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Abstract

In many real world applications, the concerned objects are
with multiple labels, and can be represented as a bag of
instances. Multi-instance Multi-label (MIML) learning pro-
vides a framework for handling such task and has exhibited
excellent performance in various domains. In a MIML set-
ting, the feature representation of instances usually has big
impact on the final performance; inspired by the recent deep
learning studies, in this paper, we propose the DeepMIML
network which exploits deep neural network formation to
generate instance representation for MIML. The sub-concept
learning component of the DeepMIML structure reserves the
instance-label relation discovery ability of MIML algorithms;
that is, it can automatically locating the key input patterns that
trigger the labels. The effectiveness of DeepMIML network
is validated by experiments on various domains of data.

Introduction
In many real-world applications, an object of interest has
its inherent structure and it can be represented as a bag
of instances, and multiple labels are associated on the bag
level. For example, in text categorization, each document
may have sentences as instances and multiple labels are
assigned on document level. Multi-Instance Multi-Label
(MIML) (Zhou and Zhang 2006; Zhou et al. 2012) provides
a framework for handling these kinds of tasks.

Concretely, in a MIML perspective, the training data
{(X1, Y1), ..., (Xm, Ym)} consists of m bags of instances,
where each bag Xi can be represented as zi instances such
as {xi,1,xi,2...xi,zi}. The output Yi is a subset of all possi-
ble labels {y1, y2, ...yL} where L is the number of possible
single labels. Many MIML algorithms such as (Zhou et al.
2012; Briggs, Fern, and Raich 2012; Yang, Jiang, and Zhou
2013; Nguyen et al. 2014; Huang, Gao, and Zhou 2014)
have been proposed during the past years and have been
successfully applied in different domain of tasks such as
image classification, text categorization, video annotation,
gene function prediction, ecosystem protection, etc. (Xu,
Xue, and Zhou 2011; Zhou et al. 2012; Surdeanu et al. 2012;
Briggs, Fern, and Raich 2013; Wu, Huang, and Zhou 2014)
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Most previous MIML studies assumed that the instances
were given in advance, or generated by some manually de-
signed instance generators which extract instances from the
raw data. Recently, an empirical study (Wei and Zhou 2016)
on image tasks exhibit that there is no manually designed
instance generator dominating others. Considering that rep-
resentation learning techniques have beat manually feature
engineering in various domains, it naturally motivates us to
try to facilitate MIML with automatic representation learn-
ing, though larger amount of data are required for this pur-
pose.

In this paper, we propose the DeepMIML network. As
its name suggested, this is a deep neural network model for
MIML. Born with the representation learning ability of deep
models, in DeepMIML we do not need to use another in-
stance generator to generate instance descriptions. Instead,
the model itself will accomplish the instance representation
generation and the successive learning process. Moreover,
with a carefully designed sub-concepts layer, an apparent
advantage of MIML, i.e., discovering the latent relation be-
tween input patterns and output semantic labels (Zhou et al.
2012; Li et al. 2012) has been reserved. Such a layer can
also be plugged into other types of network structures, such
as CNNs, to endow them with the ability of pattern-label re-
lation discovery ability. The effectiveness of DeepMIML are
validated in experiments.

The rest of the paper starts from a brief review of related
work. Then we present the DeepMIML network, followed
by experiments and conclusion.

Related Works
During the past few years, many successful algorithms for
MIML have been proposed, to name a few, Li et al. tried
(2012) to model what instances trigger what labels by con-
sidering the shared patterns across relevant labels; Briggs
et al. (2012) proposed rank-loss support instance machines
for MIML instance anotation; Briggs et al. (2013) consid-
ered the problem of predicting instance labels while learning
from data labeled only at the bag level by using a new reg-
ularized rank-loss objective; Huang et al. (2014) proposed
a fast MIML algorithm by exploiting label relations with
shared space and discovering sub-concepts for complicated
labels; Pham et al.(2015) used a discriminative probabilistic
model to discover novel class instances in a MIML setting.



Most previous MIML approaches treated the representations
for instances as given, and the scalability to large training
data requires to be enhanced.

In recent years, deep learning has demonstrated its abil-
ity in learning representations from raw data. In particu-
lar, deep covolutional neural networks such as (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2014)
has showed its superior performances on image classifica-
tion tasks. LSTM (Hochreiter and Schmidhuber 1997) based
models, has been successfully applied to text data; for in-
stance, a pre-trained skip-thought model (Kiros et al. 2015;
Zhu et al. 2015) can be used as an off-the-shelf encoder
to produce high quality sentence representations. Note that
most of the focus in the deep learning community lies in rep-
resentation learning, it would be desirable if advantages of
some other machine learning paradigms, such as the pattern-
label relation discovery of MIML, can be incorporated.

There are studies using deep learning techniques on multi-
label problems such as (Wei et al. 2014; Zeng et al. 2015;
Wu et al. 2015; Lin et al. 2016; Wang et al. 2016). Most
were domain specific solutions, and did not touch instance
generators and pattern-label relation discovery.

The Proposed Approach
In this section, we will first introduce the 2D sub-concept
layer which models the relationships between a single in-
stance and output labels. Secondly, we will extend this idea
into a 3D sub-concept layer which can be used in a MIML
perspective. Finally, we introduce the Deep MIML network
and discuss its ability of discovering instance label relation-
ships.

2D Sub-Concept Layer for Single Instance
In semantic-rich tasks, labels may deliver complicated in-
formation, and thus, a direct modeling might be difficult.
Instead, we propose a new 2-Dimensional neural network
layer, the sub-concept layer as we call it, which can be
trained to model the matching scores between an instance
and sub-concepts for each label. Concretely, once the repre-
sentation for an instance x is obtained, we propose a fully
connected 2D layer (sub-concept layer) of size K ∗ L . For-
mally, for a given instance vector x, the (i, j)-th node in the
2D sub-concept layer represents the matching score between
this instance xp,q and the i-th sub-concept for the j-th label.
That is, the (i, j)-th node has the following form of activa-
tion:

ci,j = f(wi,jx+ bi,j) (1)
Here, f(.) is the activation function and the weight vector

wi,j can be interpreted as the matching template for the i-
th sub-concept of the j-th label. The activation function we
chose here is the Rectified Linear Unit (ReLU) of the form:

f(z) = max(0, z) (2)
This 2D sub-concept layer, as the name suggests, tries to

model the matching scores between a single instance and
all the sub-concepts for all the labels. To make a label level
prediction, an immediate column-wise pooling operation on

Figure 1: Illustration of a 2D Sub-concept layer

this 2D layer will produce a K ∗ 1 scoring layer, each entry
is thus the matching score between the instance x and the
output label accordingly.

The pooling operation not only extract label predictions
but also can have some robustness on the number of sub-
concepts. That is, when a label has fewer than K sub-
concepts, a max-pooling operation will eliminate this over-
assignment on sub-concepts.

Compared with other commonly seen network structures,
there are some points worth highlighting:

• Unlike the usual 2D convolutional feature maps (with lo-
cal connective filters) , the 2D sub-concept layer we pro-
posed here is fully connected with the input instance vec-
tor and the activations can be represented as the matching
scores between a sub-concept for each label and the in-
stance. Also notice that the weights are different for each
node, whereas a shared weight is used in conv-layers.

• Unlike the usual 1D fully connected layer, the 2D sub-
concept layer is arranged in an interpretable way. In other
words, the layer is a direct consequence when modeling
such relationships such that each column is a score vector
for each label, and each element in the column vector is
the matching score for the sub-concepts for that particular
label. This makes the layer much more intuitively easy to
explain, and, more importantly, it can be used to discover
the instance-label relationships ( will be explained in later
sections).

• The max-pooling operation was usually used for down-
sampling to reduce the total number of parameters. How-
ever, the max operation we are using here is to locate
the maximum matching score which happens can be ex-
pressed in a max-pooling layer.

Briefly speaking, the 2D sub-concept layer followed by
a pooling layer captures the relationship between an input
pattern and the final matching score for each label. In addi-
tion, the matching score for each sub-concept can be further
used in instance-label relationship discovery, which will be
discussed in later sections.

3D Sub-Concept Layer for Multiple Instances
When the input is presented in one bag of instances (here
we assume each bag has equal number of instances, for bags



Figure 2: 3D Sub-concept layer and Instance-Label scoring
layer. Each instance is connected with its corresponding sub-
concept layer only. The resulting three-dimensional tensor
has depth equals the number of input instances.

with different number of instances, zero paddings may be
applied), we can generalize the idea of 2D sub-concept layer
into a MIML perspective. The basic idea is to extend the 2D
sub-concept layer into a 3D tensor layer by stacking multiple
2D layers , each “slice” of the tensor is the 2D sub-concept
layer for each instance, as described in the previous section.

In other words, given a bag of instances Xi, we construct
the 2D sub-concept layer for each instance xki, and stack
these 2D layers into a 3D tensor. The depth of the tensor
equals to the number of instances in the input bag. That is,
the activation of the (i, j, k)-th node represents the matching
score of the i-th sub-concept of the j-th label for the k-th
instance xk,i in bag Xi. Note that the matching weights for
each instance on the same sub-concepts is different.

To explore instance label relationships, we conduct the
pooling operation twice. Concretely, we first conduct a max-
pooling vertically on the 3D tensor, and the resulting layer
is a 2-Dimensional layer of size L ∗M . Note that there is a
clear interpretation for this 2D pooling layer: each node at
position (i, j) models the matching score for instance i on
label j. We thus refer to this first pooling layer as Instance-
Label Scoring Layer.

Secondly, another pooling operation on the 2D Instance-
Label Scoring Layer will produce a 1D layer of size L ∗ 1.
This can be interpreted as the matching scores for labels on
bag level: each entry j models the matching score for the
j-th label on the whole input bag.

In short, to get the L ∗ 1 layer from the 3D tensor layer,
we conducted the pooling operation twice: a vertical pooling
followed by a horizontal pooling.

The reason we conduct the pooling operation twice (in-
stead of a single 2D pooling) is because the intermediate
instance-label scoring layer has an unique interpretations on
its own, and by examine the values on this layer can help to
understand the instance label relationships. A detailed dis-
cussion will be presented in later sections.

The DeepMIML Network
Previous sections has showed how to model the MIML
framework by exploring sub-concepts for labels using the
language of neural network, under the assumption of having
input representations as given. In this section, we will first
introduce how to learn a bag of instances from raw data, and
finally introduce an end-to-end Deep MIML network which

Figure 3: DeepMIML Network

connect everything we’ve discussed.
Recent advances in deep learning has made deep neural

networks particularly good at learning feature representa-
tions. For example, it is a well known technique for encod-
ing an input image as a dense 1D vector by extracting the
activations from the last fully connected layer (FC7) from a
trained CNN.

However, such method treat the input as a whole, and thus
the distributed dense 1D representation for the input image
cannot reveal local information (instances) very well. Here
we do things a bit different as follows: In a deep convolu-
tional neural network structure, the layer before the last fully
connected 1D layers is a 3D convolutional tensor layer, usu-
ally of shape 14 ∗ 14 ∗ 512 (e.g. VGG-16 Net). Inside this
conv-layer, each of of the 14 ∗ 14 vector with dimension
512 ∗ 1 can be treated as one instance representation of the
input image. Thus, in a MIML perspective, we use the repre-
sentations in the conv-layer rather than the FC layer in order
to obtain a bag of instance representations.

Now, we are ready to introduce the Deep MIML network.
It is a novel network structure that automatically generates
bag of instances from raw input, learns a scoring function for
each sub-concept of each label on instance level and makes
final predictions on the bag level.

Concretely, the raw input is first fed into an instance gen-
erator device, of which is dependent on the domain of in-
terest. For image tasks, a deep convolutional neural net-
work structure just before the FC layer will serve the job
well. Then, a 3D sub-concept layer followed by two pool-
ing layers are directly applied to the instance generator, as
described in the previous section. Finally, a fully connected
layer with size equal to the number of labels is appended at
last. The loss function we choose here is the mean binary
cross-entropy. During training time, we use stochastic gra-
dient descent with dropout. See Figure 3 as an illustration.

There are three points worth highlighting:

• Firstly, a more sophisticated instance generator may be
used for specific tasks. For example, for image tasks,
some proposal based method (creating some small bound-
ing boxes before fed into conv-nets) can be applied first
to get an even better representation for instance. An pre-
trained LSTM based encoder, on the other hand, can be
used in NLP tasks.

• Secondly, there are situations when we do not have access



to the raw data, and the input has already been encoded
into bags of instances. In this case, we can still use the
DeepMIML framework by directly project them onto the
3D sub-concept layer.

• Finally, the network can be easily degenerated into a
single-instance multi-label or multi-instance single-label
case, by changing the dimension of the sub-concept layer
accordingly.

Instance-Label Relation Discovery
Instance-Label Relation Discovery is the discovery process
of locating the key instance pattern that triggers the output
labels. It is different from instance annotation, since anno-
tation cares about assigning correct labels to instances no
matter if the instance is the truly trigger for the output label.
Therefore, a good performance of instance annotation does
not necessarily lead to a good performance in the instance-
label relation discovery.

The instance label relation discovery is a built-in func-
tionality of DeepMIML networks. The first pooling layer
(namely the instance-label scoring layer) after the 3D sub-
concept layer will produce a matching score across all in-
stances for all labels. By examine these activation scores in
this instance-label scoring layer, it is a straightforward rou-
tine to conduct instance-label relation discovery.

Concretely, on MS-COCO data-sets, each input image is
transformed into a bag of 196 instances(via a VGG-16 net)
and there are 80 candidate labels can be tagged with. The
corresponding instance-label scoring layer of size 196 ∗ 80
give us all the matching scores between each instance and
each label. By examine the activations, we can easily dis-
cover the relation between instances and labels.

In addition, we can also detect which key instance trig-
gers one particular label by back-track the location of the
instance with the highest matching score in the 2D pooling
layer accordingly. For a VGG-16 architecture, the formula
of locating the center pixel for the key instance can be easily
derived:

(x, y) = (convx ∗ 16 + 8, convy ∗ 16 + 8) (3)

The convx, convy is the 2D indexing in the 14*14 in-
stance bag. By doing so, we can achieve similar effect with
the attention mechanism. See Figure 4 for such an result.

Experiments
To validate the effectiveness of the proposed network struc-
ture, we performed experiments on both text data and image
data with considerable scale in terms of training sizes. The
goal here is to show that Deep MIML network is a general
network structure suitable for many MIML problems across
domains and can be easily deployed in various tasks with
slight modifications.

In addition, we showed that by simply plug the 3D sub-
concept layer (and the pooling layers followed by it) into the
VGG-net structure, we can have a performance gain in both
accuracy and extra benefits such as label-instance relation-
ship discovery.

Figure 4: Instance-Label Matching Plot. For a given input
image to be predicted, 196 (14*14) instances is extracted
from VGG-16 net, and there are 80 candidate labels in the
MS-COCO dataset. Activations for the instance-label scor-
ing layer can be visualized and interpreted as follows: Each
column is the matching scores between all the instances and
one particular label. The highlighted green column, for ex-
ample, is the matching scores for the label “Bottle” between
all the instances. Likewise, each row can be interpreted as
the matching scores between one particular instance and all
the possible labels.

To make a fair comparison with the traditional state-of-
art MIML algorithms, and to validate the effectiveness of
the sub-concept layer, we conducted experiments on data-
sets without deep features. Specifically, we used two well-
known MIML benchmark data-sets, namely MIML News
and MIML Scene (Zhou et al. 2012) , which the raw data
has already been preprocessed into bags of instance format,
and we compared the experimental results with state-of-art
MIML algorithms.

Concretely, we report the experimental results as follows:

• DeepMIML for Text Tasks: We performed experiments
on 2016 Yelp dataset challenge 1. Each review belongs
to one or more categories (such as “restaurant”,“Thai
Food”) and we extract 100 categories with the reviews
been tagged with.

• DeepMIML for Image Tasks: We use MS-COCO dataset
consists of 82,783 images for training with total 80 la-
bels. To get one bag of instance per image, we used a pre-
trained VGG-16 net up-to the last convolutional layer.

• DeepMIML for non-deep features: We compared our re-
sults with the state-of-art MIML algorithms on some tra-
ditional MIML data-sets.2 3 Since each instance has al-
ready been hand coded into feature vectors, thus we also
used the same input data as representations, for a fair com-
parison.

We implemented the model via Keras (keras.io), an
open-source python library for deep learning which allow
users to customize their own network structure and layers.
We also used 2 Nvidia Titan-X GPU to speed up training
time.

1yelp.com/dataset challenge
2http://lamda.nju.edu.cn/files/miml-text-data.rar
3http://lamda.nju.edu.cn/files/miml-image-data.rar



Results on Text Data

For MIML tasks for text, we conducted the experiment on
the 2016 Yelp dataset challenge. Specifically, We extracted
19934 reviews, each review belongs to one or more cate-
gories as labels and there are 100 categories in total. We split
the dataset into training and testing set, with the split ratio
of 0.7.

To encode each input review into a multi-instance repre-
sentation, we used a pre-trained skip-thought model (Kiros
et al. 2015) as an out-of-shelf encoder for each sentence (as
instances). The input can be a sequence of words of any
length, and the output is a 4800 dimensional vector. Table
1 shows a given query (not seen in the dataset) and its near-
est / farthest neighbors in the yelp dataset.

Table 1: Sample Query sentence

Query Sentence The beef is good.

Nearest Sentences

The curries are nice too.
The calamari is good.
The BBQ is great.
The food is great the set up is nice.

Farthest Sentences

Nope nope nope.
Disappointed.
Not coming back.
Dislike.

We then divide each review into 10 sequences of words,
each sequence contains one sentence. If one review has more
than 10 sentences, then the last part contains all the remain-
ing words. With the bag of (deep) instance representations in
hand, we directly applied the 3D sub-concept layer (and with
the following pooling layers), as described in the previous
section. We used mean binary cross-entropy as loss func-
tion and used SGD with dropout rate of 0.5. The only hyper-
parameters here is K, the number of sub-concepts. During
validating process, we found varying K does not affect the
performance a lot and we report the result with K equal to 4.

For a comparison, we still use skip-thought to encode the
whole review into one dense representation with dimension
4800, then we perform a soft-max and a MLP (two hidden
layers of size 1024 followed by 512 with ReLU activation)
as benchmark comparisons. The evaluation metrics we used
here are commonly used criteria for multi-label tasks, as
studied in (Zhou et al. 2012). The experimental results are
summarized in Table 2.

Table 2: Experimental Results on Yelp dataset. mAP denotes
mean Average Precision. ↑ / ↓ indicates the larger/smaller,
the better. The • symbol means the DeepMIML Network
performs better than the corresponding method.

mAP ↑ ranking loss ↓
Softmax •0.313 •0.083

MLP •0.325 •0.080
Our Method 0.330 0.078

Figure 5: Sample test image predictions and the attention
mechanism achieved by sub-concept layer.

Results on Image Data
For image task, we conducted our experiments on Microsoft
COCO dataset (Lin et al. 2014). The MS-COCO dataset con-
tains 82,783 images for training and 40,504 images for test-
ing. Each image provides annotation tags of 80 labels. Here
we only used the annotated text on image level as labels and
used a pre-trained VGG-16 up to the last convolutional layer
as the instance generator. The training time is less than 30
minus if we take the pre-trained VGG-16 fixed.

Figure 5 is an illustration of the predictions obtained by
discovering the instance-label relation on the test set. An
attention mechanism can be easily achieved via the sub-
concept layer, as discussed in the previous section.

Table 3 showed the comparison results. Compared with
using a vanilla VGG network, we indeed have a performance
gain in terms of accuracy by simply adding one extra sub-
concept layer.

Table 3: Experimental Results on MS-COCO dataset

mAP HammingLoss F1
VGG-16 57 % 0.025 0.650

CNN-RNN 61.2 % – 0.678
Our Method 60.5% 0.021 0.637

Compared to the more sophisticated CNN-RNN model,
our method showed sub-optimal performance. This is be-
cause the instance generator we use here is very simple and
straight forward and tiny object such as parking meter can-
not be efficiently encoded into instances. On the other hand,
CNN-RNN is a good state-of-art model for image tasks only
and cannot be easily applied in other non-CV tasks easily.
Again, the goal here is to show the DeepMIML network is
general enough for tasks across domain with minimal mod-



ifications. In addition, our model can be easily degenerated
into multi-instance single-label framework (by replacing the
3D sub-concept layer into 2D version), whereas CNN-RNN
method cannot be effectively deployed.

DeepMIML Applied to Common Instances
In this section, we compare our method with some state-
of-art MIML algorithms, namely, KISAR (Li et al. 2012),
MIML SVM, MIML KNN , MIML RBF and MIML Boost
(Zhou et al. 2012).

For a fair comparison, we used the benchmark dataset re-
ported in these prior works by Zhou et. al (2012) among
others, which has already been preprocessed using tf-idf
(MIML News data) and SBN features (Wei and Zhou 2016)
on patches (MIML Scene data). Therefore, we directly pro-
jected these instances onto the 3D sub-concept layer, and
the remaining network layers are the same as previous ones.
Note that these dataset has relatively small in both the num-
ber of instances and the number of possible labels.

The evaluation metrics we used here are the same as those
algorithms reported in their corresponding papers. Details of
the evaluation measures can be found in (Zhang and Zhou
2014).

Table 4: Experimental Results on MIML datasets. h.l, c.o,
r.l denote hamming loss, coverage and ranking loss, respec-
tively. ↑ / ↓ indicates the larger/smaller, the better.

MIML News Data
h.l.↓ c.o ↓ r.l ↓

Our Method 0.160 0.890 0.157
KISAR •0.167 •0.928 •0.162

MIML SVM •0.184 •1.039 •0.190
MIML KNN •0.172 •0.944 •0.169
MIML RBF •0.169 •0.950 •0.169
MIML Boost •0.189 •0.947 •0.172

MIML Scene Data
h.l. ↓ c.o ↓ r.l ↓

Our Method 0.026 0.261 0.016
KISAR •0.032 •0.278 •0.019

MIML SVM •0.044 •0.373 •0.034
MIML KNN •0.063 •0.489 •0.051
MIML RBF •0.061 •0.481 •0.052
MIML Boost •0.053 •0.417 •0.039

Conclusion
In this paper, we propose a general deep model capable of
solving MIML problems across various domains. In con-
trast to previous MIML studies that rely on manually de-
signed instance generators, our proposed DeepMIML, born
with the representation learning ability of deep models, is
able to learn the instance description automatically. The sub-
concept layer, which is easy to be incorporated into other
deep models, enables DeepMIML to inherit the ability of
MIML for discovering the relation between input patterns
and output semantic labels. Experiments on various datasets
demonstrated the superior performance of DeepMIML.

References
Briggs, F.; Fern, X. Z.; Raich, R.; and Lou, Q. 2013. Instance
annotation for multi-instance multi-label learning. ACM
Transactions on Knowledge Discovery from Data 7(3):14.
Briggs, F.; Fern, X. Z.; and Raich, R. 2012. Rank-loss
support instance machines for MIML instance annotation.
In 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 534–542.
Briggs, F.; Fern, X. Z.; and Raich, R. 2013. Context-aware
MIML instance annotation. In 13th IEEE International Con-
ference on Data Mining, 41–50.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.
Huang, S.-J.; Gao, W.; and Zhou, Z.-H. 2014. Fast multi-
instance multi-label learning. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, 1868–1874.
Kiros, R.; Zhu, Y.-K.; Salakhutdinov, R.; Zemel, R. S.; Ur-
tasun, R.; Torralba, A.; and Fidler, S. 2015. Skip-thought
vectors. In Advances in Neural Information Processing Sys-
tems 28, 3294–3302.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems 25, 1106–1114.
Li, Y.-F.; Hu, J.-H.; Jiang, Y.; and Zhou, Z.-H. 2012. To-
wards discovering what patterns trigger what labels. In Pro-
ceedings of the 26th AAAI Conference on Artificial Intelli-
gence, 1012–1018.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In Proceedings of the
13th European Conference on Computer Vision, 740–755.
Lin, Y.-K.; Shen, S.-Q.; Liu, Z.-Y.; Luan, H.-B.; and Sun,
M.-S. 2016. Neural relation extraction with selective at-
tention over instances. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics,
2124–2133.
Nguyen, C.-T.; Wang, X.-L.; Liu, J.; and Zhou, Z.-H. 2014.
Labeling complicated objects: Multi-view multi-instance
multi-label learning. In Proceedings of the 28th AAAI Con-
ference on Artificial Intelligence, 2013–2019.
Pham, A. T.; Raich, R.; Fern, X. Z.; and Arriaga, J. P. 2015.
Multi-instance multi-label learning in the presence of novel
class instances. In Proceedings of the 32nd International
Conference on Machine Learning, 2427–2435.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. CoRR
abs/1409.1556.
Surdeanu, M.; Tibshirani, J.; Nallapati, R.; and Manning,
C. D. 2012. Multi-instance multi-label learning for rela-
tion extraction. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, 455–465.
Wang, J.; Yang, Y.; Mao, J.-H.; Huang, Z.-H.; Huang, C.;
and Xu, W. 2016. CNN-RNN: A unified framework for
multi-label image classification. CoRR abs/1604.04573.



Wei, X.-S., and Zhou, Z.-H. 2016. An empirical study on
image bag generators for multi-instance learning. Machine
Learning 105(2):155–198.
Wei, Y.-C.; Xia, W.; Huang, J.-S.; Ni, B.-B.; Dong, J.; Zhao,
Y.; and Yan, S.-C. 2014. CNN: single-label to multi-label.
CoRR abs/1406.5726.
Wu, J.-J.; Yu, Y.-N.; Chang, H.; and Yu, K. 2015. Deep
multiple instance learning for image classification and auto-
annotation. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
3460–3469.
Wu, J.-S.; Huang, S.-J.; and Zhou, Z.-H. 2014. Genome-
wide protein function prediction through multi-instance
multi-label learning. IEEE/ACM Trans. Comput. Biology
Bioinform. 11(5):891–902.
Xu, X.-S.; Xue, X.-Y.; and Zhou, Z.-H. 2011. Ensemble
multi-instance multi-label learning approach for video an-
notation task. In Proceedings of the 19th ACM International
Conference on Multimedia, 1153–1156.
Yang, S.-J.; Jiang, Y.; and Zhou, Z.-H. 2013. Multi-instance
multi-label learning with weak label. In Proceedings of
the 23rd International Joint Conference on Artificial Intel-
ligence, 1862–1868.
Zeng, D.-J.; Liu, K.; Chen, Y.-B.; and Zhao, J. 2015. Dis-
tant supervision for relation extraction via piecewise convo-
lutional neural networks. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 17–21.
Zhang, M.-L., and Zhou, Z.-H. 2014. A review on multi-
label learning algorithms. IEEE Trans. Knowl. Data Eng.
26(8):1819–1837.
Zhou, Z.-H., and Zhang, M.-L. 2006. Multi-instance multi-
label learning with application to scene classification. In Ad-
vances in Neural Information Processing Systems 19, 1609–
1616.
Zhou, Z.-H.; Zhang, M.-L.; Huang, S.-J.; and Li, Y.-F. 2012.
Multi-instance multi-label learning. Artificial Intelligence
176(1):2291–2320.
Zhu, Y.-K.; Kiros, R.; Zemel, R. S.; Salakhutdinov, R.; Ur-
tasun, R.; Torralba, A.; and Fidler, S. 2015. Aligning
books and movies: Towards story-like visual explanations
by watching movies and reading books. In Proceedings of
the 15th IEEE International Conference on Computer Vi-
sion, 19–27.


