threat analysis

Our results should be interpreted with several threats to validity in mind.

•	 The internal threat to validity lies in the implementation of compared techniques. To
reduce this threat, we directly reuse the implementation of the compared techniques
from their reproducible packages and the weights of pre-trained models, if they are
available and executable. Otherwise, we reimplement the techniques strictly following
their papers. We build our approach on existing mature libraries, such as tree-sitter.4

•	 The external threat to validity lies in the dataset used in the experiment. To mitigate the
external threat, the widely-used open-source projects are chosen based on their GitHub
stars. Moreover, filtering and preprocessing are performed to ensure no violation case
is applicable. The dataset is publicly available.

•	 The construct threat lies in the metrics used in the evaluation. To reduce this threat, we
adopt several metrics that have been widely used by prior work on commit message
generation (Xu et al., 2022, 2019). To evaluate the effectiveness from the perspective of
developers, we further perform the human evaluation. We strictly follow the procedure
of previous work (Liu et al., 2020; Wang et al., 2021) and invite experienced develop-
ers, to reduce the threats to human evaluation.

9 � Conclusion

This paper focuses on the task of commit message generation to help developers for effec-
tive development. We highlight reserving the dependency between code difference and
code context in code change learning while avoiding being misled by the overwhelming
amount of the code context for enhancing commit message generation. The Dynamic Con-
trol Flow Graph (DCFG) is proposed for modeling context-aware code change. A novel
framework called C4MG is designed, which captures the changed semantics guided by
DCFG, leverages code context while avoiding redundancy, and constrains the consistency
of code context in the modification. Experimental results demonstrate the effectiveness of
our method in improving the quality of generated commit messages. For future work, the
trade-off between code differences and code context in code change learning can be further
explored and contribute to enhancing the understanding of software evolution.

4  https://github.com/tree-sitter/tree-sitter.

	 Machine Learning (2025) 114:9494  Page 20 of 23

Appendix

In this section, we elaborate on the preprocessing of the dataset, including filtering Based
on commit type, filtering based on verb/direct-object pattern, data denoising, and word
splitting.

Filtering based on commit type

 Code commits that merge or roll back versions without meaningful changes, unconven-
tional commits like project initialization or basic functionality updates, and consecutive
commits with duplicate log messages are filtered out. Non-ASCII character commit mes-
sages are also excluded. The first meaningful sentence of each commit message is extracted
to represent the code changes concisely.

Filtering based on verb/direct‑object pattern

 Commit messages describe code changes or intentions and can vary in style and con-
tent. This variability can affect the training of deep learning models. Jiang et al. (2017)
found that 47% of commit messages follow a verb/direct-object pattern, such as “correct a
typo” or “add useful tests.” To identify these patterns, Stanford CoreNLP (Manning et al.,
2014) is used to annotate syntactic dependency relations in commit messages. Specifi-
cally, dependencies like “obj” and “dobj” are targeted, as seen in the dependency (obj, fix,
bug) in “fix the bug.” During data processing, only commit messages starting with “obj”
or “dobj” are retained to standardize the writing conventions and minimize formatting
impacts on performance.

Data denoising

 In complex multi-developer environments, commit messages often include mentions of
contributors, reviewers, and bug reporters, introducing noise into the data. Keywords like
"reviewed by" and "reported by" are used to filter out this noise. Commit IDs, issue IDs,
web links, and colloquial phrases like "thank you" or "oops my bad" are also removed
using regular expressions to clean the data.

Spliting into subwords

 The names of variables, functions, etc., are often composed of multiple subwords derived
from natural language, which should be split into sets of subtokens, e.g., the word “Class-
Name” is divided into “Class” and “Name”. Out-of-vocabulary words in the code are rep-
resented as “UNK”.

Author contributions  Yali Du contributed to the writing of this paper and performed the main experiments.
Ying Li performed part of the experiments, contributed to the revision of this manuscript, and provided

Machine Learning (2025) 114:94	 Page 21 of 23  94

valuable suggestions for the overall method. Yi-Fan Ma and Ming Li provided valuable feedback, sugges-
tions, and critical revision of the manuscript.

Funding  This research was supported by NSFC (62076121, 61921006), Major Program (JD) of Hubei
Province (2023BAA024), and Postgraduate Research & Practice Innovation Program of Jiangsu
Province (KYCX24_0301).

 Data availability  https://​anony​mous.​4open.​scien​ce/r/​C4MG.

Declarations 

Conflict of interest  Not applicable.

Ethics approval  Not applicable.

Consent to participate and publication  Not applicable.

References

Dong, J., Lou, Y., Zhu, Q., Sun, Z., Li, Z., Zhang, W. & Hao, D. Fira: fine-grained graph-based code
change representation for automated commit message generation. In: Proceedings of the 44th inter-
national conference on software engineering, pp. 970–981 (2022).

Dyer, R., Nguyen, H.A., Rajan, H. & Nguyen, T.N. Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In: Proceedings of the 35th international conference on soft-
ware engineering, pp. 422–431 (2013).

He, Y., Wang, L., Wang, K., Zhang, Y., Zhang, H. & Li, Z. COME: commit message generation with
modification embedding. In: Proceedings of the 32nd international symposium on software testing
and analysis, pp. 792–803 (2023).

Wang, L., Tang, X., He, Y., Ren, C., Shi, S., Yan, C. & Li, Z. Delving into commit-issue correlation to
enhance commit message generation models. In: Proceedings of the 38th IEEE/ACM international
conference on automated software engineering, pp. 710–722 (2023).

Xu, S., Yao, Y., Xu, F., Gu, T., Tong, H. & Lu, J. Commit message generation for source code changes.
In: Proceedings of the 28th international joint conference on artificial intelligence, pp. 3975–3981
(2019).

Liu, S., Gao, C., Chen, S., Nie, L. Y., & Liu, Y. (2022). ATOM: Commit message generation based on
abstract syntax tree and hybrid ranking. IEEE Transactions on Software Engineering, 48(5), 1800–
1817. https://​doi.​org/​10.​1109/​TSE.​2020.​30386​81

Shi, S.-T., Li, M., Lo, D., Thung, F. & Huo, X. Automatic code review by learning the revision of source
code. In: Proceedings of the AAAI conference on artificial intelligence, pp. 4910–4917 (2019).

Xu, S., Yao, Y., Xu, F., Gu, T. & Tong, H. Combining code context and fine-grained code difference for
commit message generation. In: Proceedings of the 13th Asia-pacific symposium on internetware, pp.
242–251 (2022).

Ma, Y.-F. & Li, M. Learning from the multi-level abstraction of the control flow graph via alternating propa-
gation for bug localization. In: Proceedings of the 22nd IEEE international conference on data mining,
pp. 299–308 (2022).

Buse, R.P. & Weimer, W.R.: Automatically documenting program changes. In: Proceedings of the 25th
IEEE/ACM International conference on automated software engineering, pp. 33–42 (2010).

Shen, J., Sun, X., Li, B., Yang, H. & Hu, J. On automatic summarization of what and why information in
source code changes. In: Proceedings of the IEEE 40th annual computer software and applications
conference, pp. 103–112 (2016).

Vásquez, M.L., Cortes-Coy, L.F., Aponte, J. & Poshyvanyk, D. Changescribe: A tool for automatically gen-
erating commit messages. In: Proceedings of the 37th IEEE/ACM international conference on software
engineering, pp. 709–712 (2015).

Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L.L. & Vijay-Shanker, K. Automatic generation
of natural language summaries for java classes. In: Proceedings of the 21st International conference on
program comprehension, pp. 23–32 (2013).

https://anonymous.4open.science/r/C4MG
https://doi.org/10.1109/TSE.2020.3038681
lilian

lilian

	 Machine Learning (2025) 114:9494  Page 22 of 23

Cortés-Coy, L.F., Linares-Vásquez, M., Aponte, J. & Poshyvanyk, D. On automatically generating com-
mit messages via summarization of source code changes. In: Proceedings of the 14th international
working conference on source code analysis and manipulation, pp. 275–284 (2014).

Huang, Y., Zheng, Q., Chen, X., Xiong, Y., Liu, Z. & Luo, X. Mining version control system for auto-
matically generating commit comment. In: Proceedings of the ACM/IEEE international symposium
on empirical software engineering and measurement, pp. 414–423 (2017).

Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z. & Wang, X. Neural-machine-translation-based commit
message generation: how far are we? In: Proceedings of the 33rd ACM/IEEE international confer-
ence on automated software engineering, pp. 373–384 (2018).

Hoang, T., Kang, H.J., Lo, D. & Lawall, J. Cc2vec: Distributed representations of code changes. In: Pro-
ceedings of the ACM/IEEE 42nd international conference on software engineering, pp. 518–529
(2020).

Liu, Q., Liu, Z., Zhu, H., Fan, H., Du, B. & Qian, Y. Generating commit messages from diffs using
pointer-generator network. In: Proceedings of the IEEE/ACM 16th international conference on
mining software repositories, pp. 299–309 (2019).

Jung, T. Commitbert: Commit message generation using pre-trained programming language model.
arXiv preprint arXiv:​2105.​14242 (2021).

Nie, L. Y., Gao, C., Zhong, Z., Lam, W., Liu, Y., & Xu, Z. (2021). CoreGen: Contextualized code repre-
sentation learning for commit message generation. Neurocomputing, 459, 97–107. https://​doi.​org/​
10.​1016/j.​neucom.​2021.​05.​039

Wang, C., Zhang, L., & Zhang, X. (2024). Multi-grained contextual code representation learning for
commit message generation. Information and Software Technology, 167, 107393.

Tao, W., Zhou, Y., Wang, Y., Zhang, H., Wang, H., & Zhang, W. (2024). Kadel: Knowledge-aware
denoising learning for commit message generation. ACM Transactions on Software Engineering
and Methodology., 33, 1–32.

Jiang, S., Armaly, A. & McMillan, C. Automatically generating commit messages from diffs using neu-
ral machine translation. In: Proceedings of the 32nd IEEE/ACM international conference on auto-
mated software engineering, pp. 135–146 (2017).

Loyola, P., Marrese-Taylor, E. & Matsuo, Y. A neural architecture for generating natural language
descriptions from source code changes. arXiv preprint arXiv:​1704.​04856 (2017).

Sun, Z., Zhu, Q., Mou, L., Xiong, Y., Li, G. & Zhang, L. A grammar-based structural cnn decoder
for code generation. In: Proceedings of the 33rd AAAI conference on artificial intelligence, pp.
7055–7062 (2019).

Bui, N.D.Q., Yu, Y. & Jiang, L. Treecaps: Tree-based capsule networks for source code processing. In:
Proceedings of the 35th AAAI conference on artificial intelligence, pp. 30–38 (2021).

Xie, B., Su, J., Ge, Y., Li, X., Cui, J., Yao, J. & Wang, B. Improving tree-structured decoder training
for code generation via mutual learning. In: Proceedings of the 35th AAAI conference on artificial
intelligence, pp. 14121–14128 (2021).

Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M. & Monperrus, M. Fine-grained and accurate source
code differencing. In: Proceedings of the 29th ACM/IEEE International conference on automated
software engineering, pp. 313–324 (2014).

Devlin, J., Chang, M., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers
for language understanding. In: Proceedings of the 2019 Conference of the North American chapter
of the association for computational linguistics, pp. 4171–4186 (2019).

Hal, S. Generating commit messages from git diffs. arXiv:​1911.​11690 (2019).
Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D. & Zhou,

M. CodeBERT: A pre-trained model for programming and natural languages. In: Findings of the
Association for Computational Linguistics: EMNLP, pp. 1536–1547 (2020).

Lachaux, M., Rozière, B., Szafraniec, M., & Lample, G. (2021). DOBF: A deobfuscation pre-training
objective for programming languages. Advances in Neural Information Processing Systems, 34,
14967–14979.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S.,
Tufano, M., Deng, S.K., Clement, C.B., Drain, D., Sundaresan, N., Yin, J., Jiang, D. & Zhou, M.
GraphCodeBERT: Pre-training code representations with data flow. In: International conference on
learning representations (2021).

Wang, Y., Wang, W., Joty, S. & Hoi, S.C. Codet5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. In: Proceedings of the 2021 Conference on empiri-
cal methods in natural language processing, pp. 8696–8708 (2021).

http://arxiv.org/abs/2105.14242
https://doi.org/10.1016/j.neucom.2021.05.039
https://doi.org/10.1016/j.neucom.2021.05.039
http://arxiv.org/abs/1704.04856
http://arxiv.org/abs/1911.11690

Machine Learning (2025) 114:94	 Page 23 of 23  94

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y.K., Luo, F.,
Xiong, Y. & Liang, W. Deepseek-coder: When the large language model meets programming - the rise
of code intelligence. CoRR abs/2401.14196 (2024).

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan, Y., Ge, W. & Han, Y., et al. Qwen technical
report. arXiv preprint arXiv:​2309.​16609 (2023).

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N., Ham-
bro, E., Azhar, F. & et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:​
2302.​13971 (2023).

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., et al. (2022). Train-
ing language models to follow instructions with human feedback. Advances in Neural Information Pro-
cessing Systems, 35, 27730–27744.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L. & Almeida, D., et al. Gpt-4 techni-
cal report. arXiv preprint arXiv:​2303.​08774 (2023).

Anil, R., Borgeaud, S., Wu, Y., Alayrac, J. & Yu, J., al. Gemini: A family of highly capable multimodal
models. CoRR abs/2312.11805 (2023).

Papineni, K., Roukos, S., Ward, T. & Zhu, W. Bleu: a method for automatic evaluation of machine transla-
tion. In: Proceedings of the 40th Annual meeting of the association for computational linguistics, pp.
311–318 (2002).

Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:​1711.​05101 (2017).
Wang, H., Xia, X., Lo, D., He, Q., Wang, X., & Grundy, J. (2021). Context-aware retrieval-based deep com-

mit message generation. ACM Transactions on Software Engineering and Methodology, 30(4), 1–30.
https://​doi.​org/​10.​1145/​34646​89

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S. & McClosky, D. The stanford corenlp nat-
ural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for compu-
tational linguistics: system demonstrations, pp. 55–60 (2014).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/2309.16609
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1711.05101
https://doi.org/10.1145/3464689

	Capturing the context-aware code change via dynamic control flow graph for commit message generation
	Abstract
	1 Introduction
	2 Related works
	3 Dynamic control flow graph
	4 The proposed approach ( )
	4.1 Dynamic encoder
	4.1.1 Block embedding
	4.1.2 Pre-changed context fusion
	4.1.3 Post-changed context fusion
	4.1.4 Fine-grained code difference learning

	4.2 Message decoder
	4.3 Context invariance constraint

	5 Experiment
	5.1 Dataset
	5.2 Baselines
	5.3 Metrics and implementation
	5.4 Overall performance comparison
	5.5 Ablation study

	6 Human evaluation
	6.1 Study design
	6.2 Human evaluation results

	7 Case study
	8 Threat analysis
	9 Conclusion
	Appendix
	Filtering based on commit type
	Filtering based on verbdirect-object pattern
	Data denoising
	Spliting into subwords

	References

