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ABSTRACT

Enlightened by the big success of pre-training in natural language

processing, pre-trained models for programming languages have

been widely used to promote code intelligence in recent years. In

particular, BERT has been used for bug localization tasks and im-

pressive results have been obtained. However, these BERT-based

bug localization techniques su�er from two issues. First, the pre-

trained BERT model on source code does not adequately capture

the deep semantics of program code. Second, the overall bug local-

ization models neglect the necessity of large-scale negative samples

in contrastive learning for representations of changesets and ignore

the lexical similarity between bug reports and changesets during

similarity estimation. We address these two issues by 1) proposing

a novel directed, multiple-label code graph representation named

Semantic Flow Graph (SFG), which compactly and adequately cap-

tures code semantics, 2) designing and training SemanticCodeBERT

based on SFG, and 3) designing a novel Hierarchical Momentum

Contrastive Bug Localization technique (HMCBL). Evaluation re-

sults show that our method achieves state-of-the-art performance

in bug localization.
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• Software and its engineering→ Software testing and debug-

ging;Maintaining software.
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1 INTRODUCTION

While modern software engineering recognizes a broad range of

methods (e.g., model checking, symbolic execution, type checking)

for helping ensure that the software meets the speci�cation of its

desirable behavior, the software (even deployed ones) is still un-

fortunately plagued with heterogeneous bugs for reasons such as

programming errors made by developers and immature develop-

ment process. The process of resolving the resultant bugs termed

debugging, is an indispensable yet frustrating activity that can

easily account for a signi�cant part of software development and

maintenance costs [76]. To tackle the ever-growing high costs in-

volved in debugging, a variety of automatic techniques have been

proposed as debugging aids for developers over the past decades

[88]. In particular, numerous methods have been developed to fa-

cilitate fault localization, which aims to identify the exact locations

of program bugs and is one of the most expensive, tedious, and

time-consuming activities in debugging [80, 85].

The literature on fault localization is rich and is abundant with

methods stemming from ideas that originate from several di�er-

ent disciplines, notably including statistical analysis [37, 48, 84, 86],

program transformation [60], information retrieval [68, 71]. Among

them, information retrieval-based methods typically proceed by

establishing the relevance between bug reports and related soft-

ware artifacts on the ground of information retrieval techniques,

and this category of methods is appealing as it is amenable to

the mainstream development practice which features continuous

integration (CI), versioning with Git, and collaboration within plat-

forms like GitHub [75]. In line with existing literature, information

retrieval-based fault localization hereafter is simply referred to as

bug localization.

The matched software artifact at the early phase of bug localiza-

tion research focuses on code elements such as classes and meth-

ods [41, 72], but recent years have witnessed a growing interest

in changesets [18, 68, 79, 81]. The key advantage of changesets is

that they contain simultaneously changed parts of the code that are

related, facilitating bug �xing. With regard to information retrieval

techniques, the major shift is that the dominating techniques have

changed from Vector Space Model (VSM) to deep learning tech-

niques, both for code elements and changesets. To precisely locate

the bug, bug localization techniques essentially need to accurately

relate the natural language used to describe the bug (in the bug

report) and identi�er naming practices adopted by developers (in

the software artifacts). However, it is quite common that there ex-

ists a signi�cant lexical gap between them, and consequently, the

retrieval quality of bug localization techniques is not always sat-

isfactory [96]. To overcome the issue, bug localization techniques

necessarily need to go beyond exact term matching and establish
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the semantic relatedness between bug reports and software arti-

facts.

Given that deep learning architectures are capable of leveraging

contextual information and have achieved impressive progress in

natural language processing, a number of bug localization tech-

niques based on the neural network have been proposed in re-

cent years [17, 32, 44, 55, 57, 64, 83, 94, 95]. In particular, state-of-

the-art transformer-based architecture BERT [21] (bidirectional

encoder representation from the transformer) has been widely em-

ployed [17, 47]. Based on the naturalness hypothesis which states

that “software corpora have similar statistical properties to natural

language corpora” [29], these BERT-based techniques �rst pre-train

a BERT model on a massive corpus of source code using certain

pre-training tasks such as masked languagemodeling, and then �ne-

tune the trained BERTmodel for bug localization task. Experimental

evaluations have shown that reasonable accuracy improvements

can be obtained by these BERT-based techniques.

Despite the progress made, one drawback of these BERT-based

techniques is that the pre-trained BERT model on source code does

not adequately capture the deep semantics of program code. Unlike

natural language, the programming language has a formal structure,

which provides important code semantics that is unambiguous in

general [2]. However, the existing pre-trained BERT model either

totally ignores the code structure by treating code snippet as a

sequence of tokens same as natural language or considers only the

shallow structure of the code by using graph code representations

such as data �ow graph [25]. Consequently, the formal code struc-

ture has not been fully exploited, resulting in an under-optimal

BERT model. To overcome this issue, we in this paper present

a novel code graph representation termed Semantic Flow Graph

(SFG), which compactly and adequately captures code semantics.

SFG is a directed, multiple-label graph that captures not only the

data �ow and control �ow between program elements but also the

type of program element and the speci�c role that a certain program

element plays in computation. On the ground of SFG, we further

propose SemanticCodeBERT, a pre-training model with BERT-like

architecture to learn code representation that considers deep code

structure. SemanticCodeBERT features novel pre-training tasks

besides the ordinary masked language modeling task.

In addition, the overall models of existing BERT-based bug lo-

calization techniques ignore several points which are bene�cial

for further improving performance. First, the batch size is typi-

cally limited to save model space because of the huge scale of

BERT parameters, and the number of negative samples coupled to

batch size is thus limited. A variety of existed methods [9, 11, 13–

16, 22, 28, 39, 45, 65, 66, 74, 78, 82, 89] emphasizes the necessity of

large-scale negative samples in contrastive representation learn-

ing. In the bug localization context, it implies the importance of

considering the large-scale negative sample interactions for rep-

resentation learning of bug reports and changesets. Nevertheless,

existing techniques like Ciborowska et. al. [17] only select one ir-

relevant changeset in training as the negative sample for a bug

report, which causes ine�cient mining of negative samples and

poor representation of the programming language. To alleviate this

issue, we propose to use a memory bank [82] to store rich change-

sets obtained from di�erent batches for later contrast. In particular,

due to the constant parameter update by back-propagation, we

utilize the momentum contrastive method [28] to account for the

inconsistency of negative vectors obtained by di�erent models (in

di�erent mini-batches). Second, existing BERT-based bug local-

ization techniques only account for the semantic level similarity

between bug reports and changesets, totally ignoring the lexical

similarity (e.g., same identi�er) which is also of vital importance

for retrieval if exists. To alleviate this issue, we propose to use a

hierarchical contrastive loss to leverage similarities at di�erent

levels. On the whole, we design a novel Hierarchical Momentum

Contrastive Bug Localization (HMCBL) technique to address the

two limitations.

We implement the analyzer for obtaining SFG for Java code and

use the Java corpus (including 450,000 functions) of the CodeSearch-

Net dataset [33] to pre-train SemanticCodeBERT. On top of Seman-

ticCodeBERT, we apply the hierarchical momentum contrastive

method to facilitate the retrieval of bug-inducing changesets given

a bug report on the widely used dataset established in [79], which

includes six Java projects. Results show that we achieve state-of-

the-art performance on bug localization. Ablation studies justify

that the newly designed SFG improves the BERT model and the

new bug localization architecture is better than the existing ones.

Our contributions can be summarized as follows:

• We present a novel directed, multiple-label code graph represen-

tation termed Semantic Flow Graph (SFG), which compactly and

adequately captures code semantics.

• We employ SFG to train SemanticCodeBERT, which can be ap-

plied to obtain code representations for various code-related

downstream tasks.

• We design a novel Hierarchical Momentum Contrastive Bug Lo-

calization technique (HMCBL), which overcomes two important

issues of existing techniques.

• We conduct a large-scale experimental evaluation, and the results

show that our method outperforms state-of-the-art techniques

in bug localization performance.

2 RELATED WORKS

This section reviews work closely related to this paper. Bug local-

ization techniques proceed by making a query about the relevance

between bug reports and related software artifacts on top of in-

formation retrieval techniques. The investigated software artifacts

can be majorly divided into two categories: code elements such as

classes and methods [31, 41, 42, 46, 50–53, 58, 62, 67, 71–73, 90, 94]

and changesets [18, 68, 79, 81]. Given changesets contain simulta-

neously changed parts of the code that are related and can thus

facilitate bug �xing, the use of changesets is gradually dominating.

With regard to information retrieval techniques, the Vector Space

Model (VSM) is widely used for its simplicity and e�ectiveness,

especially in the early phase of bug localization research. For in-

stance, BugLocator [91] makes use of the revised Vector Space

Model (rVSM) to establish the textual similarity between the bug

report and the source code and then ranks all source code �les based

on the calculated similarity. For another example, Locus [79] repre-

sents one of the earliest works on changeset-based bug localization,

and it proceeds by matching bug reports to hunks.

As VSM basically performs exact term matching, the e�ective-

ness will be compromised in the common case where there exists
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a signi�cant lexical gap between the descriptions in the bug re-

port and naming practices adopted by developers in the software

artifacts. To overcome this issue, bug localization techniques es-

sentially need to establish the semantic relatedness between bug

reports and software artifacts. Given the impressive progress in

leveraging contextual information by deep learning architectures

in natural language processing, deep neural networks have been

widely used by researchers to learn representations for bug local-

ization in recent years [32, 44, 57, 93]. For instance, Huo et. al. [32]

present the Deep Transfer Bug Localization task, and propose the

TRANP-CNN as the �rst solution for the cold-start problem which

combines cross-project transfer learning and convolutional neural

networks for �le-level bug localization. Zhu et. al. [93] focus on

transferring knowledge (while �ltering out irrelevant noise) from

the source project to the target project, and propose the COOBA

to leverage adversarial transfer learning for cross-project bug lo-

calization. Murali et. al. [57] propose Bug2Commit, which is an

unsupervised model leveraging multiple dimensions of data associ-

ated with bug reports and commits.

In particular, enlightened by the impressive achievements made

by BERT in natural language processing, BERT has been used for

bug localization tasks. Lin et. al. [47] study the tradeo�s between

di�erent BERT architectures for the purpose of changeset retrieval.

Based on the Colbert developed by Khattab et. al. [40], Ciborowska

et. al. [17] propose the FBL-BERT model towards changeset-based

bug localization. Evaluation results show that FBL-BERT can speed

up the retrieval and several design decisions have also been ex-

plored, including granularities of input changesets and the utiliza-

tion of special tokens for capturing changesets’ semantic repre-

sentation. While impressive retrieval results of changesets have

been achieved, the Colbert used by FBL-BERT does not adequately

capture the deep semantics of program code and the overall models

of FBL-BERT su�er from two important limitations as described in

Section 1 (Introduction).

Furthermore, inspired by the success of pre-training models in

natural language processing, a number of pre-trained models for

programming languages have been proposed to promote the de-

velopment of code representation (which is vital for a variety of

code-based tasks in the �eld of SE). For instance, CodeBERT is a

pre-trained model proposed by Feng et. al. [23], which provides

generic representations for natural and programming language

downstream applications. GraphCodeBERT [25] imports structural

information to enhance the code representation by adding the data

�ow graph as an auxiliary of input tokens and improves the perfor-

mance of code representation compared to CodeBERT. Kanade et.

al. [38] propose CuBERT, which is pre-trained on a massive Python

source corpus with two pre-training tasks of Masked Language

Modeling (MLM) and Next Sentence Prediction (NSP). Buratti et.

al. [10] propose C-BERT, a transformer-based language model that

is pre-trained on the C language corpus for code analysis tasks. Xue

et. al. [35] propose TreeBERT, which proposes a hybrid target for

AST to learn syntactic and semantic knowledge with tree-masked

language modeling (TMLM) and node order prediction (NOP) pre-

training tasks. More recently, the UniXcoder [24] is proposed to

leverage cross-modal information like Abstract Syntax Tree and

comments written in natural language to enhance code represen-

tation. While these pre-trained models on source code have made

progress towards code representation, one drawback of them is that

they not adequately capture the deep semantics of program code

as they either treat code snippets as token sequences or consider

only shallow code structure by using graph code representations

such as data �ow graph. Hence, we give a novel code graph repre-

sentation termed Semantic Flow Graph (SFG) to more compactly

and adequately capture code semantics in this paper. On top of

SFG, we further design and train SemanticCodeBERT with novel

pre-training tasks.

3 SEMANTIC FLOW GRAPH

This section introduces the Semantic Flow Graph (SFG), a novel

code graph representation designed for compactly representing

deep code semantics. On top of the naturalness hypothesis “Software

is a form of human communication, software corpora have similar

statistical properties to natural language corpora, and these properties

can be exploited to build better software engineering tools” [29], recent

years have witnessed many innovations in using machine learning

(particularly deep learning) techniques to help make the software

more reliable and maintainable. To achieve successful learning, one

important ingredient lies in suitable code representation. The repre-

sentation, on the one hand, should capture enough code semantics,

and on the other hand, should be learnable across code written by

di�erent developers or even di�erent programming languages [2].

There are majorly three categories of code representation ways

within the literature: token-based ways that represent code as a se-

quence of tokens [1, 19, 26, 27], syntactic-based ways that represent

code as trees [4–6, 30, 56, 63, 87], and semantic-based ways that

represent code as graph structures [3, 7, 8, 12, 20, 25, 43, 92]. For

token-based representation, while its simplicity facilities learning,

the representation ignores the structural nature of code and thus

captures quite limited semantics. For syntactic-based representa-

tion, despite the tree representation in principle can contain rich

semantic information, the learnability is unfortunately con�ned

as the tree typically has an unusually deep hierarchy and there, in

general, will involve signi�cant re�nement e�orts of the raw tree

representation to enable successful learning in practice. Semantic-

based representation aims to encode semantics in a way that fa-

cilitates learning, and a variety of graphs have been employed for

code model learning, including for example data �ow graph [12, 25],

control �ow graph [20], program dependence graph [8], contextual

�ow graph [7].

While these graph-based representations have facilitated the

learning of code semantics embodied in data dependency and con-

trol dependency, certain other code semantics are overlooked. In

particular, the information of what kinds of program elements are

related by data dependency or control dependency and through

which operations they are related to is neglected. We argue that

this information is crucial for accurately learning code semantics.

For instance, given a code snippet “a = m (b, c)” where a, b, and

c are Boolean, Integer, and User-de�ned type variables respec-

tively, and m is a certain function call, there will be two data �ow

edges b→ a and c→ a considering the data �ow graph, and the

code snippet will read “the values of two variables have �own into

another variable”. Under this circumstance, as the corresponding

data �ow graph coincides, the meaning of the code snippet has no
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Figure 1: An example of the semantic �ow graph.

di�erence with a variety of other code snippets such as “a = (b &&

m (c))” where a, b, and c are Boolean, Boolean, and arbitrary type

variables respectively, and m is a certain function call that returns a

boolean value. But if the additional information of what kinds of

program elements and which operations are taken into account, the

code snippet “a = m (b, c)” will read “the value of an Integer type

variable and the value of a User-de�ned type variable have �own into

another Boolean type variable through a function call”, which is more

precise. To compactly integrate these two pieces of information

into graphs, we design a novel directed, multiple-label code graph

representation termed Semantic Flow Graph (SFG).

De�nition 3.1. (Semantic Flow Graph). The Semantic Flow

Graph (SFG) for a code snippet is a tuple < #, �,) , ' > where

N is a set of nodes, E is a set of directed edges between nodes in

N, and T and R are mappings from nodes to their types and their

roles in computation respectively.

A number of points deserve comment. First, the node set N can

be further divided into node sets N+ and N� , which contain nodes

corresponding to variables and control instructions in the code

respectively. While the variable has a one-to-one mapping with a

certain node from N+ , there may be one or multiple nodes in N� for

a certain control instruction. Essentially, if a control instruction has

an associated condition and n di�erent branches (i.e., straight-line

code blocks) to go depending on the condition evaluation result,

there will be a node in N� for the condition, a node in N� for the

convergence of the di�erent branches, and n di�erent nodes in N�
for the n branches respectively.

Second, a directed edge n0 → n1 (n0 ∈ N, n1 ∈ N) in E can

be of 3 kinds. The �rst kind E� represents a data �ow between

two variables if n0 ∈ N+ ∧ n1 ∈ N+ holds, the second kind E�
embodies the control �ow between two straight-line basic blocks

if n0 ∈ N� ∧ n1 ∈ N� holds, and �nally the third kind E( denotes

the natural sequential computation �ow inside or between basic

blocks in case n0 ∈ N+ ∧ n1 ∈ N� or n0 ∈ N� ∧ n1 ∈ N+ holds. In

particular, the edge set E is established as follows:

(1) Establish E� among nodes from set N+ according to Intra-block

and Inter-block data dependencies between variables.

(2) Establish E� among nodes from set N� according to the speci�c

control �ow of the control instruction.

(3) Establish E( following these rules: there will be an edge n0 → n1
(i) if n1 ∈ N� is for the control instruction condition and n0 ∈ N+
is for a certain variable involved in the condition; (ii) if n0 ∈ N� is

for the control instruction branch and n1 ∈ N+ is for the left-most

variable of the �rst statement inside the branch; (iii) if n0 ∈ N+ is for

the left-most variable of the last statement inside a control instruction

branch and n1 ∈ N� is for the control instruction convergence; (IV)

if n0 ∈ N� is for the control instruction convergence and n1 ∈ N+ is

for the left-most variable of the �rst statement inside the basic block

directly following the control instruction.

Third, mapping T maps each node in N to its type, encoding the

needed information of “what kinds of program elements are related”.

For each node in N+ , T maps it to the corresponding type of the

variable. For each node in N� , T maps the node to the speci�c part

of the control instruction it refers to. Take the control instruction

If-Then-Else as an example, T maps the associated 4 nodes in

N� for it to type IfCondition, IfThen, IfElse, and IfCONVERGE

respectively.

Finally, mapping R maps each node in N+ to its role in the com-

putation, encoding the needed information of “through which op-

erations program elements are related”. Basically, R considers the

associated operation and control structure for the variable to deter-

mine its computation role. From an implementation perspective, for

each node in N+ , R checks the direct parent of the corresponding

variable in the abstract syntax tree (AST) and the position rela-

tionship between it and the direct parent to establish the role. For

instance, given a code snippet, “a = b” where a and b are variables,

R maps the roles of a and b to Assigned and Assignement respec-

tively. For another example, given a code snippet “a.m(b)” where

a and b are variables, and m is a certain function call, R maps the

roles of a and b to InvocationTarget and InvocationArgument
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respectively. For nodes in N� , we do not consider their roles as they

are implicit in their types.

Note it is di�cult to simply augment classical graph program

representations with information of type and computation role.

Existing representations like program dependence graph typically

work at the statement granularity (i.e., each graph node represents a

statement), making it hard to encode detailed type and computation

role information of multiple program elements in the statement.

The proposed SFG works at a �ner granularity with two types

of nodes that have a one-to-one mapping with program variables

and a one-to-one (or many-to-one) mapping with program con-

trol ingredients respectively. This kind of node representation is

proposed for two reasons. On the one hand, it is convenient to

analyze the types and computation roles of variables (through how

they are connected with other program elements) and program

control ingredients. On the other hand, data �ow and control �ow

information are established respectively by analyzing variable uses

and program control ingredients. With SFG (built on such a node

representation), data �ow and control �ow can be encoded through

the edges between nodes, and the type and computation role in-

formation can be encoded through node labels. SFG does not have

nodes for additional program elements (like invocation etc.), thus

it is compact but contains adequate semantic information.

Overall, SFG is a directed, multiple-label graph that captures not

only the data �ow and control �ow between program elements,

but also the type of program element and the speci�c role that

a certain program element plays in computation. Moreover, SFG

represents this information in a compact way, facilitating learning

across programs.

Example 3.1. Figure 1 gives an example of a Semantic Flow Graph

for a simple method.

Implementation: We fully implement an analyzer to get Semantic

Flow Graph (SFG) for a Java method on top of Spoon [61], which is

an open-source library to analyze, rewrite, transform, and transpile

Java source code. Our analyzer supports modern Java versions up to

Java 16. For nodes in N+ , the analyzer considers di�erent kinds of

primitive types and common JDK types, and a special type named

user-defined type. In total, the analyzer considers 20 types for

nodes in N+ . For nodes in N� , the analyzer takes all the control

instruction kinds (up to Java 16) into account and considers 35 types

in total. With regard to role, the analyzer considers 43 di�erent

roles in total for nodes in N+ .

4 SEMANTICCODEBERT

In this section, we describe �rst the architecture of SemanticCode-

BERT (shown in Figure 3), then the graph-guided masked attention

based on the semantic �ow graph, and �nally the pre-training tasks.

Overall, the SemanticCodeBERT network architecture adapts the

architecture of GraphCodeBERT for the proposed novel SFG pro-

gram representation and SemanticCodeBERT also features tailored

pre-training tasks for the SFG representation.

4.1 Model Architecture

The SemanticCodeBERT follows BERT (Bidirectional Encoder Rep-

resentation from Transformers) (Devlin et. al., [21]) as the backbone.

Figure 2: All de�ned types and roles.

Comment Input Sequence: We import comments as a supple-

ment for the model to understand the semantic information of

programming code. [�!(] is the special classi�cation token at the

beginning of the comment sequence, .

Source Code Input Sequence: We cleanse the source code and

remove erroneous characters, and add the special classi�cation

token [(�%] at the end of the source code and input sequence. To

represent the start-of-code, we import a pre-appended token [�]

to split the comment and source code. The source code sequence

can be represented as ( .

Node Input Sequence: With the procedure discussed in Section

3, we generate a semantic �ow graph (SFG) for each code snippet.

At the beginning of the node list # , a pre-appended token [# ] is

added to represent the start-of-node.

Type Input Sequence: To answer the question of "what kinds of

program elements are related", we have identi�ed 55 possible types

for the code element. ) = {C1, . . . , C55} represents the set of all 55

possible types, and [) ] is pre-appended as the start-of-type. The

complete list of types is shown in Figure 2.

Role Input Sequence: To answer the question of "through which

operations program elements are related", we have de�ned 43 roles

to mark the role of each program element in the computation,

taking into account the associated operation and control structure.

' = {A1, . . . , A43} is the set of all 43 possible roles, and the pre-

appended token ['] represents the start-of-role. The complete list

of roles is shown in Figure 2.

As intuitively shown in Figure 3, we concatenate the comment,

source code, nodes, types, and roles as the input sequence:

- = �>=20C [[�!(],, , [�], (, [(�%], [# ], # , [) ],) , ['], ', [(�%]].

(1)
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Figure 3: The SemanticCodeBERT takes to comment, source code, nodes of SFG, types, and roles as the input, and is pre-trained

by standard masked language modeling [21], node alignment (marked with red lines), graph prediction (marked with green

lines), type prediction (marked with blue lines) and role prediction (marked with purple lines).

4.2 Masked Attention

We resort to the graph-guided masked attention function described

in [25] to �lter irrelevant signals in Transformer.

• The set �1 indicates the alignment relation between ( and # ,

where (B8 , = 9 )/(= 9 , B8 ) ∈ �
1 if the node = 9 is identi�ed from the

source code token B8 .

• The set�2 indicates the dependency relation in# , where (=8 , = 9 ) ∈

�2 if there is a direct edge from the node =8 to the node = 9 .

• The set �3 incorporates the type information of the nodes, where

(=8 , C 9 ) ∈ �
3 if the type of the node =8 is C 9 .

• The set �4 incorporates the role information of the nodes, where

(=8 , A 9 ) ∈ �
4 if the role of the node =8 is A 9 .

The masked attention matrix is formulated as" :

"8 9 =




0 G8 ∈ [�!(], [(�%];

F8 , B 9 ∈, ∪ ( ;

(B8 , = 9 )/(= 9 , B8 ) ∈ �
1;

(=8 , = 9 ) ∈ �
2;

(=8 , C 9 ) ∈ �
3;

(=8 , A 9 ) ∈ �
4;

−∞ >Cℎ4AF8B4 .

(2)

Speci�cally, the masked attention function blocks the transmission

of unrelated tokens by setting the attention score to an in�nitely

negative value.

4.3 Pre-Training Tasks

The pre-training tasks of SemanticCodeBERT are described in this

section. Besides masked language modeling, node alignment, and

edge prediction pre-training tasks proposed by Guo et. al., [25], we

de�ne two novel pre-training tasks–type and role prediction. These

two novel pre-training tasks represent the �rst attempt to leverage

the attribute information of nodes for learning code representation.

Masked Language Modeling: The masked language modeling

pre-training task is proposed by Devlin et. al., [21]. We replace 15%

of the source code with [MASK] 80% of the time, a random token

10% of the time or itself 10% of the time. The comment context

contributes to inferring the masked code tokens [25].

Node Alignment: The motivation of node alignment is to align

representation between source code and nodes of semantic �ow

graph [25]. We randomly mask 20% edges between the source code

and nodes, and then predict where the nodes are identi�ed from (i.e.,

predict these masked edges �1
<0B:

). As shown in the Figure 3, the

model should distinguish that =2 comes from B6 and =13 comes from

B33. We formulate the loss function as Equation 3. Let �1 be ( × # ,

X (48 9 ∈ �
1
<0B:
) is one if (B8 , = 9 ) ∈ �

1, and zero otherwise. ?48 9 is

the probability of the edge from 8-th code token to 9-th node, which

is calculated by dot product following a sigmoid function using the

representations of B8 and = 9 outputted from SemanticCodeBERT.

L#� = −
∑

48 9 ∈�
1
<0B:

[X (48 9 );>6?48 9 +

(1 − X (48 9 ));>6(1 − ?48 9 )].

(3)

Edge Prediction: Themotivation of edge prediction is to encourage

the model to learn structural relationships from semantic �ow

graphs for better programming code representation. Like node

alignment, we randomly mask 20% edges between nodes in the

mask matrix, encouraging the model to predict these masked edges

�2
<0B:

(e.g., the edges (=3, =2) and (=12, =11)). We formulate the loss

function as Equation 4. Let �2 be # × # , X (48 9 ∈ �
2
<0B:
) is one if

(=8 , = 9 ) ∈ �
2, and zero otherwise. ?48 9 is the probability of the edge

from 8-th node to 9-th node.

L�% = −
∑

48 9 ∈�
2
<0B:

[X (48 9 );>6?48 9 +

(1 − X (48 9 ));>6(1 − ?48 9 )].

(4)

Type Prediction: The motivation of type prediction is to guide

the model to comprehend the types (e.g., “int”, “double”, “IfCondi-

tion”) of nodes for better programming code representation. We

pre-append the full set of types ) to the input nodes. Let �3 be

# ×) , if the type of node =8 is C 9 (i.e., (=8 , C 9 ) ∈ �
3), X (48 9 ∈ �

3
<0B:
)

is one, otherwise it is zero. We randomly mask 20% edges between

nodes and types and formulate the loss function as Equation 5,

where �3
<0B:

are masked edges and ?48 9 is the probability of the

edge from 8-th node to 9-th type.

L)% = −
∑

48 9 ∈�
3
<0B:

[X (48 9 );>6?48 9 +

(1 − X (48 9 ));>6(1 − ?48 9 )].

(5)

Role Prediction: “Role” indicates the computation role of the node
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in the semantic �ow graph (e.g., “InvocationArgument”, “Assigned”,

“Assignment”). Role prediction can feed the model with a more

informative signal to understand the correlation among di�erent

nodes. We pre-append the full set of roles ' to the input nodes.

Let �4 be # × ', if the role of node =8 is A 9 (i.e., (=8 , A 9 ) ∈ �
4),

X (48 9 ∈ �
4
<0B:
) is one, otherwise it is zero. We randomly mask

20% edges between nodes and roles and formulate the loss func-

tion as Equation 6, where �4
<0B:

are masked edges and ?48 9 is the

probability of the edge from 8-th node to 9-th role.

L'% = −
∑

48 9 ∈�
4
<0B:

[X (48 9 );>6?48 9 +

(1 − X (48 9 ));>6(1 − ?48 9 )].

(6)

5 CHANGESET-BASED BUG LOCALIZATION

In this section, we illustrate the utilization of the SemanticCode-

BERT towards bug localization with changesets. The proposed bug

localization model is shown in Figure 4. The model aims to address

the two important limitations (as described in Section 1) of the

overall models of existing BERT-based bug localization techniques.

5.1 Problem De�nition

Given a set Q = {@1, @2, . . . , @" } of " bug reports, the bug lo-

calization task aims to discover more relevant changesets from

K = {:1, :2, . . . , :# }, a set including # changesets. More speci�-

cally, for a bug report @ ∈ Q, a bug-inducing changeset ? ∈ K and

a not bug-inducing changeset = ∈ K are selected to form a triplet

(@, ?, =). All bug-inducing changesets and not bug-inducing change-

sets are non-overlapping. The goal of learned similarity function B

is to provide a high value for B (@, ?) (between the anchor @ and the

positive sample ?) and a low value for B (@, =) (between the anchor @

and the negative sample =). Section 5.2 focuses on producing accu-

rate representations of bug reports and changesets, and Section 5.3

describes the estimation of similarities and the loss function for

training the model.

5.2 Representation Learning

The proposed model consists of three parts, an encoder network,

projector network, and momentum update mechanism with a mem-

ory bank that stores rich representations of changesets.

Encoder Network: As mentioned before, bug reports consist of

natural language descriptions and project changesets consist of

programming language code. Hence, we introduce BERT [21] as

the backbone to the encoder bug report as q5 40CDA4 , and Seman-

ticCodeBERT as the backbone to encoder relevant changeset as

p5 40CDA4 and irrelevant changeset as n5 40CDA4 .





q5 40CDA4 = BERT(@C>: ),

p5 40CDA4 = SemanticCodeBERT(?C>: ),

n5 40CDA4 = SemanticCodeBERT(=C>: ),

(7)

where BERT and SemanticCodeBERT are the trainable parameters

of BERT and SemanticCodeBERT, @C>: , ?C>: , and =C>: are the input

tokens obtained by tokenizers, q5 40CDA4 ∈ R
3 , p5 40CDA4 ∈ R

3 , and

n5 40CDA4 ∈ R
3 are the re�ned vectors (3 is the dimension of the

mapped spaces).

Projector Network: After the feature vectors are extracted, we use

a multi-layer perception neural network as a projector to compress

the vectors of bug reports and changesets into a compact shared

embedding space.We replace Dropout with Batch Normalization for

regularization, which can be trained with saturating nonlinearities

and are more tolerant to increased training rates [34].




q<>34; = W2
1
=>A<(q (W1

1
q5 40CDA4 )),

p<>34; = W2
2=>A<(q (W

1
2p5 40CDA4 )),

n<>34; = W2
2=>A<(q (W

1
2n5 40CDA4 )),

(8)

where q<>34; ∈ R
3 ′ , p<>34; ∈ R

3 ′ , and n<>34; ∈ R
3 ′ are the

projected vectors (3′ is the dimension of the output of projector),

W·
1
and W·2 are the trainable weight matrices, =>A<(·) denotes

batch normalization [34], and q (·) is the ;40:~_A4;D function [54].

Momentum Update Mechanism with Memory Bank: As men-

tioned in Section 1, it is important to consider large-scale negative

samples in contrastive learning for representations of changesets.

To account for this, we use memory bank [82] to store rich change-

sets obtained from di�erent batches for later contrast. In particular,

we build the key model for encoder and projector networks of

changesets based on the momentum contrastive learning mecha-

nism proposed by He et. al. [28]. The parameters of the query model

\@ , are updated by back-propagation, while the parameters of the

key model \: are momentum updated as follows:

\: ←<\: + (1 −<)\@ , (9)

where< ∈ [0, 1) is a pre-de�nedmomentum coe�cient, which is set

as 0.999 in our experiment. As proved in the previous study [28], a

relatively large momentum works much better than a smaller value

suggesting that a slowly evolving key model is core to making use

of the memory bank. For per mini-batch, we use average pooling

and enqueue the latest negative samples into the memory bank and

dequeue the oldest negative samples.

5.3 Similarity Estimation

As mentioned before, the lexical similarity between bug reports

and program changesets like the same application programming

interfaces is also crucial for retrieval besides semantic similarity. In

this paper, we use the hierarchical contrastive loss to leverage the

lower feature-level similarity, higher model-level similarity, and

broader bank-level similarity for matching the bug report with

relevant changesets. We get the positive feature-level similarity B 5 +

by calculating cosine similarity between @5 40CDA4 and ? 5 40CDA4 , the

negative feature-level similarity B 5 − by calculating cosine similarity

between @5 40CDA4 and =5 40CDA4 , the positive model-level similarity

B<+ by calculating cosine similarity between @<>34; and ?<>34; ,

and the negative model-level similarity B<− by calculating cosine

similarity between @<>34; and =<>34; . Speci�cally, we calculate

the positive bank-level similarity B1+ as cosine similarity between

q@D4A~ and p:4~ , and the negative bank-level similarity B1−8 (8 ∈

{1, 2, . . . ,  }) as cosine similarity between q@D4A~ and 8-th negative

sample n8
:4~

of the memory bank ( is the size of memory bank).

585



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yali Du and Zhongxing Yu

Figure 4: An overview of the Hierarchical Momentum Contrastive Bug Localization technique (HMCBL).

We adopt InfoNCE [59], a form of contrastive loss functions, as

our objective function for contrastive matching. The feature-level

contrastive loss is formulated as follows:

L5 = −;>6
4G? (B 5 +/W)

4G? (B 5 +/W) + 4G? (B 5 −/W)
. (10)

The model-level contrastive loss is formulated as follows:

L< = −;>6
4G? (B<+/W)

4G? (B<+/W) + 4G? (B<−/W)
. (11)

The bank-level contrastive loss is formulated as follows:

L1 = −;>6
4G? (B1+/W)

4G? (B1+/W) +
 ∑

:=1
4G? (B1−8 /W)

, (12)

where  is the size of the memory bank and W is a temperature

hyper-parameter that is set to be 0.07 in our experiment. Thus, the

overall objective function is L:

L = U 5 L5 + U<L< + U1L1 , (13)

where U 5 , U< , and U1 are three hyper-parameters to balance the

feature-level, model-level, and bank-level contrasts.

5.4 O�line Indexing and Retrieval

After �ne-tuning the model on a project-speci�c dataset, we re-

sort to the o�ine indexing and retrieval methods proposed by

Ciborowska et. al. [17]. All encoded changesets are stored in IVFPQ

(InVert File with Product Quantization) index. The IVFPQ index is

implemented using the Faiss library [36], which uses the k-means

algorithm to partition the embedding space into programmed par-

titions and assign each embedding to its nearest cluster. In the

retrieval process, the query bug report is �rst located to the near-

est partition’s centroid, and then the nearest instance within the

partition is discovered. For each query bug report, we can identify

the # ′ most similar changesets across all # changesets stored in

the IVFPQ index. Therefore, we only re-rank the top-# ′ subset as

the candidate changesets to produce the �nal ranking.

Table 1: Six projects used for evaluation.

Dataset Bugs
Changesets

Commits Files Hunks

AspectJ 200 2,939 14,030 23,446

JDT 94 13,860 58,619 150,630

PDE 60 9,419 42,303 100,373

SWT 90 10,206 25,666 69,833

Tomcat 193 10,034 30,866 72,134

ZXing 20 843 2,846 6,165

6 EXPERIMENTAL EVALUATION

6.1 Dataset

The SemanticCodeBERT is trained using all the Java corpus in Code-

SearchNet [33], and we provide the weights and the guidance to

�ne-tune the pre-trained model for downstream tasks. To evalu-

ate our bug localization technique, we use the dataset separated

by Ciborowska et. al. [17] from the manually validated dataset by

Ming et. al. [79]. The dataset includes six software projects, termed

AspectJ, JDT, PDE, SWT, Tomcat, and ZXing, as shown in Table 1.

To explore the impact of the granularity of changeset data, the

bug-inducing changeset is further divided into �le-level and hunk-

level code changes. Thus, one bug report can have multiple pairs

with �les or hunks from the original inducing changes. In total, we

consider three di�erent granularities: commits, �les, and hunks.

6.2 Evaluation Metrics

A set of metrics commonly used to evaluate the performance of in-

formation retrieval systems are applied to evaluate the performance

of di�erent models.

Precision@K (%@ ): %@ evaluates how many of the top- 

changesets in a ranking are relevant to the bug report, which is

equal to the number of the relevant changesets |'4;�8 | located in
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the top- position in the ranking averaged across � bug reports:

%@ =

1

|� |

|� |∑

8=1

|'4;�8 |

 
. (14)

Mean Average Precision ("�%): "�% quanti�es the ability of

a model to locate all changesets relevant to a bug report. "�% is

calculated as the mean of�E6% (average precision) of � bug reports.

�E6% =

"∑

9=1

%@ 9 × ?>B ( 9)

#
. (15)

"�% =

1

|� |

|� |∑

8=1

1

�E6%�8
, (16)

where 9 is the rank," is the number of retrieved changesets, ?>B ( 9)

denotes whether 9-th changeset is relevant to the bug report, # is

the total number of bug reports relevant to changesets, %@ 9 is the

precision of top- 9 position in the ranking of this retrieval, and �8 is

the 8-th bug report.

Mean Reciprocal Rank ("''): "'' quanti�es the ability of a

model to locate the �rst relevant changeset to a bug report, and is

calculated as the average of reciprocal ranks across � bug reports.

1st'0=:�8 is the reciprocal rank of 8-th bug report, which is the

inverted rank of the �rst relevant changeset in the ranking:

"'' =

1

|� |

|� |∑

8=1

1

1BC'0=:�8
. (17)

6.3 Experimental Setup

Con�gurations of Pre-Training Tasks: The SemanticCodeBERT

is pre-trained on NVIDIA Tesla A100 with 128GB RAM on the

Ubuntu system. The Adam optimizer [49] is used to update model

parameters with batch size 80 and learning rate 1E-04. To accelerate

the training process, the parameters of GraphCodeBERT [25] are

used to initialize the pre-training model. The model is trained with

600K batches and costs about 156 hours.

Con�gurations of Bug Localization: The �rst half of the project’s

pairs of bug reports and bug-inducing changesets, ordered by bug

opening date, are selected as the training dataset, and the remaining

half is left as the test dataset. The experiments are implemented

with GPU support. The Adam optimizer [49] is used to update

model parameters with learning rate 3E-05. All bug reports and

changesets are truncated or padded to their respective length limit.

According to the experimental veri�cation, we set the trade-o�

hyper-parameters U 5 , U< , and U1 as 1, 1, and 1, respectively.

Changeset Encoding Strategies: Changesets are time-ordered

sequences recording the software’s evolution over time. We build

upon the three changeset encoding strategies (�-encoding, �'�-

encoding, and�'�!-encoding) proposed by Ciborowska et. al. [17]

to encode changesets. �-encoding does not utilize speci�c char-

acteristics of changeset lines. �'�-encoding divides the lines into

three groups with three unique tokens. �'�!-encoding instead

does not group the lines and maintains the ordering of lines within

a changeset. These three strategies are based on the output of

the git di� command, which divides changeset lines into three

kinds: added lines, removed lines, and unchanged lines. All code

sequences are preprocessed by �ltering the intrusive characters

(e.g., docstrings, comments) from the original code tokens.

6.4 Retrieval Performance

We compare the performance of our proposed model with the tra-

ditional bug localization tool, state-of-the-art changeset-based bug

localization approach, and two recent state-of-the-art pre-trained

models with the HMCBL framework.

• BLUiR [71]: A structured IR-based fault localization tool, which

builds AST to extract the program constructs of each source

code �le and utilizes Okapi BM25 [69] to calculate the similarity

between the bug report and the candidate changesets.

• FBL-BERT [17]: The state-of-the-art approach for automatically

retrieving bug-inducing changesets given a bug report, which

uses the popular BERT model to more accurately match the se-

mantics in the bug report text with the bug-inducing changesets.

• GraphCodeBERT [25]: A pre-trained model that considers data

�ow to better encode the relation between variables.

• UniXcoder [24]: An uni�ed cross-modal pre-trained model,

which leverages cross-modal information like Abstract Syntax

Tree and comments to enhance code representation.

For BLUiR, we fully follow the original technical description

in [71] (as no open-source implementation is available) to get the

results for the evaluation metrics. For FBL-BERT, we use the exper-

imental results provided in [17]. For GraphCodeBERT and UniX-

coder, we get the results by replacing the pre-trained model Se-

manticCodeBERT within the HMCBL framework respectively with

GraphCodeBERT and UniXcoder (keeping other con�gurations the

same). Table 2 shows the retrieval performances of di�erent models

with di�erent changeset encoding strategies (i.e., �-, �'�- and

�'�!- encoding) and three granularities (i.e. �><<8CB−, �8;4B−

and �D=:B− level) on six projects. Limited by space, the best result

of the three encoding strategies is shown for each con�guration.

The following observations can be obtained from the �gure.

First, compared with the traditional bug localization method which

relies on more direct term matching between a bug report and a

changeset, the neural network methods perform better by obtaining

semantic representations for the calculation of similarity. Second,

our proposedmethod outperforms the state-of-the-art method (FBL-

BERT) by a clearmargin. In particular, our proposed bug localization

technique improves FBL-BERT by 140.78% to 188.79% in terms

of MRR on six projects with �><<8CB− level granularity. Third,

compared with GraphCodeBERT and UniXcoder, our model using

SemanticCodeBERT as a changeset encoder consistently achieves

better performance in almost all experimental con�gurations. This

suggests that the proposed Semantic Flow Graph (SFG) captures

good code semantics, and the proposed framework contributes to

changeset-based bug localization.

The Student’s t-test is conducted between our technique and

other baselines, and the results show that the improvements are

signi�cant with p < 0.01. We additionally observe that with the

�><<8CB−level granularity, the obtained improvement is more sig-

ni�cant than the other two granularities (�8;4B−level and �D=:B−
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Table 2: Retrieval performance of di�erent models.

Projects Technique
�><<8CB− �8;4B− �D=:B−

MRR MAP P@1 P@3 P@5 MRR MAP P@1 P@3 P@5 MRR MAP P@1 P@3 P@5

ZXing

BLUiR 0.077 0.016 0.071 0.024 0.014 0.073 0.023 0.000 0.024 0.014 0.056 0.035 0.000 0.071 0.086
FBL-BERT 0.155 0.061 0.100 0.133 0.120 0.212 0.163 0.100 0.133 0.220 0.328 0.210 0.200 0.233 0.240
GraphCodeBERT 0.189 0.118 0.143 0.143 0.118 0.280 0.155 0.214 0.143 0.214 0.346 0.118 0.225 0.111 0.067
UniXcoder 0.354 0.167 0.414 0.171 0.120 0.359 0.143 0.333 0.224 0.200 0.331 0.164 0.214 0.261 0.282
Ours 0.439 0.226 0.429 0.250 0.225 0.421 0.185 0.357 0.226 0.271 0.422 0.212 0.333 0.444 0.400

PDE

BLUiR 0.009 0.001 0.000 0.000 0.000 0.018 0.003 0.000 0.008 0.005 0.024 0.005 0.000 0.008 0.010
FBL-BERT 0.103 0.013 0.067 0.033 0.027 0.260 0.079 0.167 0.128 0.151 0.288 0.093 0.200 0.144 0.127
GraphCodeBERT 0.180 0.042 0.142 0.087 0.058 0.264 0.094 0.167 0.129 0.148 0.284 0.074 0.206 0.124 0.129
UniXcoder 0.178 0.029 0.095 0.063 0.072 0.267 0.090 0.167 0.135 0.129 0.289 0.102 0.212 0.144 0.129
Ours 0.248 0.045 0.190 0.103 0.076 0.274 0.095 0.214 0.137 0.160 0.294 0.134 0.286 0.182 0.160

AspectJ

BLUiR 0.016 0.013 0.007 0.014 0.015 0.098 0.065 0.028 0.076 0.108 0.086 0.048 0.007 0.017 0.159
FBL-BERT 0.107 0.061 0.058 0.080 0.083 0.176 0.085 0.154 0.095 0.097 0.183 0.093 0.173 0.111 0.099
GraphCodeBERT 0.172 0.065 0.167 0.065 0.060 0.178 0.071 0.167 0.065 0.060 0.188 0.086 0.167 0.120 0.116
UniXcoder 0.270 0.148 0.245 0.160 0.158 0.209 0.119 0.167 0.140 0.152 0.250 0.134 0.250 0.150 0.138
Ours 0.309 0.169 0.278 0.198 0.196 0.272 0.148 0.250 0.157 0.146 0.262 0.143 0.250 0.161 0.163

JDT

BLUiR 0.019 0.001 0.015 0.005 0.003 0.027 0.003 0.000 0.010 0.012 0.033 0.005 0.000 0.005 0.009
FBL-BERT 0.118 0.016 0.064 0.043 0.030 0.403 0.060 0.319 0.184 0.128 0.429 0.062 0.319 0.195 0.167
GraphCodeBERT 0.125 0.022 0.061 0.035 0.030 0.423 0.058 0.308 0.179 0.118 0.385 0.041 0.231 0.179 0.118
UniXcoder 0.182 0.018 0.182 0.061 0.038 0.434 0.062 0.379 0.166 0.131 0.364 0.045 0.288 0.182 0.123
Ours 0.306 0.026 0.288 0.096 0.064 0.489 0.080 0.462 0.195 0.167 0.443 0.088 0.322 0.206 0.167

SWT

BLUiR 0.005 0.001 0.000 0.000 0.000 0.020 0.003 0.016 0.005 0.006 0.014 0.001 0.000 0.000 0.013
FBL-BERT 0.067 0.015 0.023 0.027 0.026 0.555 0.131 0.535 0.233 0.173 0.526 0.131 0.488 0.217 0.164
GraphCodeBERT 0.105 0.018 0.048 0.026 0.022 0.535 0.137 0.525 0.220 0.175 0.536 0.132 0.516 0.220 0.159
UniXcoder 0.129 0.035 0.107 0.106 0.063 0.548 0.149 0.524 0.233 0.183 0.535 0.143 0.535 0.205 0.179
Ours 0.283 0.085 0.159 0.177 0.170 0.560 0.153 0.540 0.249 0.192 0.540 0.147 0.540 0.228 0.179

Tomcat

BLUiR 0.007 0.002 0.000 0.002 0.002 0.014 0.003 0.000 0.010 0.007 0.014 0.005 0.000 0.012 0.013
FBL-BERT 0.141 0.055 0.062 0.077 0.088 0.463 0.114 0.381 0.222 0.183 0.482 0.129 0.412 0.216 0.182
GraphCodeBERT 0.253 0.062 0.188 0.104 0.084 0.287 0.067 0.271 0.104 0.080 0.395 0.118 0.363 0.216 0.211
UniXcoder 0.328 0.057 0.338 0.120 0.084 0.364 0.065 0.353 0.125 0.085 0.396 0.097 0.378 0.139 0.118
Ours 0.386 0.073 0.360 0.135 0.107 0.487 0.122 0.406 0.247 0.232 0.484 0.132 0.423 0.225 0.211

Table 3: Ablation study of pre-training tasks of Semantic-

CodeBERT with Semantic Flow Graph (SFG).

Dataset Pre-training Tasks MRR MAP P@1 P@3 P@5

ZXing
-w/ 0.189 0.118 0.143 0.143 0.118
-w/ N.& E. 0.372 0.102 0.333 0.111 0.067
-w/ N.& E.& T.& R. 0.439 0.226 0.429 0.250 0.225

PDE
-w/ 0.180 0.042 0.142 0.087 0.058
-w/ N.& E. 0.219 0.032 0.143 0.076 0.072
-w/ N.& E.& T.& R. 0.248 0.045 0.190 0.103 0.076

AspectJ
-w/ 0.172 0.065 0.167 0.065 0.060
-w/ N.& E. 0.289 0.158 0.250 0.184 0.170
-w/ N.& E.& T.& R. 0.309 0.169 0.278 0.198 0.196

JDT
-w/ 0.125 0.022 0.061 0.035 0.030
-w/ N.& E. 0.139 0.021 0.095 0.044 0.048
-w/ N.& E.& T.& R. 0.306 0.026 0.288 0.096 0.064

SWT
-w/ 0.105 0.018 0.048 0.026 0.022
-w/ N.& E. 0.197 0.058 0.063 0.085 0.141
-w/ N.& E.& T.& R. 0.283 0.085 0.159 0.177 0.170

Tomcat
-w/ 0.253 0.062 0.188 0.104 0.084
-w/ N.& E. 0.300 0.048 0.346 0.113 0.077
-w/ N.& E.& T.& R. 0.386 0.073 0.360 0.135 0.107

level). It can be attributed that the undivided bug-inducing change-

set carries enriched semantic information which can be captured

by SemanticCodeBERT. This again con�rms the e�ectiveness of

the SemanticCodeBERT-based bug localization technique.

6.5 Ablation Study

To evaluate the design choices in the proposed model, we con-

duct several ablation studies. To begin with, as shown in Table 3,

we analyze the contributions of node alignment, edge prediction,

type prediction, and role prediction pre-training tasks on the six

projects with commits granularity. N., E., T., and R. denote the Node

Alignment, Edge Prediction, Type Prediction, and Role Prediction

pre-training tasks, respectively. With all of these pre-training tasks,

we train SemanticCodeBert according to the proposed new code

representation SFG. According to the results, after adding Type and

Role Prediction pre-training tasks, the obtained performance has

universally improved. This result suggests that leveraging the node

attributes (type and role) is vital to learn code representation.

Furthermore, we evaluate the e�ectiveness of the Hierarchical

Momentum Contrastive Bug Localization (HMCBL) technique on

the six projects with commits granularity. As illustrated in Table 4,

for -w/o HMCBL, the memory bank and hierarchical contrastive

loss which leverages similarities at di�erent levels do not exist,

and only the representation obtained by the encoder is utilized to

calculate similarity.

To demonstrate the generality, the technique is evaluated with

di�erent pre-training models as the encoder of the changeset, in-

cluding BERT, GraphCodeBERT, and SemanticCodeBERT. It is ob-

served that overall much better performance will be obtained with

hierarchical momentum contrastive learning, which provides large-

scale negative sample interactions for representation learning and
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Table 4: Ablation study of Hierarchical Momentum Con-

trastive Bug Localization (HMCBL) technique, where

GCBERT and SCBERT are short of GraphCodeBERT and

SemanticCodeBERT.

Technique Dataset MRR MAP P@1 P@3 P@5

BERT -w/o
HMCBL
(FBL-BERT )

ZXing 0.155 0.061 0.100 0.133 0.120
PDE 0.103 0.013 0.067 0.033 0.027
AspectJ 0.107 0.061 0.058 0.080 0.083
JDT 0.118 0.016 0.064 0.043 0.030
SWT 0.067 0.015 0.023 0.027 0.026
Tomcat 0.141 0.055 0.062 0.077 0.088

GCBERT -w/o
HMCBL

ZXing 0.162 0.106 0.143 0.095 0.086
PDE 0.167 0.018 0.119 0.071 0.045
AspectJ 0.123 0.067 0.076 0.073 0.084
JDT 0.120 0.022 0.061 0.035 0.036
SWT 0.090 0.019 0.048 0.021 0.022
Tomcat 0.151 0.035 0.059 0.064 0.063

SCBERT -w/o
HMCBL

ZXing 0.222 0.112 0.143 0.190 0.150
PDE 0.230 0.049 0.142 0.095 0.069
AspectJ 0.271 0.148 0.250 0.161 0.165
JDT 0.217 0.051 0.136 0.111 0.091
SWT 0.250 0.062 0.095 0.167 0.185
Tomcat 0.285 0.053 0.265 0.092 0.069

BERT -w/
HMCBL

ZXing 0.179 0.040 0.143 0.095 0.061
PDE 0.156 0.032 0.119 0.063 0.051
AspectJ 0.162 0.097 0.118 0.141 0.149
JDT 0.128 0.017 0.030 0.070 0.100
SWT 0.082 0.013 0.048 0.024 0.021
Tomcat 0.235 0.055 0.169 0.098 0.096

GCBERT -w/
HMCBL

ZXing 0.189 0.118 0.143 0.143 0.118
PDE 0.180 0.042 0.142 0.087 0.058
AspectJ 0.172 0.065 0.167 0.065 0.060
JDT 0.125 0.022 0.061 0.035 0.030
SWT 0.105 0.018 0.048 0.026 0.022
Tomcat 0.253 0.062 0.188 0.104 0.084

SCBERT -w/
HMCBL

ZXing 0.439 0.226 0.429 0.250 0.225
PDE 0.248 0.045 0.190 0.103 0.076
AspectJ 0.309 0.169 0.278 0.198 0.196
JDT 0.306 0.026 0.288 0.096 0.064
SWT 0.283 0.085 0.159 0.177 0.170
Tomcat 0.386 0.073 0.360 0.135 0.107

increases retrieval accuracy. For instance, compared with BERT

-w/o HMCBL, which is the FBL-BERT exactly, BERT -w/ HMCBL

improves the performance in terms of MRR scores for more than

80% projects by 15.48% to 66.67%. It is indicative of the observation

that the hierarchical momentum contrastive bug localization tech-

nique can be extended as a general and e�ective framework with

di�erent advanced pre-training models.

6.6 Threats to Validity

Our results should be interpreted with several threats to validity

in mind. As bug-inducing changes are identi�ed using the SZZ

algorithm [70], one threat to the internal validity of the results is

possible noise introduced by SZZ may make the mapping between

bug reports and bug-inducing changesets not very precise. However,

the dataset used in the study has been validated manually [79], so

this threat is minimized. Another threat to internal validity is the

dataset may contain tangled changes [77]. While we do believe

tangled changes can a�ect our results, the dataset has been widely

used for changeset-based bug localization studies [17, 79], and

removing tangled changes completely is extraordinarily di�cult.

With regard to threats to external validity, one potential issue

is that the evaluation is conducted on a limited number of bugs

from several open-source projects. However, these projects feature

various purposes and development styles. Also, the dataset can be

considered as the de-facto evaluation target for changeset-based bug

localization studies and prior studies have widely used it [17, 79].

7 CONCLUSION

We aim to advance the state-of-the-art BERT-based bug localization

techniques in this paper, which currently su�er from two issues:

the pre-trained BERT models on source code are not robust enough

to capture code semantics and the overall bug localization models

neglect the necessity of large-scale negative samples in contrastive

learning and ignore the lexical similarity between bug reports and

changesets. To address these two issues, we 1) propose a novel

directed, multiple-label Semantic Flow Graph (SFG), which com-

pactly and adequately captures code semantics, 2) design and train

SemanticCodeBERT on the basis of SFG, and 3) design a novel

Hierarchical Momentum Contrastive Bug Localization technique

(HMCBL). Evaluation results con�rm that our method achieves

state-of-the-art performance.

8 DATA AVAILABILITY

Our replication package (including code, model, etc.) is publicly

available at https://github.com/duyali2000/SemanticFlowGraph.
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