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ABSTRACT
The booming development and huge market of micro-videos bring
new e-commerce channels for merchants. Currently, more micro-
video publishers prefer to embed relevant ads into their micro-
videos, which not only provides them with business income but
helps the audiences to discover their interesting products. However,
due to the micro-video recording by unprofessional equipment,
involving various topics and including multiple modalities, it is
challenging to locate the products related tomicro-videos efficiently,
appropriately, and accurately.We formulate themicrovideo-product
retrieval task, which is the first attempt to explore the retrieval
between the multi-modal and multi-modal instances.

A novel approach named Multi-Queue Momentum Contrast
(MQMC) network is proposed for bidirectional retrieval, consisting
of the uni-modal feature and multi-modal instance representation
learning. Moreover, a discriminative selection strategy with a multi-
queue is used to distinguish the importance of different negatives
based on their categories. We collect two large-scale microvideo-
product datasets (MVS and MVS-large) for evaluation and manually
construct the hierarchical category ontology, which covers sundry
products in daily life. Extensive experiments show that MQMC
outperforms the state-of-the-art baselines. Our replication package
(including code, dataset, etc.) is publicly available at https://github.
com/duyali2000/MQMC.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; Video search; Image search.
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1 INTRODUCTION
Micro-video, as a new form of social media, has become an im-
portant component in our daily life. Compared with long videos,
micro-videos have the instincts of short duration and easy-to-share,
making them popular in online sharing platforms. Taking Tiktok
as an example, its Monthly Active Users had reached one billion
until September 20211. Such a huge market undoubtedly brings
new E-commerce chance for merchants. Currently, some publish-
ers start to embed relevant ads into their micro-videos, which not
only provides them external income but facilitates the audiences to
discover their interested products[17, 19, 21, 23, 25, 26, 43, 45–48].

However, the irrelevant products may harm the audiences’ ex-
perience and make them disappointed with the micro-video itself.
Hence, how to locate the products related to micro-videos chal-
lenges micro-video publishers. To remedy this problem, it is of
great importance to understand the semantic information of the
micro-video and product, so as to measure their affinities. The
prior studies hence frame this problem as the video-shop retrieval
task. For instance, Zhao et. al., [52] proposed a DPRnet model to
discover the keyframe from videos and measure visual similari-
ties with other candidate items. Considering the temporal relation
hidden in the video, Cheng et. al., [7] applied the LSTM model to
represent the video and developed an AsymNet model to discover
the matched items according to their distances to the video. More
recently, Godi et. al., [10] constructed a new dataset composed of
social videos and their corresponding products’ images, proposed
SEAM Match-RCNN to extract features from video, and located the
visually similar clothes.

Despite their remarkable performance, it is hard to directly adopt
these methods to seek the relevant products for micro-videos, due
to the following problem:
• The micro-video tends to be shot by amateurs with some non-
professional equipment, like a mobile phone and pad. Thereby,
the micro-video inevitably contains some environmental noise,
resulting in sub-optimal representations of micro-videos.

1https://new.qq.com/omn/20210928/20210928A01WW400.html
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• Unlike the videos shot by merchants, the micro-video is not
designed for the specific product. Hence, the micro-video may
involve various topics, which is more challenging than traditional
video-shop retrieval.
• The micro-video and product embrace the signal from the multi-
ple modalities, including the visual and textual cues. Therefore,
not only cross-modal but intra-modal relations should be consid-
ered in microvideo-product matching.

To resolve this problem, we resort to address two technical chal-
lenges: (1) how to distill the informative signal relevant to the product
from the content information of micro-video, and (2) how to represent
the multi-modal micro-video and product to model their similarities.

Therefore, we develop a newmicrovideo-product retrieval model,
termed Multi-Queue Momentum Contrast (MQMC) method, which
consists of the uni-model feature representation learning and multi-
modal instance representation learning. To optimize the uni-modal
feature encoders, we introduce cross-modal contrastive loss and
intra-modal contrastive loss. The former models the consistency
between the visual and textual modalities while the latter utilizes
the supervision signal from the product information to help the
encoders to distinguish the informative signal from the irrelevant
content of the micro-video. In multi-modal instance representation
learning, we resort to the momentum-based contrastive loss[14] to
model the instance-level similarity. Considering different negative
micro-videos (products) play various importance to the anchor
products (micro-videos), we take a negative selection strategy with
multi-queue to distinguish the importance of different negatives by
measuring the distance of categories of anchor and negatives.

To evaluate our proposed model, we collect the microvideo-
product pairs from the popular micro-video sharing platforms and
achieve two datasets: MVS and MVS-large, which contain 13, 165
and 126, 206 microvideo-product pairs respectively. In addition, we
manually construct the hierarchical category ontology including 6
upper ontologies, 30 middle ontologies, and 316 lower ontologies.
By conducting extensive experiments on these two datasets, MQMC
significantly outperforms the state-of-the-artmethods, which demon-
strates the effectiveness of our proposed model.

In a nutshell, our contributions could be summarized as follows:

• By investigating the prior studies on cross-modal information
retrieval, we formulate a new microvideo-product retrieval task.
To the best of our knowledge, this is the first attempt to explore
the retrieval between the multi-modal and multi-modal instances.
• We propose a novel Multi-Queue Momentum Contrast (MQMC)
network consisting of the uni-modal feature and multi-modal
instance representation learning, so as to locate the relevant
micro-video (product) for the inputted product (micro-video).
• We design a newmulti-queue contrastive training strategy, which
maintains multiple queues of negative samples and considers the
importance of different negatives based on their categories in
contrastive loss computation.
• To evaluate our proposed model, we construct two large-scale
datasets i.e., MVS and MVS-large and build the hierarchical cate-
gory ontology of the products. By conducting extensive experi-
ments on the datasets, we demonstrate that our proposed model
outperforms the state-of-the-art baselines by a margin.

2 RELATEDWORK
2.1 Cross-modal information retrieval
With the explosion of multi-modal data, cross-modal retrieval has
attracted wide attention, mainly focusing on image-text, video-text,
video-image, etc[12, 16, 20, 22, 24–27, 31, 33, 36, 38, 39, 47, 49, 50].
CLIP[33] used a sufficiently large dataset for pre-training and natu-
ral language as a supervisory signal to learn visual representation.
ALBEF[20] introduced a contrastive loss to align the image and text
representations before fusing them through cross-modal attention.
Hit[27] combined hierarchical transformer andmomentum contrast
method for video-text retrieval. MMT[9] learned an effective repre-
sentation from different modalities inherent in video over multiple
self-attention layers with several video feature extractors. Most of
all, the above methods are based on the tasks of single-modal to
single-modal, or single-modal to multi-modal, which do not apply
to the task of multi-modal to multi-modal retrieval in our paper.

The recent influx of instructional multi-modal datasets such as
Inria Instructional Videos[2], CrossTask[54], YouCook2[53], and
HowTo100M[31] has inspired a variety of methods for video-text
retrieval, but those are not suitable for the task of microvideo-
product retrieval in this paper. AsymNet[7], DPRNet[52], and Fash-
ion Focus[51] built video-to-shop datasets from advertisements in
online shopping platforms, but the datasets are not publicly released.
Although MovingFashion[11] and Watch and Buy[34] are publicly
available datasets of "video-to-shop", they have the disadvantage of
a single domain (only clothing).

2.2 Contrastive Learning
Contrastive learning is widely studied in self-supervised and unsu-
pervised learning and has made many remarkable achievements[3–
6, 13, 14, 32, 32, 40, 41, 44]. The contrastive learning model is built
on the principle that positives are closer to each other in the projec-
tion space, while negatives are farther apart. The main challenges
are how to choose positives and negatives, how to construct a rep-
resentation learning model that can follow the above principle, and
how to prevent model collapse.

According to the way of choosing negative samples, current
contrastive learning methods can be divided into in-batch and out-
batch. The end-to-end mechanism uses the anchor’s augmented
views as positives and considers other samples in the current
batch as negatives. SimCLR[4] achieved success in unsupervised
visual representation learning, which benefits from large batch size,
stronger data augmentation, and the learnable nonlinear projection
head. The memory bank mechanism constructs a memory bank to
memorize broader negative samples, which has the drawback that
the samples in the memory bank are from very different encoders
all over the past epoch and they are less consistent. Faced with
this problem, MoCo[14] used a momentum-updated key encoder to
maintain the consistency of negative representations in the memory
bank.

However, increasing the memory size or batch size does not
always improve the performance rapidly, because more negatives
do not necessarily mean that more difficult negatives are brought.
There are many recent improvements in contrastive learning, in-
cluding loss function, sampling strategy, and data augmentation,
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Figure 1: An overview of MQMC for microvideo-product retrieval.

but few relative works on negative samples. The existing works in-
clude making use of labels and generating difficult negative samples
through Mixup[18, 35].

Our method in multi-modal microvideo-product retrieval bene-
fits from the large-scale negatives using a memory bank and the
multi-layer category ontology to distinguish the hard negatives.

3 METHOD
In this section, we first formulate microvideo-product retrieval task,
and then detail our proposedmodel, as shown in Figure 1, consisting
of the uni-modal feature representation learning and multi-modal
instance representation learning.

3.1 Problem Definition
Given a setV = {𝑣1, 𝑣2, . . . , 𝑣𝑀 } of𝑀 micro-video, the microvideo-
product retrieval task aims to discover the most similar product
from a set P = {𝑝1, 𝑝2, . . . , 𝑝𝑁 } of 𝑁 products. More specifically,
for the 𝑖-th micro-video, we use a pre-trained ResNet model [15] to
extract the visual features from the keyframes. With these features,
we perform a mean-pooling operation to obtain the visual feature
vector of micro-video x𝑣

𝑖
∈ R𝑑𝑣 , where 𝑑𝑣 is the dimension of the

visual features2. Beyond the visual signal, we consider the caption
of 𝑖-th micro-video and capture its textual features with the trained
BERT model [8], denoted as x𝑡

𝑖
∈ R𝑑𝑡 . Analogously, we obtain

the visual and textual features from the images and descriptions
of products with the same extractors. Taking 𝑗-th product as an
example, we denote its visual and textual feature vector as z𝑣

𝑗
and z𝑡

𝑗
,

respectively. Formally, with the obtained features of micro-videos
and products, we aim to learn a function to score the similarities of
microvideo-product pairs:

𝑠𝑖, 𝑗 = 𝑓 (x𝑣𝑖 , x
𝑡
𝑖 ; z

𝑣
𝑗 , z

𝑡
𝑗 ), (1)

where 𝑓 (·) is the similarity scoring function and 𝑠𝑖, 𝑗 represents the
similarity between the 𝑖-th micro-video and 𝑗-th product.

2Without any particular clarification, all the vectors are in column forms.

3.2 Framework
3.2.1 Uni-modal Feature Representation Learning. As afore-
mentioned, the visual and textual content of the micro-video con-
tains noise signals, like the surroundings and emotional expression,
which are irrelevant to the target product search. Hence, we in-
troduce uni-modal feature encoders for two modalities and design
the cross- and intra-modal loss functions to distill the informative
signal.
Uni-modal Feature Encoder. With the obtained visual and tex-
tual features, we separately adopt the two-layer neural networks
equipped with a nonlinear activation function on two modalities:{

x̂𝑣
𝑖
=𝑾 𝑣

2 𝜙 (𝑾
𝑣
1 x

𝑣
𝑖
),

x̂𝑡
𝑖
=𝑾𝑡

2𝜙 (𝑾
𝑡
2x
𝑡
𝑖
),

(2)

where 𝑾 𝑣
( ·) and 𝑾𝑡

( ·) are the trainable parameters in visual and
textual modalities, respectively. And, 𝜙 (·) is the 𝑙𝑒𝑎𝑘𝑦_𝑟𝑒𝑙𝑢 func-
tion [29] in our experiments. x̂𝑣

𝑖
∈ R𝑑 and x̂𝑡

𝑖
∈ R𝑑 are the refined

vectors in visual and textual modalities, respectively. Wherein, 𝑑 is
the dimension of the mapped spaces. Note that we omit the bias
term for briefness.

Moreover, we also implement a two-layer network to map the
visual (textual) features of the product into the same space of the
refined visual (textual) vector, i.e., ẑ𝑣

𝑖
∈ R𝑑 and ẑ𝑡

𝑖
∈ R𝑑 . These

mapping operations are conducted for the following two contrastive
loss functions.
Cross-modal Contrastive Loss. To optimize the feature encoders,
we introduce a cross-modal contrastive loss to explicitly model
the consistency between the visual and textual. Specifically, it is
implemented by identifying the positive pair of cross-modal vectors,
like <x̂𝑣

𝑖
, x̂𝑡
𝑖
>, learned from the same instance (i.e., micro-video or

product) from multiple negative pairs of the vectors from different
instances. To be more specific, we treat x̂𝑣

𝑖
as the anchor and x̂𝑡

𝑖
as the positive vector. And, we randomly sample multiple textual
vectors of other micro-videos as the negative vectors. Similarity, we
establish the cross-modal negative pairs for the product, formally,

{x̂𝑡𝑖,1, x̂
𝑡
𝑖,2, . . . , x̂

𝑡
𝑖,𝐾 }; {ẑ

𝑡
𝑖,1, ẑ

𝑡
𝑖,2, . . . , ẑ

𝑡
𝑖,𝐾 }, (3)
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where x̂𝑡
𝑖,· and ẑ𝑡

𝑗,· are the negative vectors of 𝑖-th micro-video and
𝑗-th product. And, 𝐾 is the pre-defined number of negative vectors.

With the anchor, positive, and negative vectors, we opt for the
InfoNCE[32] loss, formally,

L1 = − ln
exp( (x̂

𝑣
𝑖
)⊤x̂𝑡

𝑖

| |x̂𝑣
𝑖
| | · | |x̂𝑡

𝑖
| | ·

1
𝜏 )

exp( (x̂
𝑣
𝑖
)⊤x̂𝑡

𝑖

| |x̂𝑣
𝑖
| | · | |x̂𝑡

𝑖
| | ·

1
𝜏 ) +

𝐾∑
𝑘=1

exp(
(x̂𝑣

𝑖
)⊤x̂𝑡

𝑖,𝑘

| |x̂𝑣
𝑖
| | · | |x̂𝑡

𝑖,𝑘
| | ·

1
𝜏 )

− ln
exp( (ẑ

𝑣
𝑖
)⊤ ẑ𝑡

𝑖

| |ẑ𝑣
𝑖
| | · | |ẑ𝑡

𝑖
| | ·

1
𝜏 )

exp( (ẑ
𝑣
𝑖
)⊤ ẑ𝑡

𝑖

| |ẑ𝑣
𝑖
| | · | |ẑ𝑡

𝑖
| | ·

1
𝜏 ) +

𝐾∑
𝑘=1

exp(
(ẑ𝑣

𝑖
)⊤ ẑ𝑡

𝑖,𝑘

| |ẑ𝑣
𝑖
| | · | |ẑ𝑡

𝑖,𝑘
| | ·

1
𝜏 )
,

(4)

where 𝜏 is a temperature parameter.
Intra-modal Contrastive Loss. Beyond the consistency between
different modalities, we further leverage the supervision signal from
the product information to optimize the feature encoders of the
micro-video. It can help the encoders to distinguish the informative
signal from the irrelevant content of the micro-video. Following
similar operations, we construct the contrastive pairs of the micro-
video and product in each modality. In particular, we group the 𝑖-th
micro-video and corresponding product as the positive pair, i.e.,
< x̂𝑣

𝑖
, ẑ𝑣
𝑖
> and < x̂𝑡

𝑖
, ẑ𝑡
𝑖
>. And then, we randomly sample multiple

products as the negative samples:

{ẑ𝑣𝑖,1, ẑ
𝑣
𝑖,2, . . . , ẑ

𝑣
𝑖,𝐾 }, {ẑ

𝑡
𝑖,1, ẑ

𝑡
𝑖,2, . . . , ẑ

𝑡
𝑖,𝐾 }. (5)

Accordingly, we conduct the contrastive loss, formally,

L2 = − ln
exp( (x̂

𝑣
𝑖
)⊤ ẑ𝑣

𝑖

| |x̂𝑣
𝑖
| | · | |ẑ𝑣

𝑖
| | ·

1
𝜏 )

exp( (x̂
𝑣
𝑖
)⊤ ẑ𝑣

𝑖

| |x̂𝑣
𝑖
| | · | |ẑ𝑣

𝑖
| | ·

1
𝜏 ) +

𝐾∑
𝑘=1

exp(
(x̂𝑣

𝑖
)⊤ ẑ𝑣

𝑖,𝑘

| |x̂𝑣
𝑖
| | · | |ẑ𝑣

𝑖,𝑘
| | ·

1
𝜏 )

− ln
exp( (x̂

𝑡
𝑖
)⊤ ẑ𝑡

𝑖

| |x̂𝑡
𝑖
| | · | |ẑ𝑡

𝑖
| | ·

1
𝜏 )

exp( (x̂
𝑡
𝑖
)⊤ ẑ𝑡

𝑖

| |x̂𝑡
𝑖
| | · | |ẑ𝑡

𝑖
| | ·

1
𝜏 ) +

𝐾∑
𝑘=1

exp(
(x̂𝑡

𝑖
)⊤ ẑ𝑡

𝑖,𝑘

| |x̂𝑡
𝑖
| | · | |ẑ𝑡

𝑖,𝑘
| | ·

1
𝜏 )
.

(6)

3.2.2 Multi-modal Instance Representation Learning. After
obtaining the refined features of the micro-video and product, we
aim to fuse the multi-modal feature to capture multi-modal instance
representations. In this part, we elaborate on the fusion model and
cross-instance contrastive loss to optimize it.
Multi-modal Fusion. We apply the context gating mechanism [30]
to fuse the visual and textual features of instances, including micro-
videos and products. It is defined as{

𝒎𝑖 = (𝑾𝑚
2 x̂𝑣

𝑖
+𝑾𝑚

1 x̂𝑡
𝑖
) ◦ 𝜎 (𝑾𝑚

3 (𝑾
𝑚
2 x̂𝑣

𝑖
+𝑾𝑚

1 x̂𝑡
𝑖
)),

𝒑 𝑗 = (𝑾𝑝

2 ẑ
𝑣
𝑗
+𝑾𝑝

1 ẑ
𝑡
𝑗
) ◦ 𝜎 (𝑾𝑝

3 (𝑾
𝑝

2 ẑ
𝑣
𝑗
+𝑾𝑝

1 ẑ
𝑡
𝑗
)),

(7)

where𝒎𝑖 ∈ R𝑑
′
and𝒑 𝑗 ∈ R𝑑

′
are themulti-model feature vectors of

𝑖-th micro-video and 𝑗-th product, respectively. 𝑑 ′ is the dimension
of the multi-model feature vector. Moreover,𝑾𝑚

· and𝑾𝑝
· are the

trainable weight matrices in the micro-video and product fusion
models. ◦ denotes element-wise multiplication and 𝜎 is an element-
wise sigmoid activation.
Cross-instance Contrastive Loss. Facing a vast number of can-
didate micro-videos and products in practice, we resort to the
momentum-based contrastive loss [14] to model the instance-level

Figure 2: Importance of negatives in different categories.

similarity. Typically, a queue is maintained to store the encoded rep-
resentations of samples. With the momentum update mechanism
for parameters and the memory-bank update mechanism of enqueu-
ing the new mini-batch samples and dequeuing the oldest ones, we
can obtain large and consistent instances to conduct contrastive
learning stably and smoothly.

Towards this end, we build the query and key encoders for the
micro-video and product and feed the representations of instances
into them, formally 

𝒎̂𝑘
𝑖
= ℎ(𝒎𝑖 ;𝜃𝑘𝑚),

𝒎̂
𝑞

𝑖
= ℎ(𝒎𝑖 ;𝜃𝑞𝑚),

𝒑̂𝑘
𝑗
= ℎ(𝒑 𝑗 ;𝜃𝑘𝑝 ),

𝒑̂
𝑞

𝑗
= ℎ(𝒑 𝑗 ;𝜃𝑞𝑝 ) .

(8)

Wherein, 𝑘 and 𝑞 are used to indicate the key and query encoders,
respectively. 𝒎̂ ( ·)

𝑖
∈ R𝑑′ and 𝒑̂ ( ·)

𝑗
∈ R𝑑′ separately denote the en-

coded vectors of micro-video and product. ℎ(·) denotes the encoder,
in which 𝜃 ( ·)𝑚 and 𝜃 ( ·)𝑝 are the parameters to be trained.

Based on the momentum contrastive learning mechanism, the
parameters 𝜃𝑞𝑚 and 𝜃𝑞𝑝 are updated by back-propagation, while 𝜃𝑘𝑚
and 𝜃𝑘𝑝 are momentum updated as follows:{

𝜃𝑘𝑚 ←𝑚𝜃𝑘𝑚 + (1 −𝑚)𝜃
𝑞
𝑚,

𝜃𝑘𝑝 ←𝑚𝜃𝑘𝑝 + (1 −𝑚)𝜃
𝑞
𝑝 ,

(9)

where𝑚 ∈ [0, 1) is a pre-defined momentum coefficient.
However, this method seldom considers the difference between

the samples in the queue and treats them as the negative samples
equally in the contrastive loss computation. In fact, different nega-
tive micro-videos (products) play various importance to the anchor
products (micro-videos). To illustrate this, we take one micro-video
and its corresponding product as an anchor and positive instances,
and randomly samplemultiple products as negative ones.We scatter
these instances with t-SNE algorithm [42], as illustrated in Figure 2.
Observing the distances between the anchor and other instances,
we find that a portion of negative samples, namely the ‘hard’ nega-
tive sample, are closer to the anchor than the positive one. They
make more contributions to optimize the representation learning of
instances, whereas the other negative samples hardly help the opti-
mization. As the prior study [35] mentioned, the effective negative
in contrastive loss should satisfy the two principles:
• Principle 1. The labels of true negatives should differ from that of
the anchor x.
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• Principle 2. The most useful negative samples are ones that the
embedding currently believes to be similar to the anchor.

Therefore, we design a multi-queue momentum contrast training
strategy by which we organize the mini-batch instances according
to their categories (e.g., bag, toy, and fruit) and enqueue them into
several category-aware queues. When the anchor and positive in-
stances emerge in the training phase, we dequeue the oldest samples
from the queues as the negative samples to perform the momentum
contrastive learning. Formally, we build the multi-queue structure
as, 

𝑞𝑢𝑒𝑢𝑒1 = [𝑞11, 𝑞
1
2, . . . , 𝑞

1
𝑇
],

𝑞𝑢𝑒𝑢𝑒2 = [𝑞21, 𝑞
2
2, . . . , 𝑞

2
𝑇
],

· · · ,
𝑞𝑢𝑒𝑢𝑒𝐶 = [𝑞𝐶1 , 𝑞

𝐶
2 , . . . , 𝑞

𝐶
𝑇
],

(10)

where 𝑞𝑢𝑒𝑢𝑒𝑡 denotes 𝑡-th queue corresponding to 𝑡-th category.
𝐶 and 𝑇 are the numbers of queues and the length of each queue,
respectively.

When a mini-batch of microvideo-product pairs is fed, we collect
the negative samples from the multiple queues according to the
categories of the positive instances. For instance, given four prod-
ucts that belong to 1-th, 1-th, 2-th, and 3-th categories, we dequeue
two negative samples from 𝑞𝑢𝑒𝑢𝑒1, one sample from 𝑞𝑢𝑒𝑢𝑒2, and
one sample from 𝑞𝑢𝑒𝑢𝑒3. Reorganizing these dequeued instances
as a negative batch, we can guarantee the ‘hard’ negative sample
of each anchor in the contrastive training phase.

Moreover, considering the various categories of instances in the
negative batch, we score the importance of anchor and negative
sample pairs to formulate a multi-queue contrastive loss. For this
purpose, we perform a mean-pooling operation on all instances
of the same category as the representation of the category. Then,
we can score the importance of instance pairs by measuring the
distance of representation of their categories, formally,

𝑒𝑖, 𝑗 = 1 −
𝐿∑︁
𝑙=1

𝜁 · exp(𝑛𝑜𝑟𝑚(𝑑 (𝒄1𝑖 , 𝒄
1
𝑗 ))) − 𝜁 · exp(𝑛𝑜𝑟𝑚(𝑑 (𝒄

2
𝑖 , 𝒄

2
𝑗 ))),

(11)
where 𝑒𝑖, 𝑗 denotes the importance score for 𝑖-th and 𝑗-th instances.
𝑛𝑜𝑟𝑚(·) and 𝑑 (·) represent the normalization and Euclidean dis-
tance functions, respectively. In addition, 𝜁 is the hyper-parameter
controlling the degree of the score. It is worth noting that since we
construct a hierarchical ontology of categories, each instance can be
classified into two categories in the fine-grained and coarse-grained
levels, e.g., c1

𝑖
, c1
𝑗
∈ R𝑑′ and c2

𝑖
, c2
𝑗
∈ R𝑑′ . Hence, we compute the

similarities of category pairs at two levels.
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Figure 3: The category ontology.

Thus, the overall objective function is L:

L = 𝛼L1 + 𝛽L2 + 𝛿L3, (13)
where 𝛼 , 𝛽 , and 𝛿 are three hyper-parameters to balance the cross-
modal, cross-instance, and cross-category contrasts, restricted in
the range of zero to one. We test different compositions of 𝛼 , 𝛽 and
𝛿 in our experiments.

4 EXPERIMENTS
To evaluate our proposed model, we conduct extensive experiments
on two constructed datasets. In this section, we elaborate on the
datasets, metrics, and baselines for evaluation followed by the de-
scription of implementation details.

4.1 Datasets
To test our proposed model, we collect two large-scale datasets,
MVS and MVS-large, from the micro-video sharing platform. They
consist of some microvideo-product pairs, which are embedded by
their publishers manually. In particular, we capture the micro-video
content information, including the micro-videos and their captions.
As for the products, we crawl both their pictures associated with
textual descriptions. Beyond the content information, we manu-
ally construct a hierarchical category ontology according to the
categories of the products.

Finally, we obtain the MVS dataset with 13, 165 microvideo-
product pairs and MVS-large with 126, 206 pairs. Moreover, we
achieve a three-layer category ontology, ranging from clothes to fur-
niture, consisting of 6 coarse-grained categories, 30 middle-grained
categories, and 316 fine-grained categories3. As shown in Figure 3,
we present the statistics of partial data of the hierarchical category
ontology.

4.2 Evaluation Metrics
For each dataset, we used the ratio 3:1:1 to randomly split the
microvideo-product pairs to constitute the train set, validation set,
and test set. The train set, the validation set, and the test set are used

3Due to insufficient instances of fine-grained categories, we conduct our experiments
with other two-level categories.
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Table 1: The experimental results of start-of-the-art on MVS and MVS-large.

Datasets Methods Microvideo-Product Retrieval Product-Microvideo Retrieval
R@1 R@5 R@10 MedR Rsum R@1 R@5 R@10 MedR Rsum

MVS Base 0.0 0.2 0.4 1319 0.6 0.0 0.2 0.4 1314 0.6
MVS HowTo100M[31] 24.9 30.1 32.5 147 87.5 21.8 25.7 29.5 128 77.0
MVS AVLnet[36] 18.5 31.6 38.3 44 88.4 15.3 31.1 38.1 45 84.5
MVS MoCo[14] 35.3 41.1 42.9 45 119.3 37.0 40.8 41.1 40 118.9
MVS CLIP[33] 35.5 42.3 43.7 77 121.5 33.5 41.5 43.4 68 118.4
MVS Hit[27] 40.0 42.8 44.7 35 127.5 42.7 43.9 44.9 32 131.5
MVS MQMC 44.7 48.7 50.2 10 143.6 44.9 48.7 50.5 9 144.1
MVS 𝐼𝑚𝑝𝑟𝑜𝑣% 11.75% 13.79% 12.30% 71.43% 12.63% 5.15% 10.93% 12.47% 71.88% 9.58%

MVS-large Base 0.0 0.0 0.0 12643 0.0 0.0 0.0 0.0 12734 0.0
MVS-large HowTo100M[31] 7.7 20.1 27.1 83 54.9 7.5 19.8 26.7 107 54.0
MVS-large AVLnet[36] 16.8 38.0 46.6 14 101.4 17.0 37.6 46.2 14 100.8
MVS-large CLIP[33] 20.8 43.6 51.0 10 115.4 18.4 38.9 47.0 14 104.3
MVS-large MoCo[14] 21.2 44.0 51.3 9 116.5 19.1 39.5 47.7 13 106.3
MVS-large Hit[27] 24.5 44.1 50.4 10 119.0 20.9 41.2 49.5 11 111.6
MVS-large MQMC 27.3 47.7 54.2 7 129.2 25.1 46.6 53.9 7 125.5
MVS-large 𝐼𝑚𝑝𝑟𝑜𝑣% 11.43% 8.16% 5.65% 22.22% 8.57% 20.10% 13.11% 8.89% 36.36% 12.46%

to optimize parameters, tune the hyper-parameters and evaluate
the performance in the experiments, respectively.

We test the performance with several metrics widely used in
information retrieval, including Recall at K (i.e., R@K and K=1,
5, 10), Median Rank (MedR), and Rsum. Specifically, R@K is the
percentage of test queries that the relevant item found among the
top-K retrieved results. The MedR measures the median rank of
correct items in the retrieved ranking list, where a lower score
indicates a better model. We also take the sum of all R@K as Rsum
to reflect the overall retrieval performance.

4.3 baselines
We compare our proposed model with state-of-the-art models, in-
cluding

• Base The benchmark method concatenates visual and textual
features of an instance to measure similarity.
• HowTo100M[31] This method learns a joint text-video embed-
ding from the paired videos and captions and uses the max-
margin ranking loss with a negative sampling strategy.
• AVLnet[36] This method introduces a self-supervised network
that learns a shared audio-visual embedding space from raw
audio, video, and text for audio-video retrieval.
• MoCo[14] This method introduces momentum contrast for un-
supervised visual embedding. This method keeps the dictionary
keys as consistent as possible despite its evolution under the hy-
pothesis that good representation benefits from a large dictionary
containing a rich set of negative samples.
• CLIP[33] This method learns a multi-modal embedding space of
image and text by contrastive pre-training on large-scale datasets.
This method maximizes the cosine similarity of the image and
text embeddings of the N real pairs in the batch and minimizes
the cosine similarity of the other 𝑁 2 − 𝑁 incorrect pairings.
• Hit[27] This method learns hierarchical embeddings with a hi-
erarchical transformer for video-text retrieval, which performs

hierarchical cross-modal contrastive matching at both feature-
level and semantic-level.

4.4 Implementation Details
We adopt pre-trained feature extractors in different modalities.
In particular, we extract 2,048-dimensional visual features with
Resnet152model [15] pre-trained on ImageNet and 768-dimensional
textual features with BERT-base-uncased model [8] pre-trained on
the wiki. The visual features of multiple frames are pooled as the
feature of one micro-video. For AVLnet [36], we also extracted the
128-dimensional audio features fromVGGishmodel [37] pre-trained
on YT8M [1].

We set the hidden size of visual and textual projectors to 1,024.
The dimensions of micro-video and product encoding are both set
to 512. The leaky ReLU[29] is used as the activation function and
BatchNorm is appended to hidden layers. The initial learning rate is
set to 1𝑒 − 4 and the network is optimized by Adam [28] optimizer.
The weight decay is set to 1𝑒 − 3 and cosine decay is used for
scheduling the learning rate. The momentum of updating the key
encoder is set to 0.999 and 𝜏 is set to 0.07. The length of multi-queue,
i.e., 𝑇 , should vary with the batch size. we set the batch size as 64
and 256 on MVS and MVS-large datasets, respectively. And, 𝑇 of
MVS and MVS-large are set as 192 and 2, 048, respectively. For the
baselines, we do the same options and follow the designs in their
articles to achieve the best performance.

4.5 Overall Performance Comparison
To demonstrate the effectiveness of our proposed model, we start
by doing a comparison between our proposed model and the base-
lines on MSV and MSV-large datasets, respectively. Specifically, we
list their results w.r.t recall and MedR in Table 1, where 𝐼𝑚𝑝𝑟𝑜𝑣 .%
represents the relative improvement of the best-performing method
(bolded) over the strongest baselines (underlined).
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(a) MVS (Microvideo-Product) (b) MVS (Product-Microvideo)

(c) MVS-large (Microvideo-Product) (d) MVS-large (Product-Microvideo)

Figure 4: Ablation study on different contrasts.

Table 2: Ablation study on different modalities.

Datasets Modalities Microvideo-Product Retrieval
R@1 R@5 R@10 MedR Rsum

MVS Visual only 36.9 43.5 44.3 20 124.7
MVS Text only 26.1 37.0 41.8 31 104.9
MVS All 44.7 48.7 50.2 10 143.6

MVS-large Visual only 17.8 36.7 44.5 18 98.9
MVS-large Text only 10.9 28.6 36.7 35 76.3
MVS-large All 27.3 47.7 54.2 7 129.2

• Without any doubt, our proposed model outperforms all com-
parison methods by a clear margin. In particular, our proposed
model improves over the strongest baselines w.r.t. R@0 by 3.79%
and 6.80% in MVS and MVS-large datasets, respectively. It demon-
strates the effectiveness of our proposed model.
• Comparing with the other contrastive-based model (i.e.,MoCo,
Clip), we find that our proposed model achieves better perfor-
mance. We attribute such an improvement to our multi-queue
contrastive training strategy.
• Beyond the visual and textual information, MQMC considers
the acoustic features in the microvideo-product retrieval yet
unexpectedly performances are poor in most cases. The reason
might be that the content of the micro-video contains some noise
information that negatively affects the performance. It verifies
our arguments and the reasonability of our proposed model again.

4.6 Ablation Study
To evaluate the designs in our proposed model, we conduct ablation
studies on the two datasets. We test the effectiveness of uni-modal
features and multi-modal instance representation learning. In ad-
dition, we evaluate the hyper-parameters 𝛼 , 𝛽 , and 𝛿 designed for
the balance between the representation learning parts. Next, we
dive into the multi-queue contrastive training strategy to further
test its effectiveness and robustness.

4.6.1 Uni-modal and multi-modal Representation Learning.
In order to test the uni-modal and multi-modal representation learn-
ing, we first explore the effects of different modalities and compare
the results over the two datasets, as listed in Table 2. From the
results, we observe that:

Table 3: The impacts of Multi-queue for retrieval perfor-
mance. Sing. and Multi. denote the single and multiple
queues, respectively. w/o S. represents the queues without
important scores.

Datasets Queue Microvideo-Product Retrieval
R@1 R@5 R@10 MedR Rsum

MVS Sing. & w/o S. 42.5 47.1 48.3 17 137.9
MVS Multi. & w/o S. 43.8 47.4 48.8 18 140.0
MVS Multi. 44.7 48.7 50.2 10 143.6

MVS-large Sing.& w/o S. 18.5 38.5 46.3 15 103.3
MVS-large Multi.& w/o S. 21.4 41.7 49.0 12 112.1
MVS-large Multi. 27.3 47.7 54.2 7 129.2

• As expected, the performance with multi-modal representation
learning significantly outperforms that with uni-modal ones, in-
cluding visual and textual modalities, on MVS and MVS-large
datasets. It demonstrates the effectiveness of the multi-modal in-
stance representation learning, including the multi-modal fusion
method and cross-instance contrastive loss.
• Jointly analyzing the results of the baselines model shown in
Table 1, we find that the performance with uni-modal represen-
tation learning is even better than that of the state-of-the-art
baselines in some cases. We attribute this phenomenon to our
designed uni-modal representation learning, which distills the
informative signal from the noise information caused by the
complex and chaotic background.
Next, we perform the experiments by varying the value of hyper-

parameters 𝛼 , 𝛽 , and 𝛿 in the range of 0 to 1. Observing the re-
sults illustrated in Figure 4, we have the following findings the
cross-instance contrast plays a vital role in the microvideo-product
retrieval task. This might be that the supervision signal from the
cross-instance similarity makes more contribution to optimize the
uni- and multi-modal representation learning. Nevertheless, the
cross- and intra-modal contrastive losses also cannot be ignored,
which verifies our uni-modal feature representation learning again.
Overall, from the results, we find that our proposed model gains
the best performance when we set 𝛼 = 0.1, 𝛽 = 0.1, and 𝛿 = 0.8,
respectively.

4.6.2 Multi-queue Contrastive Training Strategy. To evaluate
the effectiveness of the multi-queue, we conduct the experiments
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(a) MVS (b) MVS-large

Figure 5: Ablation study on two datasets to investigate the
contributions of different sizes of Multi-queue.

of our proposed model without the multi-queue architecture and
compare its performance with that of our proposed model equipped
with the multi-queue. Moreover, we discard the difference of multi-
ple queues by setting the weight (i.e., 𝑒𝑖, 𝑗 ) of each anchor-negative
pair to 1. We list the results in Table 3 and find that: the results
w.r.t. R@1, R@5, R@10, and MedR are increased when we utilize
the multi-queue architecture. It justifies our designed multi-queue
contrastive loss. Furthermore, we compare the performance with
the importance scores and without the scores. The performance
w.r.t. R@1 is improved from 43.8% to 44.7% on MVS and from 21.4
% to 27.3% on MVS-large. We suggest that the proposed model
is benefited from the utilization of the scores to distinguish the
importance of different negatives.

Further, we explore the influences of the multi-queue size in
microvideo-product retrieval. For this goal, we conduct the exper-
iments on the two datasets by varying the sizes from 90 to 960
and from 960 to 61440, respectively. Observing the experimental
results shown in Figure 5, we find that the introduction of large-
scale negatives for similarity learning indeed achieves considerable
performance improvements. We attribute it to broader negative
interactions for obtaining more precise and discriminative represen-
tations. In fact, due to the unbalanced distribution of categories and
the existence of the long-tail problem, the size of the multi-queue
is limited by a few categories with a small amount of data. When
the actual training samples cannot fill the queue, the negatives in
the queue are not single and independent, so the repeated posi-
tive cases in the queue are mistakenly divided into negative cases.
Moreover, by reason of the category sensitivity of multi-queue, the
above errors will be magnified, affecting the learning effect of the
retrieval modal.

4.7 Case Study
To visualize our proposed model, we randomly sample four micro-
videos from two datasets and conduct the strongest baseline (Hit)
and our proposed models on them. In particular, we collect the
Top-3 results of two models 6 and separately mark the correct
predictions with green circles and others with yellow circles at the
top left corners, as shown in Figure 6.

According to the results, in the first two cases, our proposed
model not only matches the visually similar items in micro-videos
and pictures of products but also explores the relationships between
textual and visual modalities sufficiently to obtain identical ones
more accurately. In the upper left case, with the assistance of textual

Figure 6: Four examples with top-3 microvideo-product re-
trieval results of MQMC and Hit.

modality, confusing visual modality can focus more attention on
the skirt that the micro-video wants to display, rather than the coat
that occupies more space in the frame. In the upper right case, our
proposed model can effectively remove the interference of large
areas of the blue background and white characters in videos, and
perform accurate retrieval for book categories with fewer data.
However, in the last two cases, due to the obvious visual differences
between some micro-videos and products, our proposed model can
not achieve the best match. In the lower-left case, the video back-
ground is very cluttered, with multiple indistinguishable objects
that are very similar to each other. In the lower right case, due to
a large amount of variant visual information between the frame
and picture, as well as the incomplete outline of the item limited
by the shooting angle of the micro-video, the retrieval faces great
difficulty.

5 CONCLUSION
This paper is the first to formulate the microvideo-product re-
trieval task between multi-modal and multi-modal instances. We
propose the Multi-Queue Momentum Contrastive learning net-
work (MQMC) for bidirectional microvideo-product multimodal-
to-multimodal retrieval, which consists of the uni-model feature
representation learning and multi-modal instance representation
learning, integrating cross-modal contrast, intra-modal contrast
and cross-instance contrast organically. In addition, we present a
discriminative negative selection strategy with a multi-queue to dis-
tinguish the importance of different negatives with their categories.
Two large-scale multi-modal datasets are built for microvideo-
product retrieval, and we construct a category ontology and man-
ually annotate the multi-layer ontologies of all products of the
datasets. Extensive experiments prove the validity of the proposed
model. In the future, MQMC can be extended as a general method
for multimodal-to-multimodal retrieval. And more technological
innovations can be researched such as multi-modal integrated ap-
proaches, hard negative selection strategy, etc.
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