
A Joint Learning Model with Variational Interaction for
Multilingual Program Translation

Yali Du
National Key Laboratory for Novel

Software Technology
School of Artificial Intelligence

Nanjing University
duyl@lamda.nju.edu.cn

Hui Sun
National Key Laboratory for Novel

Software Technology
School of Artificial Intelligence

Nanjing University
sunh@lamda.nju.edu.cn

Ming Li∗
National Key Laboratory for Novel

Software Technology
School of Artificial Intelligence

Nanjing University
lim@lamda.nju.edu.cn

ABSTRACT
Programs implemented in various programming languages form
the foundation of software applications. To alleviate the burden
of program migration and facilitate the development of software
systems, automated program translation across languages has gar-
nered significant attention. Previous approaches primarily focus
on pairwise translation paradigms, learning translation between
pairs of languages using bilingual parallel data. However, parallel
data is difficult to collect for some language pairs, and the distri-
bution of program semantics across languages can shift, posing
challenges for pairwise program translation. In this paper, we argue
that jointly learning a unified model to translate code across multi-
ple programming languages is superior to separately learning from
bilingual parallel data. We propose Variational Interaction for Mul-
tilingual Program Translation (VIM-PT), a disentanglement-based
generative approach that jointly trains a unified model for mul-
tilingual program translation across multiple languages. VIM-PT
disentangles code into language-shared and language-specific fea-
tures, using variational inference and interaction informationwith a
novel lower bound, then achieves program translation through con-
ditional generation. VIM-PT demonstrates four advantages: 1) cap-
tures language-shared information more accurately from various
implementations and improves the quality of multilingual program
translation, 2) mines and leverages the capability of non-parallel
data, 3) addresses the distribution shift of program semantics across
languages, 4) and serves as a unified model, reducing deployment
complexity.

CCS CONCEPTS
• Software and its engineering→ Automatic programming.

KEYWORDS
Program Translation, Multi-lingual Disentanglement, Variational
Interaction, Regularization

∗Ming Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695553

ACM Reference Format:
Yali Du, Hui Sun, and Ming Li. 2024. A Joint Learning Model with Varia-
tional Interaction for Multilingual Program Translation. In 39th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’24), Octo-
ber 27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3691620.3695553

1 INTRODUCTION
Programs form the foundation of computer applications. Various
programming languages have been invented to address diverse
requirements. Developing a new application from scratch is time-
and labor-intensive, whereas referring to and combining existing
code is more efficient. Unfortunately, when combining programs
written in different programming languages, the developer usu-
ally suffers from the intensive labor of manually translating pro-
grams from one programming language to another. For example,
many industries spend hundreds of millions of dollars to convert
code written in older programming languages (e.g., FORTRAN
and COBOL) to newer ones (e.g., Java, C++) [37]. To alleviate the
burden of program migration and facilitate the development of
software systems, program translation, which aims to translate
the program from one programming language to another auto-
matically, has drawn significant attention in the software mining
community [1, 7, 16, 21, 37, 46, 47, 50, 53, 54].

The booming development of machine learning coupled with the
availability of an extensive parallel corpus of programs has led to a
remarkable enhancement in the performance of program transla-
tion. For example, Nguyen et al. [27, 28] attempted to translate code
across languages, leveraging phrase-based statistical machine trans-
lation and grammatical rules. Recently, due to the potent power of
representation learning in the deep neural networks, most modern
program translation approaches based on deep neural networks,
such as sequence-to-sequence models, have advanced the state-of-
the-art performance to a new level [6, 8, 12].

Nevertheless, most existing approaches primarily focus on pair-
wise translation, lacking exploration in multilingual program trans-
lation. Although pairwise approaches can be employed for each
language pair separately, these approaches cannot leverage knowl-
edge from languages outside the current pair, posing a challenge
for learning across a pair of languages with only a few parallel data.
As shown in Fig. 1, previous approaches, including the multilin-
gual program translation approach by Zhu et al. [54], are trained
only with bilingual parallel data. However, these parallel data are
sparse in practical datasets. For instance, the multilingual dataset
CoST [54] contains only 12.56% bilingual parallel data among all

1907

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://doi.org/10.1145/3691620.3695553
https://doi.org/10.1145/3691620.3695553
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695553&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yali Du, Hui Sun, and Ming Li

Figure 1: An example of a multilingual dataset.

possible pairs. In addtion, as shown in Fig. 5 and Fig. 6. the distri-
bution of different language pairs is imbalanced.

In this paper, we argue that jointly training a unified model to
translate code across multiple programming languages is superior
to separately training with pairwise data. A program implemented
in different programming languages should exhibit the invariant
language-shared semantics, i.e., perform the same tasks. Thus, joint
training on multiple different implementations of a program can
complement and enhance the learning of the language-shared rep-
resentation. By constructing the unified language-shared latent
space, the rich resource languages can benefit the low resource
languages in the translation. However, joint learning involves a
new challenge: as shown in Fig. 1, practical datasets are always
semi-parallel, which contain only a few complete multi-parallel
samples that include all languages, while most are partially miss-
ing implementations in some programming languages. To tackle
the issue of semi-parallel data, utilizing semi-supervised learning
techniques is intuitive. Generative semi-supervised learning offers
a solution: all data, including partially missing and multi-parallel
data, can be generated from a latent distribution. All these data can
be used to learn the latent distribution and generative process with
an Expectation–Maximization (EM)-based algorithm [17]. Once
the latent distribution and generative process are learned, program
translation can be achieved with a conditional generative process.

Building upon the above idea, we propose an innovative ap-
proach called Variational Interaction for Multilingual Program
Translation (VIM-PT), a disentanglement-based generative approach.
VIM-PT disentangles each code into language-shared features
and language-specific features based on information theory. The
language-shared features should be task-specific and language-
invariant like the functional semantics of the program, while the
language-specific features should be language-specific and task-
invariant like the grammar or syntax of the programming language.
Therefore, each code can be generated through the interplay of these
features. Specifically, we employ variational inference to learn the
generative process, where the prior distributions of both features
follow a normal Gaussian distribution. To enforce disentanglement,
there will be a new variational interaction bound for the objec-
tive, compared to the Evidence Lower Bound (ELBO) in traditional
variational inference, which includes three additional terms from
interaction information. By optimizing this new variational interac-
tion bound, VIM-PT learns to generate code based on disentangled
features. This enables program translation from a source language
to a target language by using the language-shared feature from the
source language and the language-specific feature sampled from
the prior distribution of the target language.

Compared to previous approaches, VIM-PT demonstrates four
strengths: 1) More precisely and completely captures the language-
shared feature by jointly learning from the various views of multiple

implementations and improves the quality of multilingual program
translation. 2) Effectively leverages the power of non-parallel and
partially missing data using a generative framework. 3) Addresses
the distribution shift of semantics across multiple languages. Dif-
ferent languages are often used for different tasks, such as Python
for data science and machine learning, and JavaScript for front-
end development, resulting in a distribution shift of semantics in
collected data. VIM-PT addresses this by using a conditional gen-
erative framework to complete missing implementations in some
languages. 4) VIM-PT is a unified model across different transla-
tion pairs, reducing the total parameters and making deployment
more convenient, especially on edge devices. To evaluate the effec-
tiveness of the VIM-PT, an extensive experiment is conducted on
the widely used dataset, which includes 7 general programming
languages (i.e., C, C#, C++, Java, Javascript, PHP, and Python). It
can be observed that VIM-PT performs performance gains widely
over the state-of-the-art approaches.

We highlight our contributions in three key aspects:

(1) We argue that jointly training a unified model to translate
code across multiple programming languages is superior to
training with pairwise data separately.

(2) We propose VIM-PT, a disentanglement-based generative
approach, for joint learning with variational interaction in
multilingual program translation.

(3) We conduct extensive experiments to demonstrate the effec-
tiveness of VIM-PT and the necessity of jointly learning a
unified model in multilingual program translation.

2 RELATEDWORKS
2.1 Program Translation
To meet some specific requirements, rule-based translation meth-
ods have been developed [4, 5, 36, 44]. Further, some works ap-
plied phrase-based statistical machine translation techniques to
program translation [3, 15, 27–32], which leveraged grammatical
structures of programming languages for code migration. Recently,
various deep learning techniques were employed to program trans-
lations [20, 48, 49], which can be distinguished into pairwise pro-
gram translation methods [6, 8, 12, 51] and multilingual program
translation methods [54] by using bilingual or multilingual corpus
in the supervised learning.

The pairwise approaches trained one model for each transla-
tion direction independently [12, 23, 42]. However, a problem en-
countered by many existing models is that program translation
datasets are usually not balanced in size for all the languages. Some
languages may have much less parallel data than others. Less par-
allel training data can significantly affect the translation perfor-
mance of low-resource languages. Therefore, some works leveraged
multilingual training to improve the performance of low-resource
languages, which is defined as multilingual program translation.
Aligning the shared semantics of multi-parallel data is the key to
utilizing the rich resource to benefit the low resource. However,
the existing multilingual program translation model MuST-PT [54]
is limited to the pairwise training process and does not take full
advantage of the multi-parallel data and partially missing data (e.g.,
non-parallel data).

1908

A Joint Learning Model with Variational Interaction for Multilingual Program Translation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

2.2 Exploring Non-Parallel Data for Translation
The quality of translation systems highly depends on the quality of
the available parallel data. However, for most languages, parallel
resources are rare or nonexistent. Some approaches have inves-
tigated the use of non-parallel data to improve existing program
translation systems [11, 19, 37, 38, 43, 45]. For instance, Lachaux
et al. [19] proposed DOBF that leverages the structural aspect of
coding languages and pre-trains a model to recover the original
version of obfuscated source code. Feng et al. [11] proposed Code-
BERT, which is a Bert-like model pre-trained in an open-source
GitHub repository and used in many down-stream tasks, and then
much relevant research emerged [9, 12, 26]. Rozière et al. [37] pro-
posed TransCoder, which trained a translation model only using
the monolingual corpus with back-translation and denoising auto-
encoding.

A common shortcoming of the above methods is the language-
shared and language-specific representations among different lan-
guages are not disentangled in the learning. As shown in many
researches, the disentanglement is crucial in such a way that ev-
ery factor of variation is captured in the right part of the rep-
resentation so that the partially missing data can be better uti-
lized [10, 14, 22, 34, 39–41, 52]. For example, in neural machine
translation, Zheng et al. [52] proposed the mirror-generative ap-
proach, which is a single unified architecture in which both trans-
lation models and language models share the same latent semantic
space, therefore both translation directions can learn from non-
parallel data. Yet the method is limited to bilingual translation and
requires extra language models with more space overhead [52].
Inspired by the discussion on cross-domain disentanglement [14],
we expand the variational disentanglement to the multi-domain,
and it is the first attempt to explore the variational disentanglement
in multi-lingual translation among programming languages.

3 METHOD
The method is discussed in this section, including the generative
model by variational inference, enforcing disentanglement by inter-
action information, the overall framework of VIM-PT, and training
the joint model from both multi-parallel samples and partially miss-
ing samples.

3.1 Generative Model via Variational Inference
Consider a sample program implemented in 𝑁 languages, denoted
as (𝑥1, 𝑥2, · · · , 𝑥𝑁) ∼ 𝑝𝐷 (𝑥1, 𝑥2, · · · , 𝑥𝑁), where 𝑥𝑖 represents the
code written in the 𝑖-th programming language. All of these 𝑁

codes exhibit the same semantics, i.e., perform the same task, while
each code 𝑥𝑖 involves the language-specific grammatical style. From
the perspective of disentanglement, each code is generated through
the interplay of a language-shared feature, denoted as 𝑧𝑠 ∈ 𝑍𝑠 ,
and a language-specific feature, denoted as 𝑧𝑖 ∈ 𝑍 𝑖 for the 𝑖-th
programming language.

As illustrated in Fig. 2, the generative process involves two steps:
1) The shared feature 𝑧𝑠 is generated from the prior distribution
𝑝𝜃 ∗ (𝑧𝑠), while the language-specific feature 𝑧𝑖 is generated from
𝑝𝜃 ∗ (𝑧𝑖). 2) Subsequently, the code 𝑥𝑖 is generated from the condi-
tional distribution 𝑝𝜃 ∗ (𝑥𝑖 |𝑧𝑠 , 𝑧𝑖). Following Kingma and Welling
[18], these prior distributions 𝑝𝜃 ∗ (𝑧𝑠) and 𝑝𝜃 ∗ (𝑧𝑖), as well as the

	𝑥! 	𝑥"

𝑧!

	𝑥# 	𝑥$ 	𝑥% 	𝑥& 	𝑥'

𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧" 𝑧(

Language-specific
Representations

Language-shared
Representations

C++ PHPJava Python C# C JavaScript

Figure 2: Generative Process.

conditional distribution 𝑝𝜃 ∗ (𝑥𝑖 |𝑧𝑠 , 𝑧𝑖), are drawn from parametric
families of distributions 𝑝𝜃 (𝑧𝑠), 𝑝𝜃 (𝑧𝑖), and 𝑝𝜃 (𝑥𝑖 |𝑧𝑠 , 𝑧𝑖), respec-
tively. Therefore, as per Kingma and Welling [18], the generative
process can be formally expressed through the marginal likelihood
of the joint distribution in the multilingual Bayesian network:

𝑝𝜃 (𝑥1, 𝑥2, · · · , 𝑥𝑁) =
∫

𝑝𝜃 (𝑧𝑠)𝑑𝑧𝑠
𝑁∏
𝑖=1

𝑝𝜃 (𝑧𝑖)𝑝𝜃 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)𝑑𝑧𝑖 .

(1)
While Eq. 1 is intractable, variational inference based on Varia-

tional Autoencoders (VAE) is typically employed [14, 17, 18]. Con-
sidering the inference process in variational inference, as shown in
Fig. 3, the language-shared feature 𝑧𝑠 can be jointly inferred from
all codes implemented in various programming languages, while
the language-specific grammatical style feature 𝑧𝑖 is inferred from
the code implemented in the 𝑖-th programming language.

𝑧! 𝑧" 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧(

	𝑥! 	𝑥'	𝑥" 	𝑥# 	𝑥$ 	𝑥% 	𝑥&

C++ PHPJava Python C# C JavaScript

Language-specific
Representations

Language-shared
Representations

Figure 3: Inference Process.

Thus, the inference process can be formally expressed via the
posterior distribution 𝑝𝜃 (𝑧1, 𝑧2, · · · , 𝑧𝑁 , 𝑧𝑠 |𝑥1, 𝑥2, · · · , 𝑥𝑁), which
can be approximated by:

𝑞𝜙 (𝑧1, 𝑧2, · · · , 𝑧𝑁 , 𝑧𝑠 |𝑥1, 𝑥2, · · · , 𝑥𝑁) =

𝑞𝜙 (𝑧1 |𝑥1)𝑞𝜙 (𝑧2 |𝑥2) · · ·𝑞𝜙 (𝑧𝑁 |𝑥𝑁)𝑞𝜙 (𝑧𝑠 |𝑥1, 𝑥2, · · · , 𝑥𝑁) .
(2)

By combining Eq. 1 and Eq. 2, and omitting subscripts 𝜃 and
𝜙 for brevity, the log-likelihood of the joint distribution can be
lower-bounded using the ELBO as:

log𝑝 (𝑥1, 𝑥2, · · · , 𝑥𝑁)

≥ E𝑞 (𝑧1,· · · ,𝑧𝑁 ,𝑧𝑠 |𝑥1,· · · ,𝑥𝑁)

[
log

𝑝 (𝑥1, · · · , 𝑥𝑁 , 𝑧1, · · · , 𝑧𝑁 , 𝑧𝑠)
𝑞(𝑧1, · · · , 𝑧𝑁 , 𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)

]
=

𝑁∑︁
𝑖=1

E𝑞 (𝑧𝑖 |𝑥𝑖)𝑞 (𝑧𝑠 |𝑥1,· · · ,𝑥𝑁)
[
log𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)

]
(3)

−
𝑁∑︁
𝑖=1

𝐷𝐾𝐿
[
𝑞(𝑧𝑖 |𝑥𝑖)∥𝑝 (𝑧𝑖)

]
− 𝐷𝐾𝐿

[
𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)∥𝑝 (𝑧𝑠)

]
,

1909

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yali Du, Hui Sun, and Ming Li

where𝐷𝐾𝐿 represents the KL-divergence. Specifically, in variational
inference, the prior distribution 𝑝 (𝑧 ·) is typically a Gaussian distri-
bution, such that 𝑝 (𝑧 ·) ∼ N (0, I), while the approximate posterior
𝑞(𝑧 |𝑥) can be reparameterized as 𝑞(𝑧 |𝑥) ∼ N (𝜇 (𝑧 |𝑥), 𝜎 (𝑧 |𝑥)). By
relying on a reparameterization trick [18], we can now jointly train
all the components using gradient-based algorithms.

We formulate the generative process in Fig. 2 using Eq. 1 and the
inference process in Fig. 3 using Eq. 2, then combine them to bound
the log-likelihood with the ELBO in Eq. 3. However, maximizing
the ELBO in Eq. 3 does not control the disagreement in inference.
Disentanglement will be enforced using interaction information
from information theory, as described by Hwang et al. [14], which
will be discussed in detail next.

3.2 Disentanglement by Interaction Information
In ideal disentanglement, the decomposed features should satisfy
two key properties: 1) The language-shared feature 𝑧𝑠 ∈ 𝑍𝑠 and the
language-specific grammatical style feature 𝑧𝑖 ∈ 𝑍 𝑖 should avoid
capturing redundant information. 2) For any code implemented in
the 𝑖-th language, 𝑥𝑖 ∈ 𝑋 𝑖 , the common information between 𝑥𝑖 and
others (𝑥1, · · · , 𝑥𝑖−1, 𝑥𝑖+1, · · · , 𝑥𝑁) should be the language-shared
information, i.e., 𝑧𝑠 ∈ 𝑍𝑠 .

To achieve the first property, we employ the mutual information
𝐼 (·; ·) between 𝑍𝑠 and 𝑍 𝑖 to quantify redundancy:

𝐼 (𝑍 𝑖 ;𝑍𝑠) = −𝐼 (𝑋 𝑖 ;𝑍 𝑖 , 𝑍𝑠) + 𝐼 (𝑋 𝑖 ;𝑍 𝑖) + 𝐼 (𝑋 𝑖 ;𝑍𝑠) . (4)

The proof of this equation can be found in Appendix A.1.
To achieve the second property, we use interaction information,

a generalization of mutual information among three or more ran-
dom variables, to quantify the common information among the
code implemented in the 𝑖-th programming language, the codes
implemented in other languages, and the language-shared fea-
tures. For brevity, we denote {𝑥1, · · · , 𝑥𝑖−1, 𝑥𝑖+1, · · · , 𝑥𝑁 } as 𝑥𝑖 and
{𝑋 1, · · · , 𝑋 𝑖−1, 𝑋 𝑖+1, · · · , 𝑋𝑁 } as 𝑋𝑖 . Formally, the common infor-
mation can be expressed as:

𝐼 (𝑋 𝑖 ;𝑋𝑖 ;𝑍𝑠) = 𝐼 (𝑋 𝑖 ;𝑍𝑠) − 𝐼 (𝑋 𝑖 ;𝑍𝑠 |𝑋𝑖) , (5)

which can be derived from the definition of the interaction infor-
mation between three random variables.

Then, we combine Eq. 4 and Eq. 5 to enforce disentanglement:

𝐼 (𝑋 𝑖 ;𝑋𝑖 ;𝑍𝑠)−𝐼 (𝑍 𝑖 ;𝑍𝑠) = −𝐼 (𝑋 𝑖 ;𝑍𝑠 |𝑋 𝑖)+𝐼 (𝑋 𝑖 ;𝑍 𝑖 , 𝑍𝑠)−𝐼 (𝑋 𝑖 ;𝑍 𝑖) .
(6)

Unfortunately, directly maximizing Eq. 6 is still intractable. Let
us analyze it term by term.

• The first term involves𝑞(𝑧𝑠 |𝑥𝑖) =
∫
𝑝𝐷 (𝑥𝑖 |𝑥𝑖)𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)𝑑𝑥𝑖 ,

where 𝑝𝐷 (𝑥𝑖 |𝑥𝑖) is unknown. Therefore, using the variational
distribution 𝑟 𝑖 (𝑧𝑠 |𝑥𝑖), the first term can be lower bounded as

follows:

− 𝐼 (𝑋 𝑖 ;𝑍𝑠 |𝑋 𝑖) = −E𝑝𝐷 (𝑥1,· · · ,𝑥𝑁)𝑞 (𝑧𝑠 |𝑥1,· · · ,𝑥𝑁)

[
log

𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑛)
𝑞(𝑧𝑠 |𝑥𝑖)

]
= −E𝑝𝐷 (𝑥1,· · · ,𝑥𝑁)𝑞 (𝑧𝑠 |𝑥1,· · · ,𝑥𝑁)

[
log

𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)𝑟 𝑖 (𝑧𝑠 |𝑥𝑖)
𝑞(𝑧𝑠 |𝑥𝑖)𝑟 𝑖 (𝑧𝑠 |𝑥𝑖)

]
= −E𝑝𝐷 (𝑥1,· · · ,𝑥𝑁)

[
𝐷𝐾𝐿

[
𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)∥𝑟 𝑖 (𝑧𝑠 |𝑥𝑖)

]]
(7)

+ E
𝑝𝐷 (𝑥𝑖)

[
𝐷𝐾𝐿

[
𝑞(𝑧𝑠 |𝑥𝑖)∥𝑟 𝑖 (𝑧𝑠 |𝑥𝑖)

]]
≥ −E𝑝𝐷 (𝑥1,· · · ,𝑥𝑁)

[
𝐷𝐾𝐿

[
𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)∥𝑟 𝑖 (𝑧𝑠 |𝑥𝑖)

]]
.

Thus, whenmaximizing−𝐼 (𝑋 𝑖 ;𝑍𝑠 |𝑋 𝑖) using Eq. 7, the variational
distribution 𝑟 𝑖 (𝑧𝑠 |𝑥𝑖) will be learned to fit 𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁).
• Meanwhile, the second term 𝐼 (𝑋 𝑖 ;𝑍 𝑖 , 𝑍𝑠) involves 𝑞(𝑥𝑖 |𝑧𝑖 , 𝑧𝑠) =

𝑞 (𝑧𝑖 ,𝑧𝑠 |𝑥𝑖)𝑝𝐷 (𝑥𝑖)∫
𝑝𝐷 (𝑥𝑖 ,· · · ,𝑥𝑁)𝑞 (𝑧𝑖 ,𝑧𝑠 |𝑥𝑖 ,· · · ,𝑥𝑁)𝑑𝑥𝑖 ,· · · ,𝑑𝑥𝑁

, where 𝑝𝐷 (𝑥1, · · · , 𝑥𝑁)

and 𝑝𝐷 (𝑥𝑖) are unknown. However, it can be lower-bounded us-
ing the generative distribution 𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠) as follows:

𝐼 (𝑋 𝑖 ;𝑍 𝑖 , 𝑍𝑠) = E𝑞 (𝑧𝑖 ,𝑧𝑠 |𝑥𝑖)𝑝𝐷 (𝑥𝑖)

[
log

𝑞(𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)
𝑝𝐷 (𝑥𝑖)

]
= 𝐻 (𝑋 𝑖) + E𝑞 (𝑧𝑖 ,𝑧𝑠 |𝑥𝑖)𝑝𝐷 (𝑥𝑖)

[
log𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)

]
+ E𝑞 (𝑧𝑖 ,𝑧𝑠)

[
𝐷𝐾𝐿

[
𝑞(𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)∥𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)

]]
(8)

≥ 𝐻 (𝑋 𝑖) + E𝑞 (𝑧𝑖 ,𝑧𝑠 |𝑥𝑖)𝑝𝐷 (𝑥𝑖)
[
log𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)

]
= 𝐻 (𝑋 𝑖) + E𝑝𝐷 (𝑥𝑖 ,· · · ,𝑥𝑁)𝑞 (𝑧𝑖 |𝑥𝑖)𝑞 (𝑧𝑠 |𝑥𝑖 ,· · · ,𝑥𝑁)

[
log 𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)

]
where 𝐻 (·) represents the Shannon entropy.
• The third term −𝐼 (𝑋 𝑖 ;𝑍 𝑖) involves 𝑞(𝑧𝑖) =

∫
𝑝D (𝑥𝑖)𝑞(𝑧𝑠 |𝑥𝑖)𝑑𝑥 ,

where 𝑝D (𝑥1) is unknown. We employ the Variational Informa-
tion Bottleneck (VIB) [2] to lower bound it:

−𝐼 (𝑋 𝑖 ;𝑍 𝑖) = −E𝑝𝐷 (𝑥𝑖)
[
𝐷𝐾𝐿

[
𝑞(𝑧𝑖 |𝑥𝑖)∥𝑞(𝑧𝑖)

]]
≥ −E𝑝𝐷 (𝑥𝑖)

[
𝐷𝐾𝐿

[
𝑞(𝑧𝑖 |𝑥𝑖)∥𝑝 (𝑧𝑖)

]] (9)

Herewe use−E𝑝𝐷 (𝑥𝑖)
[
𝐷𝐾𝐿

[
𝑞(𝑧𝑖 |𝑥𝑖)∥𝑝 (𝑧𝑖)

]]
as its lower bound

with the generative distribution 𝑝 (𝑧𝑖) defined as the standard
Gaussian.
Subsequently, we can derive a lower bound for Eq. 6 by combin-

ing the derived equations. Therefore, we can enforce disentangle-
ment across multiple programming languages by maximizing:
𝑁∑︁
𝑖=1

[
𝐼 (𝑋 𝑖 ;𝑋 𝑖 ;𝑍𝑠) − 𝐼 (𝑍 𝑖 ;𝑍𝑠)

]
=

𝑁∑︁
𝑖=1

[
−𝐼 (𝑋 𝑖 ;𝑍𝑠 |𝑋 𝑖) + 𝐼 (𝑋 𝑖 ;𝑍 𝑖 , 𝑍𝑠) − 𝐼 (𝑋 𝑖 ;𝑍 𝑖)

]
≥ E𝑝𝐷 (𝑥1,· · · ,𝑥𝑁)

𝑁∑︁
𝑖=1

E𝑞 (𝑧𝑖 |𝑥𝑖)𝑞 (𝑧𝑠 |𝑥1,· · · ,𝑥𝑁)
[
log 𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)

]
− E𝑝𝐷 (𝑥1,· · · ,𝑥𝑁)

𝑁∑︁
𝑖=1

𝐷𝐾𝐿

[
𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)∥𝑟 𝑖 (𝑧𝑠 |𝑥𝑖)

]
−

𝑁∑︁
𝑖=1

E𝑝𝐷 (𝑥𝑖)𝐷𝐾𝐿
[
𝑞(𝑧𝑖 |𝑥𝑖)∥𝑝 (𝑧𝑖)

]
+
𝑁∑︁
𝑖=1

𝐻 (𝑋 𝑖) . (10)

1910

A Joint Learning Model with Variational Interaction for Multilingual Program Translation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Encoder

Encoder

Encoder

Encoder

	𝒛!

	𝒕!
	𝒙!

	𝒕"
	𝒙"

	𝒕#
	𝒙#

	𝒕$
	𝒙$

	𝑞%! 𝐳
!|𝒙!

		𝑟%! 𝐳
&|𝒙!

	𝑞%" 𝐳
#|𝒙#

		𝑟%" 𝐳
&|𝒙#

	𝑞%# 𝐳
$|𝒙$

		𝑟%# 𝐳
&|𝒙$

	𝑞%$ 𝐳
"|𝒙"

		𝑟%$ 𝐳
"|𝒙"

𝑝 𝑥!|z!, z'

𝑝 𝑥#|z#, z'

𝑝 𝑥$|z$, z'

𝑝 𝑥"|z", z'

		𝑞%% 𝐳
'|𝒙!, … , 𝒙(

	𝒛#

	𝒛$

	𝒛"

	𝒛&

Decoder

Decoder

Decoder

Decoder

	𝒕�
	𝒙.!

	𝒕�
	𝒙."

	𝒕�
	𝒙.#

	𝒕�
	𝒙.$

	𝑞!!~𝑁 𝜇", 𝜎"

		𝑟!!~𝑁 𝜇#", 𝜎$"

	𝑞!"~𝑁 𝜇%, 𝜎%

		𝑟!"~𝑁 𝜇#%, 𝜎$%

	𝑞!#~𝑁 𝜇&, 𝜎&

		𝑟!#~𝑁 𝜇#&, 𝜎$&

	𝑞!$~𝑁 𝜇', 𝜎'

		𝑟!$~𝑁 𝜇#', 𝜎$'

		𝑞!%~𝑁(𝜇$, 𝜎$)

Kullback-Leibler Divergence

Translation Cross EntropyReconstruction Loss
1
𝑁
𝛴)*!+ 𝑥) − 𝑥)3

#

Source Program Target ProgramMulti-lingual Disentanglement

Weight Sharing

Figure 4: The overall framework.

Clearly, there are many terms also present in the ELBO (Eq. 3). We
aim to learn a generative model by maximizing the log-likelihood
of the joint multilingual distribution while enforcing disagreement
by maximizing the regularization in Eq. 10. Thus, we combine these
objectives using a trade-off weight 𝜆:

E𝑞 (𝑧1,· · · ,𝑧𝑁 ,𝑧𝑠 ,𝑥1,· · · ,𝑥𝑁)

[
log

𝑝 (𝑥1, · · · , 𝑥𝑁 , 𝑧1, · · · , 𝑧𝑁 , 𝑧𝑠)
𝑞(𝑧1, · · · , 𝑧𝑁 , 𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)

]
+ 𝜆

𝑁∑︁
𝑖=1

[
𝐼 (𝑋 𝑖 ;𝑋 𝑖 ;𝑍𝑠) − 𝐼 (𝑍 𝑖 ;𝑍𝑠)

]
≥ (1 + 𝜆)E𝑝𝐷 (𝑥1,· · · ,𝑥𝑁)

𝑁∑︁
𝑖=1

E𝑞 (𝑧𝑖 |𝑥𝑖)𝑞 (𝑧𝑠 |𝑥1,· · · ,𝑥𝑁) [log𝑝 (𝑥𝑖 |𝑧𝑖 , 𝑧𝑠)]

− (1 + 𝜆)E𝑝𝐷 (𝑥𝑖)
𝑁∑︁
𝑖=1

𝐷𝐾𝐿
[
𝑞(𝑧𝑖 |𝑥𝑖) | |𝑝 (𝑧𝑖)

]
(11)

− E𝑝𝐷 (𝑥𝑖)𝐷𝐾𝐿
[
𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁)∥𝑝 (𝑧𝑠)

]
− 𝜆 · E𝑝D (𝑥1,· · · ,𝑥𝑁) [

𝑁∑︁
𝑖=1

𝐷𝐾𝐿 [𝑞(𝑧𝑠 |𝑥1, · · · , 𝑥𝑁) | |𝑟 𝑖 (𝑧𝑠𝑖 |𝑥
𝑖)]] .

The right-hand side (RHS) of Eq. 11 represents the objective for
multilingual program translation within a disentangled generative
framework.

3.3 The overall framework of VIM-PT
The VIM-PT is architecture-free, which can theoretically and prac-
tically be adapted to arbitrary sequence-to-sequence architecture,
which involves an encoder and a decoder. Based on the experi-
mental performance, we finally set up a unified encoder for all
the languages with weight-sharing and an independent decoder
for each programming language. As illustrated in Figure 4, given a
multi-parallel sample (𝑡1, · · · , 𝑡𝑁) from the dataset 𝑝D (𝑡1, · · · , 𝑡𝑁),
where each sample including a group of codes of the same function
implemented by the N different programming languages. The flag

tokens are initialized by the unused tokens in the tokenizer. To
refer to the programming language, we concatenate the flag tokens,
and source code as the input sequence as follows:

[[𝐶𝐿𝑆], 𝑥𝑛1 , 𝑥
𝑛
2 , · · · , 𝑥

𝑛
𝑘
, 𝑡𝑛1 , 𝑡

𝑛
2 , · · · , 𝑡

𝑛
𝑐 , [𝑆𝐸𝑃]],𝑛 ∈ [1, 𝑁], (12)

where k is the length of the flag token, and c is the length of the
source code. Then the sequence of the instance is encoded by the
weight-sharing encoders to the initial representations. Then the
flag representations are inputted into the variational interaction.

After variational interaction, we can reconstruct the flag repre-
sentations of the other programming languages for each source
code of the sample. Then the target flag representations are concate-
nated with the source code representations and inputted into the
target decoder to generate the target code. The regularized train-
ing approach learns the model from the objective which consists
of the supervised loss function as well as the regularization term
described in Eq. 11.

3.4 Learning from multi-parallel samples
The disentangle module involves three approximate posteriors 𝑞𝜙𝑖 ,
𝑟𝜙𝑖 , and 𝑝𝜙𝑖 , and a language-shared approximate posterior𝑞𝜙𝑠 . Each
approximate posterior is parameterized by a standard Gaussian
prior 𝑧 ∼ N(0, 𝐼).

The flag representations of instances can be disentangled by
the corresponding language-specific projectors (𝑞𝜙1 , · · · , 𝑞𝜙𝑁) and
language-shared projectors 𝑞𝜙𝑠 , respectively. In addition, the shift-
shared representations are inferred by corresponding shift-shared
projectors (𝑟𝜙1 , · · · , 𝑟𝜙𝑁). Then the language-specific representa-
tions and the language-shared representation are inputted into
(𝑝𝜙1 , · · · , 𝑝𝜙𝑁) to reconstruct the representations of the multi-
lingual instances.

The language-specific representations, the language-shared rep-
resentation, and the shift-shared representations are denoted by

1911

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yali Du, Hui Sun, and Ming Li

(z1, · · · , z𝑁), z𝑠 , and (z𝑠1, · · · , z
𝑠
𝑁
), respectively. Instructed by Equa-

tion 11, the objective of the training of multi-parallel samples is
formalized as:

L = ((1 + 𝜆) · [−
𝑁∑︁
𝑖=1

E𝑞 (z𝑖 |x𝑖)𝑞 (z𝑠 |x1,· · · ,x𝑁) [log 𝑝 (x𝑖 |z𝑖 , z𝑠)︸ ︷︷ ︸
Reconstruction Loss

+ log p𝐷 (t𝑖 |x̂𝑖 , t𝑠)]])︸ ︷︷ ︸
Translation Cross Entropy

(13)

+ (1 + 𝜆) ·
𝑁∑︁
𝑖=1

𝐷𝐾𝐿 [𝑞(z𝑖 |x𝑖) | |𝑝 (z𝑖)]

+ 𝐷𝐾𝐿 [𝑞(z𝑠 |x1, · · · , x𝑁) | |𝑝 (z𝑠)]

+ 𝜆 ·
𝑁∑︁
𝑖=1

𝐷𝐾𝐿 [𝑞(z𝑠 |x1, · · · , x𝑁) | |𝑟 𝑖 (z𝑠𝑖 |x
𝑖)] ,

The first term of the Eq. 13 includes two parts, where the recon-
struction loss (Mean Square Error) and translation cross-entropy
loss are to reconstruct the representations of flag tokens and source
code tokens, respectively. The last term is to minimize the KL di-
vergence between the shift-shared and language-shared represen-
tations, so the language-shared representation can be replaced
approximately by the shift-shared representation when some in-
stances are missing in the partially missing samples.

3.5 Learning from partially missing samples
For partially missing samples, we design a training strategy to
exploit the data that is not multi-parallel. The training strategy is
described in Algorithm 1.

At first, given a partially missing sample from the dataset, there
may be some missing instances in one sample. To obtain the pseudo
instances, we disentangle the language-specific representations and
the language-shared representations to generate the draft transla-
tion of the missing instances. We sample a set of pseudo instances
(̃𝑡1, · · · , �̃�𝑁) from the training dataset randomly to fill the missing
instances of the corresponding language in the original sample. And
the flag representations can be separated as (x̃1, · · · , x̃𝑁). Similar
to the learning of multi-parallel samples, the language-specific rep-
resentations, and the shift-shared representations are disentangled
as (̃z1, · · · , z̃𝑁), and (̃z𝑠1, · · · , z̃

𝑠
𝑁). However, as some instances of

the sample are missing, the language-shared representation can not
be inferred.

To overcome this issue, the method generates the draft trans-
lation of the missing instances with the pseudo instances. Each
language-specific representation of the pseudo instance and the
language-shared representation of ground truth are inputted into
(𝑝𝜙1 , · · · , 𝑝𝜙𝑁) to reconstruct the representations of the multi-
lingual instances. As the language-shared representation of ground
truth is not unique, for each language-shared representation of
(̃z𝑠1, · · · , z̃

𝑠
𝑁), a multi-parallel sample (x̂1, · · · , x̂𝑁 reconstructed by

language-shared information and language-specific information
can be obtained. Then the learning of multi-parallel samples can be
performed. Especially, only the target programs with ground truth
are reconstructed.

Algorithm 1: Pseudocode of training of partially missing
samples.
Input: Dataset D from N programming languages, 𝑜𝑝𝑡 is the

optimizer
Output:Model(𝜃, 𝜙)

1 for 𝑒𝑝𝑜𝑐ℎ <𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ do
2 Draw a partially missing sample from the dataset
3 Construct the pseudo sample (�̃�1, · · · , �̃�𝑁) by filling the

missing instance from training set randomly
4 Encode the sample by encoders as (x̃1, · · · , x̃𝑁)
5 Enforce disentanglement on pseudo instances to obtain

language-specific representation (̃z1, · · · , z̃𝑁) and shift-shared
representation (̃z𝑠1, · · · , z̃𝑠𝑁) by (𝑞𝜙1 , · · · , 𝑞𝜙𝑁) and
(𝑟𝜙1 , · · · , 𝑟𝜙𝑁) , respectively

6 Compute
∑𝑁
𝑖=1 𝐷𝐾𝐿 [𝑞𝜙𝑖 (̃z

𝑖 |x̃𝑖) | |𝑝 (̃z𝑖)]
7 for each z̃𝑠𝑖 obtained by 𝑟𝜙𝑖 do
8 Reconstruct the sample (x1, · · · , x𝑁) with (̃z1, · · · , z̃𝑁)

and z̃𝑠𝑖 by (𝑝𝜙1 , · · · , 𝑝𝜙𝑁)
9 Enforce disentanglement on multi-parallel instances to

obtain language-specific representation (z1, · · · , z𝑁) and
language-shared representation z𝑠 by (𝑞𝜙1 , · · · , 𝑞𝜙𝑁) and
𝑞𝜙𝑠 respectively

10 Compute
∑𝑁
𝑖=1 𝐷𝐾𝐿 [𝑞𝜙𝑖 (z𝑖 |x𝑖) | |𝑝 (z𝑖)],

𝐷𝐾𝐿 [𝑞𝜙𝑠 (z𝑠 |x1, · · · , x𝑁) | |𝑝 (z𝑠)] and∑𝑁
𝑖=1 𝐷𝐾𝐿 [𝑞𝜙𝑠 (z𝑠 |x1, · · · , x𝑁) | |𝑟𝜙𝑖 (z𝑠 |x𝑖)]

11 Reconstruct the instance representation (x̂1, · · · , x̂𝑁)
with (z1, · · · , z𝑁) and z𝑠 by (𝑝𝜙1 , · · · , 𝑝𝜙𝑁)

12 Generate the target programs with ground truth by
decoders and compute the first term of Eq. 13.

13 end
14 𝜃,𝜙 ← 𝑜𝑝𝑡 (𝜃, 𝜙, ∇𝜃,𝜙)
15 end

4 EXPERIMENTS
4.1 Dataset Description
We conduct experiments on the CoST dataset [54], which is a large
and comprehensive dataset to evaluate the performance of program
translation approaches. The dataset consists of both snippet-level
and program-level parallel data from 7 programming languages (i.e.,
C, C#, C++, Java, JavaScript, PHP, and Python) and up to 42 program-
ming language pairs, which was collected from the GeeksForGeeks
website1. The platform ensures its contributors stick to a template
in terms of the comments used in their programs and the code
corresponding to those comments. The dataset provides a good
number of multilingual instances of code that can be effectively
used for this task. The detailed statistics of the dataset are shown
in Table 1, while the train, validation, and test sets are split the
same as CoST [54]. For each language, there are some instances of
corresponding samples that are missing, especially in C and PHP.

Fig. 5 and Fig. 6 have illustrated the imbalanced proportion of
the pairwise data in the dataset. The statistics of the pairwise data
are shown in the Table 2 in detail.

1https://www.geeksforgeeks.org/

1912

https://www.geeksforgeeks.org/

A Joint Learning Model with Variational Interaction for Multilingual Program Translation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Sample counts for each language in CoST. Py denotes Python, and JS denotes JavaScript.

Granularity Dataset Java C# C++ C Py PHP JS Samples

Program
train 1,442 1,382 1,442 183 1,343 435 904 1,507
val 49 49 49 49 49 49 49 49
test 69 69 69 69 69 69 69 69

Snippet
train 13,979 47,722 27,101 4,517 34,582 12,752 28,376 49,962
val 272 1,524 544 813 948 1,402 1,185 1,524
test 411 2,301 823 1,238 1,423 2,138 1,778 2,308

Ja
va

 ↓

3% 6%

9%
11
.9%

14
.9%

17.9
%

C++ ↓

3%

6%

9%

11.9%

14.9%
17.9%C# ↓3%

6%9%11.9%

14
.9
%

17
.9
%

↑
 P

y3%

6%

9%
11.
9%

14.9
%

↑ JS

3%

6%

9%

11.9%

↑ PHP

3%

6%

↑
 C

3%

Figure 5: Program Pairs on CoST.

Ja
va

 ↓

3.
9%

7.
7%

11
.6%

15.
4%

19.3
%

C++ ↓

3.9%

7.7%

11.6%

15.4%

19.3%C# ↓3.9%7.7%

11
.6
%

15
.4
%19
.3
%↑
 P

y

3.9
%

7.7
%

11.6%

15.4%

↑ JS

3.9%

7.7%

11.6%

↑ PHP

3.9%

↑
 C

3.9%

Figure 6: Snippet Pairs on CoST.

Table 2: Pairwise statistics of the CoST. The
upper triangle (in normal font) shows the num-
ber of parallel snippets, while the lower trian-
gle (in bold font) shows the number of parallel
programs. JS represents JavaScript and Py rep-
resents Python.

Lang C C# C++ Java JS PHP Py
C - 2123 2188 2135 1232 700 1779
C# 273 - 13326 13905 7601 3192 11404
C++ 267 1442 - 13929 7596 3165 11930
Java 281 1495 1497 - 7729 3194 11713
JS 196 994 996 1009 - 2917 7165
PHP 135 552 548 552 512 - 545
Py 263 1383 1419 1417 962 545 -

4.2 Experimental Settings
We choose the following state-of-the-art multi-lingual and pairwise
program translation methods as baselines. All the encoder-only pre-
trained models are fine-tuned on the task with the same decoder as
our methods.

• Naïve Copy: A direct copy from the source program to the trans-
lation output, which denotes how similar the source language
and the target language are.
• DOBF [19]: A pre-training model for programming languages,
which leverages the structural aspect of programming languages
and recovers the original version of obfuscated source code.
• CodeBERT [11]: A bimodal pre-training model, trained with
a hybrid objective function that incorporates the pre-training
task of standard masked language modeling and replaced token
detection in the pre-training stage.
• MuST-PT [54]: The state-of-the-art multilingual program trans-
lation technique that utilizes multilingual languages and exhibits
strong generalizability enhances translation performance, partic-
ularly for low-resource languages.
• M-PT(w/o VI): A straightforward approach of multilingual pro-
gram translation. where each programming language shares an
encoder and has an independent decoder. This approach is a
blank controller of VIM-PT without variational interaction.

To compare with these baselines, we follow the best hyper-
parameters suggested in their studies. For hyper-parameters in
our method, the numbers of transformer layers of the encoder and
decoder are set as 12 and 6, respectively. The model dimension and
attention heads in transformer layers are set as 768 and 12. The

hyper-parameters 𝛼 , 𝑘 are determined based on the performance of
the validation set, which is set as 1e-3, 16 in the experiment. Then,
the training set and the validation set are mixed up to train the
model. Following MuST-PT[54], the snippet-level training set is
utilized to enhance the program-level translation, and some data
of C++ is used to supplement C. Following the baselines [37, 54],
the comments in the source code are kept in the dataset, which can
increase the number of anchor points across languages, and the
parameters of CodeBERT [11] are utilized to initialize the encoder
to accelerate the training process. The AdamW [24] optimizer is
used to update model parameters with the initial learning rate 1e-4.
The linear weight decay is used for scheduling the learning rate.
The process is repeated for 3 times and the average performance
on the test set is reported. All the experiments are conducted with
the NVIDIA Tesla A100 with 128GB RAM on the Ubuntu system.

4.3 RQ1: What is the Performance of VIM-PT
Comparing With Baseline Approaches?

In the experiment, we use the BLEU [35] score as the evaluationmet-
ric to evaluate the 𝑛-gram overlap between the translated code and
the ground-truth target code, which is the most widely used metric
in program translation [12, 19, 25, 54]. A higher BLEU score indi-
cates better evaluation performance, which varies from 0 to 100 as a
percentage. Table 3 shows the experimental results. For each pair of
translations, the three best performing approaches are highlighted,
while dark gray marks an approach with the highest retrieval per-
formance, and gray and light gray correspond to the second- and
third-best approaches. Compared with the pairwise approach like
CodeBERT with a similar backbone, the multilingual approaches

1913

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yali Du, Hui Sun, and Ming Li

Table 3: Performance evaluation in terms of BLEU-4.

Snippet Level Program Level

Lang Method C C# C++ Java JS PHP Py C C# C++ Java JS PHP Py

C

Naïve Copy - 68.88 85.58 69.17 54.85 37.48 37.84 - 68.74 85.02 69.34 53.90 38.1 36.09
DOBF - 39.38 40.17 41.57 33.54 34.51 17.93 - 27.64 20.90 27.15 20.77 24.15 25.87
CodeBERT - 51.92 60.84 51.70 40.57 34.49 31.49 - 34.41 33.64 33.75 29.90 29.32 27.34
MuST-PT - 80.68 88.58 79.24 80.35 82.94 66.49 - 78.39 84.92 76.84 66.13 70.62 55.71
M-PT(w/o VI) - 76.82 84.65 70.57 73.86 72.83 65.94 - 74.76 76.22 72.28 70.91 69.57 59.62
VIM-PT - 81.21 89.80 79.85 80.98 85.86 69.47 - 81.19 85.64 78.83 73.81 73.82 65.48

C#

Naïve Copy 68.91 - 67.29 78.13 58.90 35.01 36.49 68.74 - 67.51 78.69 57.61 35.55 34.62
DOBF 38.33 - 38.94 47.84 28.70 49.32 25.14 26.38 - 27.50 31.63 23.62 34.90 22.94
CodeBERT 52.65 - 79.28 83.90 76.99 6 64.72 34.93 - 65.74 80.11 53.72 45.67 47.14
MuST-PT 81.12 - 85.34 85.80 82.74 81.64 71.11 78.78 - 84.72 87.76 70.00 70.66 62.03
M-PT(w/o VI) 79.41 - 81.24 83.75 78.64 75.83 72.16 69.53 - 74.87 80.80 71.63 68.38 61.09
VIM-PT 82.02 - 85.92 83.99 83.15 85.27 73.42 79.36 - 84.82 87.63 81.41 74.26 65.78

C++

Naïve Copy 85.66 67.33 - 67.32 55.44 37.68 36.92 85.02 67.51 - 67.38 54.07 38.47 34.89
DOBF 43.32 42.25 - 42.03 40.01 49.29 25.77 31.84 37.43 - 48.70 34.05 15.67 23.73
CodeBERT 63.24 77.21 - 78.39 75.10 70.75 68.92 45.57 64.15 - 56.47 48.65 40.59 56.73
MuST-PT 87.55 82.98 - 80.27 81.01 83.29 71.20 84.20 81.15 - 79.15 68.85 71.18 64.10
M-PT(w/o VI) 83.40 83.54 - 81.67 78.91 77.71 69.92 71.75 74.43 - 72.57 71.19 69.94 61.27
VIM-PT 86.57 86.19 - 84.69 82.35 83.56 73.21 77.11 83.27 - 79.92 75.63 73.89 66.07

Java

Naïve Copy 69.14 78.03 67.25 - 57.33 33.82 35.50 69.40 78.77 67.48 - 55.99 33.66 33.60
DOBF 39.21 44.26 38.80 - 40.23 48.87 24.83 32.23 65.02 22.01 - 55.78 35.75 24.90
CodeBERT 54.98 86.02 79.14 - 78.54 70.21 66.41 46.85 80.88 69.88 - 55.15 47.66 48.56
MuST-PT 81.16 90.13 85.23 - 81.87 80.39 70.06 78.71 89.93 84.28 - 69.53 69.83 61.12
M-PT(w/o VI) 78.54 90.36 81.07 - 80.55 72.31 74.03 70.25 78.66 75.54 - 70.80 69.20 61.59
VIM-PT 81.96 93.12 85.79 - 83.29 80.25 78.29 82.09 90.43 84.79 - 75.89 74.25 66.04

JS

Naïve Copy 54.58 58.61 55.29 56.61 - 30.44 41.58 53.00 56.70 53.29 54.44 - 31.53 39.77
DOBF 33.16 41.50 39.91 44.16 - 46.93 24.05 22.13 38.06 20.69 37.78 - 26.03 21.21
CodeBERT 40.93 75.38 73.83 74.58 - 63.85 60.99 32.88 58.43 50.42 60.13 - 46.14 44.34
MuST-PT 78.54 78.91 78.95 78.03 - 78.69 66.47 70.20 73.32 73.01 73.39 - 76.44 63.88
M-PT(w/o VI) 75.90 80.44 77.40 79.23 - 78.56 66.53 65.99 71.93 72.57 70.08 - 64.68 56.61
VIM-PT 79.96 81.76 78.09 79.27 - 79.51 67.02 70.64 79.07 75.05 74.07 - 77.57 64.72

PHP

Naïve Copy 37.46 34.99 37.64 33.85 30.66 - 23.67 38.10 35.55 38.47 33.61 32.01 - 23.04
DOBF 25.78 40.88 38.30 42.98 38.11 - 25.64 17.62 31.95 30.18 25.88 25.89 - 20.80
CodeBERT 30.06 65.67 67.68 64.02 62.06 - 57.01 30.82 47.14 43.04 45.83 43.45 - 39.42
MuST-PT 76.67 77.96 79.41 76.42 77.64 - 69.34 67.88 70.34 70.04 67.30 73.54 - 63.97
M-PT(w/o VI) 73.68 75.04 76.02 68.10 68.20 - 61.25 68.33 72.24 73.42 70.49 69.12 - 61.08
VIM-PT 78.30 78.79 81.37 77.02 76.76 - 69.65 70.58 73.82 80.30 73.64 76.76 - 70.44

Py

Naïve Copy 37.77 36.42 36.90 35.24 41.53 23.59 - 35.74 34.31 34.62 33.00 39.79 22.85 -
DOBF 28.77 34.07 36.23 33.48 30.71 45.68 - 15.47 29.22 24.99 35.64 27.31 28.21 -
CodeBERT 35.82 61.50 71.06 65.99 62.34 63.73 - 53.17 49.16 57.63 52.93 52.30 45.69 -
MuST-PT 70.64 72.35 75.37 70.89 70.46 75.49 - 58.70 63.23 66.16 64.57 66.47 70.90 -
M-PT(w/o VI) 63.72 67.88 72.39 67.54 69.43 66.78 - 63.72 67.88 68.39 67.54 59.43 66.78 -
VIM-PT 71.11 77.68 75.85 73.45 72.74 76.05 - 64.65 68.53 69.59 67.64 68.29 71.00 -

including MuST-PT, VIM-PT(w/o VT), and VIM-PT perform signifi-
cantly outperformance. We can attribute this result to (1) expansion
of the representation scope, as the different language corpora face
various application scenarios and have different functional pref-
erences, (2) better latent space, which can be jointly constructed
by different languages to represent the language-sharing seman-
tics, and (3) the auxiliary benefit to low-resource language with
rich-resource language, which is last but most important factor. In
practical scenarios, where different language corpora are unevenly

distributed, building a low-resource programming language to la-
tent space mapping can be benefited from learning among other
rich-resource programming languages, which is more effective and
robust than building a pairwise mapping using only parallel data.

It can be observed that VIM-PT performs performance gains
widely over the state-of-the-art approaches on most of the transla-
tion pairs, especially at the program level. VIM-PT performs better
with the improvement of 4.57% and 1.87% over the state-of-the-art
approach in multi-lingual program translation [54] at the program

1914

A Joint Learning Model with Variational Interaction for Multilingual Program Translation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 4: The average BLEU-4 score of the translation of different approaches from or to the languages.

Method Snippet Level Program Level

from C C# C++ Java JS PHP Py Avg C C# C++ Java JS PHP Py Avg

Naïve 58.97 57.46 58.39 56.85 49.52 33.05 35.24 49.93 58.53 57.12 57.89 56.48 48.12 33.46 33.39 49.28
DOBF 34.52 38.05 40.45 39.37 38.29 35.28 34.82 37.25 24.41 27.83 31.90 39.28 27.65 25.39 26.81 29.04
CodeBERT 45.17 71.03 72.27 72.55 64.93 57.75 60.07 63.40 31.39 54.55 52.03 58.16 48.72 41.62 51.81 48.33
MuST-PT 79.71 81.29 81.05 81.47 76.60 76.24 72.53 78.41 72.10 75.66 74.77 75.57 71.71 68.85 65.01 71.95
M-PT(w/o VI) 74.11 78.50 79.19 79.48 76.34 70.38 67.96 75.14 70.56 71.05 70.19 71.01 66.98 69.11 65.62 69.22
VIM-PT 81.12 82.30 82.76 83.78 77.60 76.98 74.48 79.86 76.46 78.88 75.98 78.92 73.52 74.26 68.28 75.19
Improvement(%) 9.46 4.84 4.51 5.41 1.65 9.38 9.59 6.41 8.36 11.02 8.25 11.14 9.76 7.45 4.05 8.58

to C C# C++ Java JS PHP Py Avg C C# C++ Java JS PHP Py Avg

Naïve 58.92 57.38 58.33 56.72 49.79 33.00 35.33 49.92 58.33 56.93 57.73 56.08 48.90 33.36 33.67 49.29
DOBF 34.76 40.39 38.73 42.01 35.22 45.77 23.89 37.25 24.28 38.22 24.38 34.46 31.24 27.45 23.24 29.04
CodeBERT 46.28 69.62 71.97 69.76 65.93 61.94 58.26 63.39 40.70 55.70 53.39 54.87 47.20 42.51 43.92 48.33
MuST-PT 79.28 80.50 82.15 78.44 79.01 80.41 69.11 78.41 73.08 76.06 77.19 74.84 69.09 71.61 61.80 71.95
M-PT(w/o VI) 75.78 79.01 78.80 75.14 74.93 74.00 68.31 75.14 68.26 73.32 73.50 72.29 68.85 68.09 60.21 69.22
VIM-PT 79.99 83.13 82.80 79.71 79.88 81.75 71.84 79.87 74.07 79.39 80.03 76.96 75.30 74.13 66.42 75.19
Improvement(%) 5.56 5.20 5.09 6.08 6.60 10.47 5.18 6.31 8.51 8.28 8.88 6.45 9.37 8.87 10.32 8.67

Base +C# +PHP
+Python

+JavaScript40

50

60

70

80

90

75.54

83.38 82.69 82.4 82.48

Java→ C++

Base +Java +C++ +PHP +C#

61.59 62.74 62.74 61.15
63.45

JavaScript→ Python

Base +Java +C++ +C#
+Python

69.12

75.55 75.07 75.03 74.75

PHP→ JavaScript

Base +Java +C++ +C#
+JavaScript

59.76

68.72 70.56 68.98 68.72

Python→ PHP

Base +Java +C++ +PHP
+Python

58.43

78.83 78.48
76.51 77.39

JavaScript→ C#

Base +Java +C#
+Python

+JavaScript

69.94
73.88 73.07 71.41 72.41

C++→ PHP

Base +C# +PHP
+Python

+JavaScript40

50

60

70

80

90

56.47

81.37 79.69 79.83 80.33

C++→ Java

Base +Java +C++ +PHP +C#

59.43

68.17 69.57 68.2 68.69

Python→ JavaScript

Base +Java +C++ +C#
+Python

46.14

65.63
67.82

65.11 66.78

JavaScript→ PHP

Base +Java +C++ +C#
+JavaScript

45.69

70.72 70.45 69.88 68.6

PHP→ Python

Base +Java +C++ +PHP
+Python

53.72

81.41 79.86
77.54

80.68

C#→ JavaScript

Base +Java +C#
+Python

+JavaScript

43.04

80.35 80.95 80.3 79.46

PHP→ C++

Figure 7: The auxiliary benefit of different languages in program translation.

Table 5: Comparison with LLMs on program-level, including
CodeT5, Deepseek-Coder(1.3B), and GPT-3.5.

Model Py-Java C#-Java C#-Py C++-C# C#-C++

CodeT5 66.40 82.41 62.80 72.47 78.39
Deepseek-Coder 54.13 52.97 59.00 55.07 53.03
GPT-3.5 65.60 85.64 62.93 79.01 81.31
VIM-PT 67.64 87.63 65.78 83.27 84.82

level and snippet level, respectively. In particular, VIM-PT per-
forms better than all the pairwise approaches and multi-lingual
approaches on all the translations when Python is the source lan-
guage or target language. Table 4 further calculates the average
score of the translation of different approaches from or to any pro-
gramming languages based on Table 3. As shown in Table 4, VIM-PT

has performed the state-of-the-art at both snippet and program
level in all configurations of the average score from or to any pro-
gramming languages. Additionally, the p-values between VIM-PT
and each baseline are less than 0.05, confirming that the observed
differences are statistically significant. We notice the performance
of MusT-PT is lower than M-PT(w/o VI) on PHP and Python, which
indicates that using the weight-sharing decoder is not conducive to
the modeling of low-resource languages with few samples, which
may be overwhelmed by the rich-resource languages in the joint
training.

Moreover, we further evaluate the performance of large lan-
guage models on the program translation. As shown in Table 5,
CodeT5 [45] and VIM-PT are trained by supervised fine-tuning,
while Deepseek-Coder(1.3B) [13] and GPT-3.5 [33] are evaluated
by inference. Limited by space, we only present some of the experi-
mental results. As shown in Table 5, GPT-3.5 performs well across

1915

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yali Du, Hui Sun, and Ming Li

language pairs with direct inference, whereas the performance of
Deepseek-Coder(1.3B) is comparatively lower, which can be attrib-
uted to differences in model size. But VIM-PT achieves comparable
results to GPT-3.5 despite having significantly fewer parameters.

4.4 RQ2: What is the impact of Variational
Interaction for the VIM-PT?

To evaluate the effectiveness of the variational interaction, we set a
blank controller termed M-PT(w/o VI), which ablates variational in-
teraction on VIM-PT. As shown in Table 3 and Table 4, the inclusion
of Variational Interaction (VI) in VIM-PT results in an improvement
in the average BLEU-4 score at both snippet Level and program
Level. Across most programming language pairs, VIM-PT achieves
higher performance than M-PT(w/o VI), indicating that variational
interaction indeed enhances translation quality.

In summary, the incorporation of VI effectively enhances the per-
formance of the translation model, resulting in more accurate and
fluent translations. The Improvement in Table 4 indicate the average
improvement of the variational interaction across all languages and
levels, with an average increase from 4.05% to 11.14%, and from
1.65% to 10.47% at the program level and snippet level, respectively.
The variational interaction leads to notable improvements espe-
cially in low-resource languages like C and PHP, indicating that
variational interaction plays a crucial role in enhancing the perfor-
mance of the low-resource languages in multilingual translation.

4.5 RQ3: Which rich-resource languages benefit
the low-resource languages?

Due to the diversity between different programming languages,
we explore the auxiliary benefits of different programming lan-
guages as rich-resource to the translation between low-resource
programming languages. As shown in Fig. 7, with auxiliary of any
other programming languages, the performance of each direction
of program translation has obtained a significant improvement. It
is because when importing the third programming language, more
data are utilized in the learning and the language-shared latent
space can be constructed better. The base indicates the pair-wised
approach based on CodeBERT and the others are the translation
with the help of the other languages based on the framework of
VIM-PT. The auxiliary benefits of different programming languages
may depend on the following possible factors.

4.5.1 The imbalance of the data of different auxiliary languages. The
amount of data of auxiliary language has a significant influence on
the auxiliary benefit of program translation. As mentioned above,
more data are utilized in the learning and the language-shared
latent space can be constructed better, and further influence the
decoding of the language-shared features. As illustrated in Fig. 5,
compared to PHP the number of pairs from Java, C++, and C# is
larger. Therefore, when Java, C++, and C# are selected as auxiliary
languages, the benefits for the translation are more significant than
PHP as the auxiliary language generally.

4.5.2 Compiled and interpreted programming languages. Program-
ming languages can be divided into compiled and interpreted types,
depending on how programs are executed. Compiled languages
require that all source code be translated into machine code when

writing a program, which is then executed by a computer. Common
compiled languages include C, C++, and Java. Interpreted languages
translate source code into machine code line by line or block by
block when executing a program and execute it. Common inter-
preted languages include Python, JavaScript, and PHP. As shown
in Fig. 7, in the compiled-compiled translation from C++ to Java,
using the compiled language C# as auxiliary can achieve higher
performance than the other interpreted languages, such as PHP,
Javascript, and Python.

4.5.3 Syntax Similarity. Although each programming language
has a unique formal syntax, the syntax similarity between different
languages is various. For instance, C# is similar to C++ in syntax,
while quite different from Python. As shown in Fig. 7, in the trans-
lation from PHP to C++, with the help of C#, the improvement of
the performance is more significant than Python as an auxiliary.

In summary, it is observed that any language that serves as
an auxiliary generally has a supporting role, which demonstrates
the effectiveness of VIM-PT in addressing the distribution shift
of semantics across multiple languages. Yet many possible factors
influence the benefit of the auxiliary language, thus how to select
the rich-resource languages as auxiliary languages is still a question
worth exploring in the multi-lingual program translation.

4.6 RQ4: What is the deployment complexity of
the joint model and pairwise approaches?

To compare the deployment complexity between the pairwise ap-
proach and VIM-PT, we record the space overhead of the translation
model. As shown in Fig. 8, the pairwise approach and VIM-PT are
both constructed with CodeBERT as encoder and the 6-layer Trans-
former as Decoder. With the number of languages in translation
increasing, the number of parameters of the pairwise approach
grows exponentially, and VIM-PT grows linearly.

It is because the encoder-decoder models needed by the pairwise
approach are coupling with the number of translation directions,
but the decoders needed by VIM-PT are coupling with the number
of languages. In the bilingual program translation, the pairwise
approach should construct two models for the two directions in
translation, and the number of parameters of the pairwise approach
and VIM-PT is similar. When the multilingual translation gradually
increases to 7 languages, the pairwise approach should construct
42 encoder-decoder models for the 42 directions in translation. In
this case, VIM-PT only needs one weight-sharing encoder and 7
decoders, where the number of parameters is less than 1/15 of
the pairwise approaches. It demonstrates the space efficiency of
multilingual program translation.

5 THREAT ANALYSIS
Our results are interpreted with two threats to validity in mind.

• The internal threat to validity lies in the implementation of com-
pared techniques. To reduce it, we directly reuse the implementa-
tion of the compared techniques from their reproducible packages
and the weights of pre-trained models, if they are available and
executable. Otherwise, we reimplement the techniques strictly
following the papers on existing mature libraries.

1916

A Joint Learning Model with Variational Interaction for Multilingual Program Translation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

2 3 4 5 6 7
Number of Languages

0

1000

2000

3000

4000

5000

6000

7000

Pa
ra

m
s(

M
)

345.01

1035.02

2070.04

3450.07

5175.11

7245.15

227.45 278.26 329.07 379.88 430.69 481.5

Pairwise Translation
VIM-PT

Figure 8: The comparison of space overhead between pairwise
approach and VIM-PT in terms of parameters.

• The external threat to validity lies in the dataset used in the
experiment. To mitigate the external threat, the widely used
dataset, which includes 7 programming languages and up to 42
pairs and two levels, is used to evaluate the effectiveness of the
method. The artifact contains the dataset and the code is publicly
available in the supplementary material.

6 CONCLUSION
In this paper, we argue that jointly learning a unified model to
translate code across multiple programming languages is superior
to separately learning from bilingual parallel data. We propose Vari-
ational Interaction for Multilingual Program Translation (VIM-PT),
a disentanglement-based generative approach that jointly trains a
unified model for multilingual program translation across multiple
languages. VIM-PT disentangles code into language-shared and
language-specific features using variational inference and interac-
tion information with a novel lower bound. With the variational
interaction, VIM-PT achieves significant improvement in multi-
lingual program translation, mines and leverages the capability
of non-parallel data, addresses the distribution shift of program
semantics across languages, and serves as a unified model, reduc-
ing deployment complexity. In the future, more effective selection
strategies in filling the partially missing samples can be explored
beyond the random selection used in our method.

7 DATA AVAILABILITY
Our replication package (including code, model, etc.) is publicly
available at https://github.com/duyali2000/VIM-PT.

8 ACKNOWLEDGMENTS
This research was supported by NSFC (62076121, 61921006), Major
Program (JD) of Hubei Province (2023BAA024), and Postgradu-
ate Research & Practice Innovation Program of Jiangsu Province
(KYCX24_0301). The authors would like to thank Hao-Yuan He for
his helpful feedback on drafts of the paper.

A APPENDICES
A.1 𝐼 (𝑍 𝑖 ;𝑍𝑠) = −𝐼 (𝑋 𝑖 ;𝑍 𝑖 , 𝑍𝑠) + 𝐼 (𝑋 𝑖 ;𝑍 𝑖) + 𝐼 (𝑋 𝑖 ;𝑍𝑠)
With the interaction information between three random variables:

𝐼 (𝑋 ;𝑌 ;𝑍) = 𝐼 (𝑋 ;𝑍) − 𝐼 (𝑋 ;𝑍 |𝑌) = 𝐼 (𝑌 ;𝑍) − 𝐼 (𝑌 ;𝑍 |𝑋) , (14)

we can obtain the mutual information between 𝑍 𝑖 and 𝑍𝑠 :

𝐼 (𝑍 𝑖 , 𝑍𝑠) = 𝐼 (𝑍 𝑖 ;𝑋 𝑖) − 𝐼 (𝑍 𝑖 ;𝑋 𝑖 |𝑍𝑠) + 𝐼 (𝑍 𝑖 ;𝑍𝑠 |𝑋 𝑖) . (15)

Due to the structural assumption on 𝑞, the 𝑞(𝑧𝑖 |𝑥𝑖) = 𝑞(𝑧𝑖 |𝑥𝑖 , 𝑧𝑠)
holds, so the last term in the above function is eliminated:

𝐼 (𝑍 𝑖 ;𝑍𝑠 |𝑋 𝑖) = 𝐻 (𝑍 𝑖 |𝑋 𝑖) − 𝐻 (𝑍 𝑖 |𝑋 𝑖 , 𝑍𝑠)
= 𝐻 (𝑍 𝑖 |𝑋 𝑖) − 𝐻 (𝑍 𝑖 |𝑋 𝑖) = 0 ,

(16)

which yields

𝐼 (𝑍 𝑖 , 𝑍𝑠) = 𝐼 (𝑋 𝑖 ;𝑍 𝑖) − 𝐼 (𝑋 𝑖 ;𝑍 𝑖 |𝑍𝑠)
= 𝐼 (𝑋 𝑖 ;𝑍 𝑖) + 𝐼 (𝑋 𝑖 ;𝑍𝑠) − 𝐼 (𝑋 𝑖 ;𝑍 𝑖 , 𝑍𝑠) .

(17)

REFERENCES
[1] Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei

Chang. 2023. AVATAR: A Parallel Corpus for Java-Python Program Translation.
In Findings of the Association for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023. 2268–2281.

[2] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. 2017. Deep
Variational Information Bottleneck. In 5th International Conference on Learning
Representations, Toulon, France, April 24-26.

[3] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles Sutton.
2018. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput.
Surv. (2018), 81:1–81:37.

[4] Khalid Alsubhi, Fawaz Alsolami, A Algarni, E Albassam, Maher Khemakhem, F
Eassa, K Jambi, and M Usman Ashraf. 2019. A Tool for Translating sequential
source code to parallel code written in C++ and OpenACC. In 2019 IEEE/ACS 16th
International Conference on Computer Systems and Applications (AICCSA). 1–8.

[5] Kijin An, Na Meng, and Eli Tilevich. 2018. Automatic inference of java-to-
swift translation rules for porting mobile applications. In Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems. 180–190.

[6] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree Neural Networks
for Program Translation. In Advances in Neural Information Processing Systems
31, Montréal, Canada. 2552–2562.

[7] William C. Chu. 1993. A Re-Engineering Approach to Program Translation.
In Proceedings of the Conference on Software Maintenance, ICSM 1993, Montréal,
Quebec, Canada. 42–50.

[8] Yali Du, Yi-Fan Ma, Zheng Xie, and Ming Li. 2023. Beyond Lexical Consistency:
Preserving Semantic Consistency for Program Translation. In IEEE International
Conference on Data Mining, ICDM 2023, Shanghai, China, December 1-4, 2023.
91–100.

[9] Yali Du and Zhongxing Yu. 2023. Pre-training Code Representation with Semantic
Flow Graph for Effective Bug Localization. CoRR abs/2308.12773 (2023).

[10] Bryan Eikema and Wilker Aziz. 2018. Auto-encoding variational neural machine
translation. arXiv preprint arXiv:1807.10564 (2018).

[11] Zhangyin Feng, Daya Guo, Du-Yu Tang, Nan Duan, Xiao-Cheng Feng, Ming
Gong, Lin-Jun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP, Online Event. 1536–1547.

[12] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conference on Learning Representations, Virtual
Event, Austria.

[13] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When the
Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196 (2024).

[14] HyeongJoo Hwang, Geon-Hyeong Kim, Seunghoon Hong, and Kee-Eung Kim.
2020. Variational interaction information maximization for cross-domain dis-
entanglement. Advances in Neural Information Processing Systems 33 (2020),
22479–22491.

[15] Svetoslav Karaivanov, Veselin Raychev, and Martin T. Vechev. 2014. Phrase-Based
Statistical Translation of Programming Languages. In Proceedings of the 2014

1917

https://github.com/duyali2000/VIM-PT

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yali Du, Hui Sun, and Ming Li

ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, part of SPLASH ’14, Portland, OR, USA. 173–184.

[16] Thomas R Kennedy III. 1987. Using program transformation to improve program
translation. (1987).

[17] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
2014. Semi-supervised learning with deep generative models. Advances in neural
information processing systems 27 (2014).

[18] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
In 2nd International Conference on Learning Representations, Banff, AB, Canada,
April 14-16, Yoshua Bengio and Yann LeCun (Eds.).

[19] Marie-Anne Lachaux, Baptiste Rozière, Marc Szafraniec, and Guillaume Lam-
ple. 2021. DOBF: A Deobfuscation Pre-Training Objective for Programming
Languages. In Advances in Neural Information Processing Systems 34, virtual.

[20] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.
2018. Unsupervised Machine Translation Using Monolingual Corpora Only. In
6th International Conference on Learning Representations, Vancouver, BC, Canada.

[21] Robert S Ledley and James B Wilson. 1962. Automatic-programming-language
translation through syntactical analysis. Commun. ACM 5, 3 (1962), 145–155.

[22] Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. 2009. Variational decoding for
statistical machine translation. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP. 593–601.

[23] Jiaqi Liu, Fengming Zhang, Xin Zhang, Zhiwen Yu, Liang Wang, Yao Zhang, and
Bin Guo. 2024. hmCodeTrans: Human-Machine Interactive Code Translation.
IEEE Transactions on Software Engineering (2024).

[24] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In 7th International Conference on Learning Representations,.

[25] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. In Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, virtual.

[26] Yi-Fan Ma, Yali Du, and Ming Li. 2023. Capturing the Long-Distance Dependency
in the Control Flow Graph via Structural-Guided Attention for Bug Localization.
In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China. 2242–2250.

[27] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2013. Lexical
statistical machine translation for language migration. In Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation. 651–654.

[28] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2015. Divide-and-
Conquer Approach for Multi-phase Statistical Migration for Source Code (T).
In 30th IEEE/ACM International Conference on Automated Software Engineering.
585–596.

[29] Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. 2016. Mapping API
elements for code migration with vector representations. In Proceedings of the
38th International Conference on Software Engineering.

[30] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code
from source code using statistical machine translation. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 574–584.

[31] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering. 574–584.

[32] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering, Lincoln, NE, USA.
IEEE Computer Society.

[33] OpenAI. 2023. GPT-3.5. https://platform.openai.com/docs/guides/gpt/chat-
completions-api. (Accessed on 09/14/2023).

[34] Artidoro Pagnoni, Kevin Liu, and Shangyan Li. 2018. Conditional variational
autoencoder for neural machine translation. arXiv preprint arXiv:1812.04405
(2018).

[35] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, Philadelphia,
PA, USA. 311–318.

[36] Sergio Pino, Lori Pollock, and Sunita Chandrasekaran. 2017. Exploring translation
of OpenMP to OpenACC 2.5: lessons learned. In 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 673–682.

[37] Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised Translation of Programming Languages. In Advances in
Neural Information Processing Systems, NeurIPS, virtual.

[38] Baptiste Rozière, Jie Zhang, François Charton, Mark Harman, Gabriel Synnaeve,
and Guillaume Lample. 2022. Leveraging Automated Unit Tests for Unsupervised
Code Translation. In ICLR.

[39] Hendra Setiawan, Matthias Sperber, Udhyakumar Nallasamy, andMatthias Paulik.
2020. Variational Neural Machine Translationwith Normalizing Flows. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020. 7771–7777.

[40] Xin Sheng, Linli Xu, Junliang Guo, Jingchang Liu, Ruoyu Zhao, and Yinlong
Xu. 2020. Introvnmt: An introspective model for variational neural machine
translation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
8830–8837.

[41] Jinsong Su, Shan Wu, Deyi Xiong, Yaojie Lu, Xianpei Han, and Biao Zhang. 2018.
Variational recurrent neural machine translation. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 32.

[42] Weisong Sun, Chunrong Fang, Yuchen Chen, Guanhong Tao, Tingxu Han, and
Quanjun Zhang. 2022. Code search based on context-aware code translation. In
Proceedings of the 44th International Conference on Software Engineering. 388–400.

[43] Marc Szafraniec, Baptiste Rozière, Hugh Leather, François Charton, Patrick La-
batut, and Gabriel Synnaeve. 2022. Code Translation with Compiler Representa-
tions. CoRR abs/2207.03578 (2022).

[44] Mudiarta Tauda, Zahir Zainuddin, and Zulkifli Tahir. 2021. Programming Lan-
guage Translator For Integration Client Application With Web APIs. In 2021
International Conference on Artificial Intelligence and Mechatronics Systems (AIMS).
1–4.

[45] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Virtual Event / Punta Cana, Dominican
Republic. Association for Computational Linguistics, 8696–8708.

[46] Richard C. Waters. 1988. Program Translation via Abstraction and Reimplemen-
tation. IEEE Trans. Software Eng. 14, 8 (1988), 1207–1228.

[47] Justin D Weisz, Michael Muller, Steven I Ross, Fernando Martinez, Stephanie
Houde, Mayank Agarwal, Kartik Talamadupula, and John T Richards. 2022. Better
together? an evaluation of ai-supported code translation. In 27th International
conference on intelligent user interfaces. 369–391.

[48] Justin D. Weisz, Michael J. Muller, Stephanie Houde, John T. Richards, Steven I.
Ross, Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021.
Perfection Not Required? Human-AI Partnerships in Code Translation. In IUI
’21: 26th International Conference on Intelligent User Interfaces, College Station, TX,
USA, April 13-17, 2021. 402–412.

[49] Yuanbo Wen, Qi Guo, Qiang Fu, Xiaqing Li, Jianxing Xu, Yanlin Tang, Yong-
wei Zhao, Xing Hu, Zidong Du, Ling Li, Chao Wang, Xuehai Zhou, and Yunji
Chen. 2022. BabelTower: Learning to Auto-parallelized Program Translation. In
International Conference on Machine Learning, Baltimore, Maryland, USA.

[50] Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. 2023. Code-
TransOcean: A Comprehensive Multilingual Benchmark for Code Translation. In
Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore,
December 6-10, 2023. 5067–5089.

[51] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan
Hong, Xiaoxue Ma, Zhi Jin, and Ge Li. 2024. Exploring and unleashing the power
of large language models in automated code translation. Proceedings of the ACM
on Software Engineering (2024), 1585–1608.

[52] Zaixiang Zheng, Hao Zhou, Shujian Huang, Lei Li, Xin-Yu Dai, and Jiajun Chen.
2020. Mirror-Generative Neural Machine Translation. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

[53] Ming Zhu, Ismini Lourentzou, and Danfeng Yao. 2023. Alignment-Enhancing
Parallel Code Generation for Semi-Supervised Code Translation. (2023).

[54] Ming Zhu, Karthik Suresh, and Chandan K. Reddy. 2022. Multilingual Code
Snippets Training for Program Translation. In Thirty-Sixth AAAI Conference on
Artificial Intelligence.

Received 2024-06-07; Accepted 2024-08-07

1918

https://platform.openai.com/docs/guides/gpt/chat-completions-api
https://platform.openai.com/docs/guides/gpt/chat-completions-api

