
AutoEncoder by Forest∗

Ji Feng and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China
{fengj, zhouzh}@lamda.nju.edu.cn

Abstract

Auto-encoding is an important task which is typically re-
alized by deep neural networks (DNNs) such as convolu-
tional neural networks (CNN). In this paper, we propose En-
coderForest (abbrv. eForest), the first tree ensemble based
auto-encoder. We present a procedure for enabling forests
to do backward reconstruction by utilizing the Maximal-
Compatible Rule (MCR) defined by the decision paths of
the trees, and demonstrate its usage in both supervised and
unsupervised setting. Experiments show that, compared with
DNN based auto-encoders, eForest is able to obtain lower re-
construction error with fast training speed, while the model
itself is reusable and damage-tolerable.

Introduction
Auto-encoder (Vincent et al. 2010) is a class of models
which aim to map the input to a latent space and map it back
to the original space, with low reconstruction error as its ob-
jective. Previous approaches for building such device mainly
came from the neural network community. For instance, a
neural network based auto-encoder usually consists of an
encoder and a decoder. The encoder maps the input to a hid-
den layer and the decoder maps it back to the input space. By
concatenating the two parts and setting the reconstruction er-
ror as learning objective, back-propagation can be used for
training such models. It is widely used for dimensionality
reduction (Hinton, Osindero, and Simon 2006), representa-
tion learning (Bengio, Courville, and Vincent 2013), as well
as some more recent works for generative tasks such as Vari-
ational Auto-encoders (Kingma and Welling 2013).

Ensemble learning (Zhou 2012) is a powerful learning
paradigm which trains multiple learners and combines to
tackle the problem. It is widely used in a broad range of
tasks and has demonstrated great performance. Tree ensem-
ble methods, or forests, such as Random Forest (Breiman
2001), for instance, is one of the best off-the-shelf meth-
ods for supervised learning (Fernández-Delgado et al. 2014).
Other successful tree ensembles such as gradient based de-
cision trees (GBDTs) also proven its ability during the past
decade(Friedman 2001; Chen and Guestrin 2016). Besides

∗This research was supported by NSFC (61333014) and 973
Program (2014CB340501).
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

supervised learning, tree ensembles have also achieved great
success in other tasks, such as isolation forest (Liu, Ting, and
Zhou 2008) which is an efficient unsupervised method for
anomaly detection. Recently, deep model based on forests
has also been proposed (Zhou and Feng 2017), and demon-
strated competitive performance with DNNs across a broad
range of tasks with much fewer hyper-parameters.

In this paper, we present the EncoderForest (abbrv. eFor-
est), the first tree ensemble based auto-encoder model. Con-
cretely, the eForest enables a tree ensemble to perform for-
ward encoding and backward decoding thus making it pos-
sible to construct an auto-encoder by forest. In addition, the
eForest model can be trained in both supervised or unsuper-
vised fashion and experimental results showed the eForest
approach has the following advantages:

• Accurate: Its experimental reconstruction error is lower
than a MLP or CNN based auto-encoders.

• Efficient: eForest on a single KNL (many-core CPU) runs
even faster than a CNN auto-encoder runs on a Titan-X
GPU for training.

• Damage-tolerable: The trained model works well even
when it is partially damaged.

• Reusable: A model trained from one dataset can be di-
rectly applied on the other datasets in the same domain.

The rest of the paper is organized as follows: first we
introduce related works, followed by the proposed eForest
model, then experimental results are presented, finally con-
clusion and future works are discussed.

Related Work
Auto-encoder is an important class of models for repre-
sentation learning, and is one of the key ingredients of
deep learning. (Goodfellow, Bengio, and Courville 2016;
Bengio, Courville, and Vincent 2013). The study of auto-
encoder dates back to Bourlard and Kamp (1988), of which
the goal is to learning association from data. Most of the
previous approaches on building such devices are neural net-
work based methods. For instance, the under-complete auto-
encoder is designed for dimensionality reduction (Hinton
and Salakhutdinov 2006), sparse auto-encoder, on the other
hand, gives a sparsity penalty on the activation layer (Hin-
ton and Ranzato 2010), which is related with sparse coding



Figure 1: Traversing backward along decision paths

(Willmore and Tolhurst 2001), and de-noising auto-encoders
(Bengio et al. 2013) forces the model to learn the mapping
from a corrupted input to its noiseless version. Applications
of auto-encoders ranging from computer vision (Masci et al.
2011) to natural language processing (Mikolov et al. 2013)
and semantic hashing for information retrieval tasks(Ruslan,
A. Mnih, and Hinton 2007). In fact, the recent hot wave of
deep learning started with training a stack of auto-encoders
in a greedy layer-wised fashion. (Hinton, Osindero, and Si-
mon 2006).

Ensembles of decision trees, or called forest, are popularly
used in ensemble learning (Zhou 2012). For example, Bag-
ging (Breiman 1996) and Boosting (Freund and Schapire
1999) usually take decision trees as component learners.
Other famous decision tree ensemble methods include Ran-
dom Forest (Breiman 2001) and GBDT(Friedman 2001); the
former is a variant of Bagging, whereas the latter is a variant
of Boosting. Some efficient implementations of GBDT, e.g.,
XGBoost (Chen and Guestrin 2016), has been widely used
in industry and various data science competitions. In addi-
tion to the above tree ensembles constructed in supervised
setting, there are unsupervised tree ensembles also proven
to be useful in various domains. For example, the iForest
(Liu, Ting, and Zhou 2008) is an unsupervised forest de-
signed for anomaly detection, and its ingredient, completely-
random decision trees, have also been applied to tasks such
as streaming new class learning (Mu, Ting, and Zhou in
press). Note that both supervised and unsupervised forests,
i.e., Random Forest and completely-random tree forest, have
been simultaneously exploited in the construction of deep
forest (Zhou and Feng 2017).

The Proposed Method
An auto-encoder has two basic functions: encoding and de-
coding. There is no difficulty for a forest to do encoding
tasks, since at least the leaf nodes information can be re-
garded as one kind of encoding; needless to say, the subsets
of nodes or even the branch of paths may be able to offer
more information for encoding.

First, we propose the encoding procedure of EncoderFor-
est. Given a trained tree ensemble model of T trees, the for-

ward encoding procedure takes an input data and send this
data to each root node of trees in the ensemble, once the
data traverse down to the leaf nodes for all trees, the pro-
cedure will return a T dimensional vector, where each ele-
ment t is an integer index of the leaf node in tree i where
i ∈ {1, 2, ..T}. A more concrete algorithm for forward en-
coding is shown in Algorithm 1. Notice that this encoding
procedure is independent with the particular learning rule
on how to split the nodes for trees. For instance, the decision
rule can be learned in a supervised setting such as random
forest, or can be learned in an unsupervised setting such as
completely random tree forest.

Algorithm 1: Forward Encoding
Input: A trained forest F with T trees,

An input data x
Output: xenc

xenc ← zeros[T ,1] % initialize xenc

for i in range(T ) do
xenc[i]← F.tree[i].get leaf index(x)

end
return xenc

On the other hand, the decoding function is not that ob-
vious. In fact, forests are generally used for forward pre-
diction, by going from the root of each tree to the leaves,
whereas it is unknown how to do backward reconstruction,
i.e., inducing the original samples from information ob-
tained at the leaves.

For a setup, assume we are handling a binary classifica-
tion task, with four attributes. The first and second attributes
are numerical ones; the third is a triple-valued attribute with
values RED, BLUE, GREEN; the fourth is a boolean at-
tribute with values YES, NO. Given an instance x, let xi

denotes the value of x on the i-th attribute. Suppose in the
encoding step we have generated a forest as shown in Fig 1.
Given the forest, assume we only know the leaf nodes on
which the instance x falling into, as shown in Fig 1 as the
red nodes, and wish to reconstruct x.

Here, we propose an effective yet simple, possibly the



simplest, strategy for backward reconstruction in forests to
achieve the above goal.

Firstly, each leaf node actually corresponds to a path com-
ing from the root, we can identify the path based on the leaf
node without uncertainty. For example, in Fig 1 the identi-
fied paths are highlighted in red.

Secondly, each path corresponds to a symbolic rule. For
example, the highlighted tree paths correspond to the fol-
lowing rule set, where RULEi corresponds to the path of
the i-th tree in the forest, where ¬ denotes the negation of a
judgment:

RULE1: (x1 ≥ 0) ∧ (x2 ≥ 1.5) ∧ ¬(x3 ==
RED) ∧ ¬(x1 ≥ 2.7) ∧ ¬(x4 == NO)

RULE2: (x3 == GREEN) ∧ ¬(x2 ≥ 5) ∧ (x1 ≥
0.5) ∧ ¬(x2 ≥ 2)

...

RULEn : (x4 == Y ES) ∧ ¬(x2 ≥ 8) ∧ ¬(x1 ≥ 1.6)
This rule set can be further adjusted into a more succinct

form:
RULE′

1 : (2.7 ≥ x1 ≥ 0) ∧ (x2 ≥ 1.5) ∧ ¬(x3 ==
RED) ∧ (x4 == Y ES)

RULE′
2 : (x1 ≥ 0.5)∧¬(x2 ≥ 2)∧ (x3 == GREEN)

...

RULE′
n : ¬(x1 ≥ 1.6) ∧ ¬(x2 ≥ 8) ∧ (x4 == Y ES)

Thirdly, we can derive the Maximal-Compatible Rule
(MCR). MCR is such a rule that each of its component cov-
erage cannot be enlarged, otherwise incompatible issue will
occur. For example, from the above rule set we can get the
following corresponding MCR:

(1.6 ≥ x1 ≥ 0.5) ∧ (2 ≥ x2 ≥ 1.5) ∧ (x3 ==
GREEN) ∧ (x4 == Y ES)

For each component of this MCR, such as (2 ≥ x2 ≥
1.5), its coverage cannot be enlarged; for example, if it were
enlarged to (3 ≥ x2 ≥ 1.5), it would have conflict with
the condition in ¬(x2 ≥ 2) in RULE2. A more detailed
description is shown in Algorithm 2.

It is very easy to prove the following theorem, and thus
we omit the proof.

Theorem 1. The original sample must reside in the input
region defined by the MCR.

Finally, after obtaining the MCR, we can reconstruct the
original sample. For categorical attributes such as x3 and x4,
the original sample must take these values in the MCR; for
numerical attributes, such as x2, we can take a representative
value, such as the mean value in the interval [1.5, 2]. Thus,
the reconstructed sample is x = [0.55, 1.75, GREEN, YES].
Note that for numerical value, we can have many alternative
ways for the reconstruction, such as the median, max, min,
or even calculate the histograms.

Given the above description, here we give a summary for
conducting backward decoding of eForest. Concretely, given
a trained forest with T trees along with the forward encoding

Algorithm 2: Calculate MCR
Input: A path rule list Rule List consists of T rules

defined by a forest with T trees
Output: MCR
MCR← initialize list()
for i in range(T ) do

path rule← rule list[i]
for node rule in path rule.node rule list do

j ← node rule.get attribute()
bound← node rule.get bound()
MCR[j]← intersect(MCR[j], bound)

end
end
return MCR

xenc in RT for a particular data, the backward decoding will
first locate the individual leaf node via each element in xenc,
and then obtain T decision rules for the corresponding deci-
sion paths. Then, by calculating the MCR and taking a point
estimate, we can thus get a reconstruction from xenc back to
xdec in the input region. A concrete algorithm is shown in
Algorithm 3.

Algorithm 3: Backward Decoding
Input: xenc, trained eForest F with T trees
Output: xdec

rule list← initialize list()
for i in range(T ) do

path← F.tree[i].get path(xenc[i] )
path rule← calculate rules(path)
path rule← simplify(path rule)
rule list.append(path rule)

end
MCR← calculate MCR(rule list)
xdec ← sample(MCR,method=′minimum′)
return xdec

By enabling the eForest to conduct the forward encoding
and backward decoding operations, auto-encoding task can
thus be realized. In addition, although beyond the scope of
this paper, the eForest model might give some insights on a
theoretical treatment for the representation learning ability
for tree ensemble models, as well as helping to design new
models for deep forest.

Experiments
Image Reconstruction
We evaluate the performance of eForest in both supervised
and unsupervised setting. In this implementation, we take
Random Forest (Breiman 2001) to construct the supervised
forest, whereas take the completely-random forest (Zhou
and Feng 2017) as the routine for the unsupervised for-
est. Concretely, for supervised eForest, each non-terminal
node randomly select

√
d attributes in the input space and

pick the best possible split for information gain; for un-



supervised eForest, each non-terminal node randomly pick
one attributes and make a random split. In our experiments
we simply grow the trees to pure leaf, or terminate when
there are only two instances in a node. We evaluate eForest
containing 500 trees or 1,000 trees, denoted by eForest500
and eForest1000 respectively. Note that eForestN will re-
represent the input instance as a N -dimensional vector.

Since auto-encoders especially DNN-based auto-
encoders are mainly designed for image tasks, in this
section we run some experiments on image data first. We
use the MNIST dataset (LeCun et al. 1998), which consists
of 60,000 gray scale 28×28 images for training and 10,000
for testing. We also use CIFAR-10 dataset (Krizhevsky
2009), which is a more complex dataset consists of 50,000
colored 32×32 images for training and 10,000 colored
images for testing. For colored images, the eForest process
each channel separately for memory saving. During decod-
ing, we just take the min value of the interval defined by the
corresponding MCR as indicated in the last sampling step
of decoding.

Table 1: Performance comparison (measured by MSE). The
subscript s and u denote supervised and unsupervised, re-
spectively.

MNIST CIFAR-10
MLP1 266.85 1284.98
MLP2 163.97 1226.52

CNN-AE 768.02 865.63
SWW-AE 159.8 590.76
eForests500 1386.96 1623.93
eForests1000 701.99 567.64
eForestu500 27.39 579.337
eForestu1000 6.86 153.68

MLP based AutoEncoders (MLP-AEs) and a convolu-
tional neural network based auto-encoder (CNN-AE) are
used for comparison. For MLP-AEs, we follow the sug-
gestions in (Bengio et al. 2007) and use two architectures,
with 500-dimensional and 1000-dimensional inner repre-
sentation, respectively. Concretely, the MLP-AE MLP1 for
MNIST is (input− 1024− 500− 1024− output) and the
MLP2 for MNIST is (input−2048−1000−2048−output).
Likewise, the MLP-AE MLP1 for CIFAR-10 is (input −
4096−1024−500−1024−4096−output) and the MLP2

for CIFAR-10 is (input − 4096 − 2048 − 1000 − 2048 −
4096 − output). For a vanilla CNN-AE, we follow the im-
plementations in the Keras documentation 1 with the follow-
ing architecture: it consisting of a conv-layers with 16 (3 ×
3) kernels followed by 2 conv-layers with 8 (3 × 3) kernels,
and each conv-layer has a 2× 2 max-pooling layer followed.
ReLUs are used for activation and logloss is used as train-
ing objective. During training, dropout is set to be 0.25 per
layer. We also use a more recent CNN based AE, namely
SWWAE (Zhao et al. 2015), for comparison. The model use
a new form of up-pooling layer instead of the traditional up-
sampling layer to explore invariance and equivariance. The

1https://blog.keras.io/building-autoencoders-in-keras.html

SWWAE we use for comparison has the structure (16)5c-
(32)3c-8p which is the same structure presented in the paper
and we use the same training procedure suggested in the pa-
per.

(a) Reconstructed samples on CIFAR-10.

(b) Reconstructed samples on MNIST.

Figure 2: The original test samples (first rows) and the re-
constructed samples

Experimental results are summarized in Table 1 and some
reconstructed samples on the test set are shown in Figure 2.
The SWWAE indeed has a better performance compared
with the vanilla CNN auto-encoder, whereas the eForest
auto-encoder achieves the best performance. There might be
some more room of improvement for the vanilla CNN-AEs,
if some more tuning is performed. Nevertheless, eForest can
perform well without such tuning steps.

Table 2: Length of tree depth on MNIST

Max depth Ave. depth
eForests500 48 34.82
eForests1000 48 34.79
eForestu500 93 70.87
eForestu1000 101 70.07

It is worth noting that the unsupervised eForest had a
better performance compared with the supervised eForest,
given the same number of trees. Note that each decision tree



path corresponds to a rule, whereas a longer rule will de-
fine a tighter MCR. We conjecture that a tighter MCR might
lead to a more accurate reconstruction. Therefore for a forest
with longer tree depth may have a better performance. For
example, we measured the maximum depth as well as the
average depth for all trees on MNIST dataset, as summa-
rized in Table 2. Experimental results give positive supports,
as unsupervised eForest indeed has a longer average depth.

Text Reconstruction
In this section, we study the performance of eForest for
text reconstruction. Note that the DNN based auto-encoders
are mainly designed for images, and if to be applied to
texts, some additional mechanisms such as word embed-
ding(Mikolov et al. 2013) are required. Here we want to
study the performance of doing auto-encoding directly on
text data.

Concretely, we used the IMDB dataset (Maas et al. 2011)
which contains 25,000 documents for training and 25,000
documents for testing. Each document was stored as a 5,000-
d vector via tf/idf transformation. We used exactly the same
configuration of eForests for image data. Cosine distance is
used for evaluation metric, which is the standard metric for
measuring the similarities between documents represented
by tf/idf vectors. The lower the cosine distance, the better.
The results are summarized in Table 3.

Table 3: Text reconstruction

Cosine Distance
eForests500 0.1132
eForests1000 0.0676
eForestu500 0.0070
eForestu1000 0.0023

It should be highlighted that CNN based auto-encoders
can not be applied on this kind of input data at all and MLP
based auto-encoders is barely useful. After extensive cross-
validation for parameter search, the best structure for MLP
we could obtained is (Input−4096−2048−1024−2048−
4096−Output), with the performance of 0.512, more than
two hundred times worse than eForest.

From the above results, we showed that eForest can also
be applied on text data with high performance. Notice that
by using only 10% bits of representation (eForest of 500
trees trained unsupervisedly), eForest can already recon-
struct the original input with high accuracy. This is a promis-
ing result which can be further utilized for data compression
or information retrieval.

Computation Efficiency
As a common advantage for tree ensemble models, eForest
is also inherently apt for parallel implementation. We imple-
ment eForest on a single Intel KNL-7250 (3 TFLOPS peak),
and achieved a 67.7 speedup for training 1,000 trees in an
unsupervised setting, compared with a serial implementa-
tion. For a comparison, we trained the corresponding MLPs
and CNN-AEs and SWWAEs with the same configurations

as in the previous sections on one Titan-X GPU (6 TFLOPS
peak) and the results are summarized in Table 4.

Table 4: Time cost (in seconds). Encoding/decoding is mea-
sured in seconds per sample.

Model
MNIST CIFAR-10

Train Encoding Train Encoding
Decoding Decoding

eForest 19.951 0.225 59.926 0.717
0.968 2.062

MLP2 274.471 0.009 1055.958 0.015
0.006 0.012

CNN 249.958 0.011 280.034 0.01
0.010 0.01

SWWAE 355.743 0.001 373.080 0.001
0.001 0.001

From the above results, eForest is much faster than
DNN based AE when training, but is slower during encod-
ing/decoding tims. We believe this process can be speedup
by some more optimizations for the implementation in the
future.

Damage Tolerable
There are cases when the model is partially damaged due
to a various reasons such as memory or disk failure. For a
partially damaged model is still able to function in such sce-
narios is one characteristic towards model robustness. The
eForest approach for auto-encoding is one such model by its
nature since we could still estimate the MCR when facing
only a subset of trees in the forest.

(a) CIFAR-10

(b) MNIST

Figure 3: Performance when model is partially damaged



In this section, we test the damage tolerable empirically
on CIFAR-10 and MNIST datasets. Concretely, during test-
ing time, we randomly drop 25%, 50% and 75% of the trees
and measure the reconstruction error based on the pattern
recovered using only the remaining trees. For a comparison,
we also randomly turned off 25%, 50% and 75% of the neu-
rons in the MLP2 with structure exactly the same as in the
previous section. The performance results are illustrated in
Figure 3.

Form the above result, the eForest approach is more dam-
age tolerable than a MLP-AE, and the unsupervised eForest
is the most damage tolerable model among others. Results
also showed that eForest is more robust on MNIST than
CIFAR-10, we conjecture that this might owe to the fact that
MNIST is simpler than CIFAR-10 and thus smaller forest
can be good enough, which in turn leading to the fact that
more damages are tolerable given the same amount of trees.

Model Reuse for eForest

In an open environment, the test data may belong to a dif-
ferent distribution. In this section, we evaluate the ability for
model reuse and the goal here is to train an auto-encoder in
one dataset and reuse it in another without any modifications
or re-training. The ability for model reuse in this context is
an important property for future machine learning develop-
ments (Zhou 2016).

(a) Reconstructed mnist samples by models trained from cifar.

(b) Reconstructed omniglot samples by models trained from mnist.

Figure 4: The original samples(first rows) and the ones re-
constructed by different AEs, where eForests/u correspond
to supervised/unsupervised setting, respectively.

Concretely, we evaluate the ability for model reuse as fol-
lows. We trained an unsupervised and an supervised eFor-
est on CIFAR-10 dataset (converted and rescaled to 28×28
gray scale data), each consisting of 1,000 trees , and then
use the exact trained models to encoding/decoding data from
the MNIST test dataset. Likewise, we also trained eFor-
ests consists of 1,000 trees on MNIST dataset, and directly
test the encoding/decoding performance on the Omniglot
datasets (Lake, Salakhutdinov, and Tenenbaum 2015). For a
fair comparison, we trained the CNN and MLP based auto-
encoders on the same dataset without fine-tuning. The archi-
tecture for DNNs and the training procedures are the same
in the previous sections accordingly.

Table 5: Performance comparison for model reuse (mea-
sured by MSE).

Model cifar train Model mnist train
mnist test omniglot test

MLP2 1898.76 MLP2 596.24
CNN-AE 2657.69 CNN-AE 1280.60
SWW-AE 1612.62 SWW-AE 213.87
eForests 652.38 eForests 270.54
eForestu 90.43 eForestu 12.80

Some randomly picked reconstructed samples are pre-
sented in Fig. 4, and the numerical evaluation on the whole
test set is presented in Table 5. It can be inferred that eFor-
ests has out-performed the DNN approach by a factor more
than 100. Notice that the CIFAR-10 dataset is quite different
with the MNIST data, and the eForest can still perform well
for encoding/decoding even it never encountered MNIST
data during training. This showed the generalization ability
in terms of model reuse for eForest.

Conclusion
In this paper, we propose the EncoderForest (abbrv. eForest),
the first tree ensemble based auto-encoder model, by devis-
ing an effective procedure for enabling forests to reconstruct
the original pattern by utilizing the Maximal-Compatible
Rule (MCR) defined by decision paths of the trees. Exper-
iments demonstrate its good performance in terms of accu-
racy and speed, as well as the ability of damage tolerance
and model re-usability. In particular, on text data, by us-
ing only 10% of the input bits, the model is still able to
reconstruct the original data with high accuracy. Another
advantage of eForest lies in the fact that it can be applied
to symbolic attributes or mixed attributes directly, without
transforming the symbolic attributes to numerical ones, es-
pecially when considering that the transforming procedure
generally either lose information or introduce additional
bias.

Note that supervised and unsupervised eForest are actu-
ally the two ingredients utilized simultaneously in each level
of the deep forest constructed by gcForst. This work might
offer some additional understandings of gcForst (Zhou and
Feng 2017). Constructing a deep eForest model is also an
interesting future issue.



References
Bengio, Y.; Lamblin, P.; Popovici, D.; and Larochelle, H.
2007. Greedy layer-wise training of deep networks. In Ad-
vances in neural information processing systems 20, 153–
160.
Bengio, Y.; Yao, L.; Alain, G.; and Vincent, P. 2013. Gener-
alized denoising auto-encoders as generative models. In Ad-
vances in Neural Information Processing Systems 26, 899–
907.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(8):1798–1828.
Bourlard, H., and Kamp, Y. 1988. Auto-association by mul-
tilayer perceptrons and singular value decomposition. Bio-
logical cybernetics 59(4):291–294.
Breiman, L. 1996. Bagging predictors. Machine Learning
24(2):123–140.
Breiman, L. 2001. Random forests. Machine Learning
45(1):5–32.
Chen, T.-Q., and Guestrin, C. 2016. XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd ACM In-
ternational Conference on Knowledge Discovery and Data
Mining, 785–794.
Fernández-Delgado, M.; Cernadas, E.; Barro, S.; and
Amorim, D. 2014. Do we need hundreds of classifiers to
solve real world classification problems? Journal of Ma-
chine Learning Research 15:3133–3181.
Freund, Y., and Schapire, R. E. 1999. A short introduc-
tion to boosting. Journal of Japanese Society for Artificial
Intelligence 14(5):771–780.
Friedman, J. H. 2001. Greedy function approximation:
A gradient Boosting machine. The Annals of Statistics
29(5):1189–1232.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. Cambridge, MA: MIT Press.
Hinton, G., and Ranzato, M. 2010. Modeling pixel means
and covariances using factorized third-order boltzmann ma-
chines. In Proceedings of the 2010 IEEE Conference on
Computer Vision and Pattern Recognition, 2551–2558.
Hinton, G., and Salakhutdinov, R. 2006. Reducing the
dimensionality of data with neural networks. Science
313(5786):504–507.
Hinton, G.; Osindero, S.; and Simon, Y.-W. 2006. A fast
learning algorithm for deep belief nets. Neural Computation
18(7):1527–1554.
Kingma, D.-P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, University of Toronto.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science 350(6266):1332–1338.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. Isolation
forest. In Proceedings of the 8th IEEE International Con-
ference on Data Mining, 413–422.
Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.;
and Potts, C. 2011. Learning word vectors for sentiment
analysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, 142–150.
Masci, J.; Meier, U.; Cireşan, D.; and Schmidhuber, J. 2011.
Stacked convolutional auto-encoders for hierarchical feature
extraction. In Proceedings of International Conference on
Artificial Neural Networks, 52–59.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems 26, 3111–3119.
Mu, X.; Ting, K. M.; and Zhou, Z.-H. in press. Classifica-
tion under streaming emerging new classes: A solution using
completely-random trees. IEEE Trans. Knowledge and Data
Engineering.
Ruslan, S.; A. Mnih, A.; and Hinton, G. 2007. Restricted
boltzmann machines for collaborative filtering. In Proceed-
ings of the 24th International Conference on Machine learn-
ing, 791–798.
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; and Man-
zagol, P.-A. 2010. Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a local de-
noising criterion. Journal of Machine Learning Research
11:3371–3408.
Willmore, B., and Tolhurst, D. 2001. Characterizing the
sparseness of neural codes. Network: Computation in Neural
Systems 12(3):255–270.
Zhao, J.; Mathieu, M.; Goroshin, R.; and LeCun, Y.
2015. Stacked what-where auto-encoders. arXiv preprint
arXiv:1506.02351.
Zhou, Z.-H., and Feng, J. 2017. Deep forest: Towards
an alternative to deep neural networks. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 3553–3559.
Zhou, Z.-H. 2012. Ensemble Methods: Foundations and
Algorithms. Boca Raton, FL: CRC.
Zhou, Z.-H. 2016. Learnware: on the future of machine
learning. Frontiers of Computer Science 10(4):589–590.


