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Abstract

Multi-layered distributed representation is believed to be the key ingredient of
deep neural networks especially in cognitive tasks like computer vision. While
non-differentiable models such as gradient boosting decision trees (GBDTs) are
still the dominant methods for modeling discrete or tabular data, they are hard to
incorporate with such representation learning ability. In this work, we propose the
multi-layered GBDT forest (mGBDTs), with an explicit emphasis on exploring the
ability to learn hierarchical distributed representations by stacking several layers
of regression GBDTs as its building block. The model can be jointly trained by
a variant of target propagation across layers, without the need to derive back-
propagation nor differentiability. Experiments confirmed the effectiveness of the
model in terms of performance and representation learning ability.

1 Introduction

The development of deep neural networks has achieved remarkable advancement in the field of
machine learning during the past decade. By constructing a hierarchical or "deep" structure, the
model is able to learn good representations from raw data in both supervised and unsupervised
settings which is believed to be its key ingredient. Successful application areas include computer
vision, speech recognition, natural language processing and more [Goodfellow et al., 2016].

Currently, almost all the deep neural networks use back-propagation [Werbos, 1974; Rumelhart et al.,
1986] with stochastic gradient descent as the workhorse behind the scene for updating parameters
during training. Indeed, when the model is composed of differentiable components (e.g., weighted
sum with non-linear activation functions), it appears that back-prop is still currently the best choice.
Some other methods such as target propagation [Bengio, 2014] has been proposed as an alternative
for training, the effectiveness and popularity are however still in a premature stage. For instance,
the work in Lee et al. [2015] proved that target propagation can be at most as good as back-prop,
and in practice an additional back-propagation for fine-tuning is often needed. In other words, the
good-old back-propagation is still the most effective way to train a differentiable learning system
such as neural networks.

On the other hand, the need to explore the possibility to build a multi-layered or deep model using
non-differentiable modules is not only of academic interest but also with important application
potentials. For instance, tree-based ensembles such as Random Forest [Breiman, 2001] or gradient
boosting decision trees (GBDTs) [Friedman, 2000] are still the dominant way of modeling discrete or
tabular data in a variety of areas, it thus would be of great interest to obtain a hierarchical distributed
representation learned by tree ensembles on such data. In such cases, there is no chance to use chain
rule to propagate errors, thus back-propagation is no longer possible. This yields to two fundamental
questions: First, can we construct a multi-layered model with non-differentiable components, such
that the outputs in the intermediate layers are distributed representations? Second, if so, how to jointly
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train such models without the help of back-propagation? The goal of this paper is to provide such an
attempt.

Recently Zhou and Feng [2017; 2018] proposed the Deep Forest framework, which is the first attempt
to constructing a multi-layered model using tree ensembles. Concretely, by introducing fine-grained
scanning and cascading operations, the model is able to construct a multi-layered structure with
adaptive model complexity and achieved competitive performance across a board range of tasks.
The gcForest model proposed in [2018] utilized all strategies for diversity enhancement of ensemble
learning, however, the current approach is only suitable in a supervised learning setting. Meanwhile,
it is still not clear how to construct a multi-layered model by forest that explicitly examine its
representation learning ability. Such explorations for representation learning should be made since
many previous researches have suggested that, a multi-layered distributed representations [Hinton et
al., 1986] may be the key reason for the success of deep neural networks [Bengio et al., 2013a].

In this work, we aim to take the best parts of both worlds: the excellent performance of tree
ensembles and the expressive power of hierarchical distributed representations (which has been
mainly explored in neural networks). Concretely, we propose the first multi-layered structure
using gradient boosting decision trees as building blocks per layer with an explicit emphasis on its
representation learning ability and the training procedure can be jointly optimized via a variant of
target propagation. The model can be trained in both supervised and unsupervised settings. This is
the first demonstration that we can indeed obtain hierarchical and distributed representations using
trees which was commonly believed only possible for neural networks or differentiable systems in
general. Theoretical justifications as well as experimental results showed the effectiveness of this
approach.

The rest of the paper is organized as follows: first, some more related works are discussed; second,
the proposed method with theoretical justifications are presented; finally, empirical experiments and
conclusions are illustrated and discussed.

2 Related Works

There is still no universal theory in explaining why a deep model works better than a shallow one.
Many of the current attempts [Bengio et al., 2013b,c] for this question are based on the conjecture
that it is the hierarchical distributed representations learned from data are the driven forces behind the
effectiveness of deep models. Similar works such as [Bengio et al., 2013b] conjectured that better
representations can be exploited to produce faster-mixing Markov chains, therefore, a deeper model
always helps. Tishby and Zaslavsky Tishby and Zaslavsky [2015] treated the hidden layers as a
successive refinement of relevant information and a deeper structure helps to speed up such process
exponentially. Nevertheless, it seems for a deep model to work well, it is critical to obtain a better
feature re-representation from intermediate layers.

For a multi-layered deep model with differentiable components, back-propagation is still the dominant
way for training. In recent years, some alternatives have been proposed. For instance, target-
propagation [Bengio, 2014] and difference target propagation [Lee et al., 2015] propagate the targets
instead of errors via the inverse mapping. By doing so, it helps to solve the vanishing gradient problem
and the authors claim it is a more biologically plausible training procedure. Similar approaches such
as feedback-alignment [Lillicrap et al., 2016] used asymmetric feedback connections during training
and direct feedback alignment [Nøkland, 2016] showed it is possible when the feedback path is
disconnected from the forward path. Currently, all these alternatives stay in the differentiable regime
and their theoretical justifications depend heavily on calculating the Jacobians for the activation
functions.

Ensemble learning [Zhou, 2012] is a powerful learning paradigm which often uses decision trees
as its base learners. Bagging [Breiman, 1996] and boosting [Freund and Schapire, 1999] , for
instance, are the driven forces of Random Forest [Breiman, 2001] and gradient boosting decision
trees [Friedman, 2000], respectively. In addition, some efficient implementations for GBDTs such as
XGBoost [Chen and Guestrin, 2016] has become the best choice for many industrial applications and
data science projects, ranging from predicting clicks on Ads [He et al., 2014], to discovering Higgs
Boson [Chen and He, 2015] and numerous data science competitions in Kaggle1 and beyond. Some
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more recent works such as eForest [Feng and Zhou, 2018] showed the possibility to recover the input
pattern with almost perfect reconstruction accuracy by forest. Due to the unique property of decision
trees, such models are naturally suitable for modeling discrete data or data sets with mixed-types of
attributes. There are some works tries to combine the routing structure of trees with neural networks
[Kontschieder et al., 2015; Frosst and Hinton, 2017], however, these approaches require heavily on
the differential property for the system and thus are quite different with our purpose and motivation.

3 The Proposed Method

Figure 1: Illustration of training mGBDTs

Consider a multi-layered feed-forward structure with M − 1 intermediate layers and one final output
layer. Denote oi where i ∈ {0, 1, 2, . . . ,M} as the output for each layer including the input layer and
the output layer oM . For a particular input data x, the corresponding output at each layer is in Rdi ,
where i ∈ {0, 1, 2, . . . ,M}. The learning task is therefore to learn the mappings Fi : R

di−1 → Rdi

for each layer i > 0, such that the final output oM minimize the empirical loss L on training set.
Mean squared errors or cross-entropy with extra regularization terms are some common choices for
the loss L. In an unsupervised setting, the desired output Y can be the training data itself, which
leads to an auto-encoder and the loss function is the reconstruction errors between the output and the
original input.

When each Fi is parametric and differentiable, such learning task can be achieved in an efficient
way using back-propagation. The basic routine is to calculate the gradients of the loss function with
respect to each parameter at each layer using the chain rule, and then perform gradient descent for
parameter updates. Once the training is done, the output for the intermediate layers can be regarded
as the new representation learned by the model. Such hierarchical dense representation can be
interpreted as a multi-layered abstraction of the original input and is believed to be critical for the
success of deep models.

However, when Fi is non-differentiable or even non-parametric, back-prop is no longer applicable
since calculating the derivative of loss function with respect to its parameters is impossible. The rest
of this section will focus on solving this problem when Fi are gradient boosting decision trees.

First, at iteration t, assume the F t−1
i obtained from the previous iteration are given, we need

to obtain an "pseudo-inverse" mapping Gt
i paired with each F t−1

i such that Gt
i(F

t−1
i (oi−1)) ≈

oi−1. This can be achieved by minimizing the expected value of the reconstruction loss function
as: Ĝt

i = argminGt
i
Ex[L

inverse(oi−1, G
t
i(F

t−1
i (oi−1)))] ,where the loss Linverse can be the

reconstruction loss. Like an autoencoder, random noise injection is often suggested, that is, instead
of using a pure reconstruction error measure, it is good practice setting Linverse as: Linverse =
‖Gi(Fi(oi−1 + ε))− (oi−1 + ε)‖, ε ∼ N (0, diag(σ2)). By doing so, the model is more robust in
the sense that the inverse mapping is forced to learn how to map the neighboring training data to the
right manifold. In addition, such randomness injection also helps to design a generative model by
treating the inverse mapping direction as a generative path which can be considered as future works
for exploration.

Second, once we updated Gt
i, we can use it as given and update the forward mapping for the previous

layer Fi−1. The key here is to assign a pseudo-labels zti−1 for Fi−1 where i ∈ {2, ..M}, and each
layer’s pseudo-label is defined to be zti−1 = Gi(z

t
i). That is, at iteration t, for all the intermediate

layers, the pseudo-labels for each layer can be "aligned" and propagated from the output layer to
the input layer. Then, once the pseudo-labels for each layer is computed, each F t−1

i can follow a
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gradient ascent step towards the pseudo-residuals −∂L(F t−1
i (oi−1),z

t
i)

∂F t−1
i (oi−1)

just like a typical regression
GBDT.

The only thing remains is to set the pseudo-label ztM for the final layer to make the whole structure
ready for update. It turns out to be easy since at layer M , one can always use the real labels y when
defining the output layer’s pseudo-label. For instance, it is natural to define the pseudo-label of
the output layer as: ztM = oM − α∂L(oM ,y)

∂oM
. Then, F t

M is set to fit towards the pseudo-residuals

−∂L(F t−1
M (oM−1),z

t
M)

∂F t−1
M (oM−1)

. In other words, at iteration t, the output layer FM compute its pseudo-label

ztM and then produce the pseudo-labels for all the other layer via the inverse functions, then each Fi

can thus be updated accordingly. Once all the Fi get updated, the procedure can then move to the
next iteration to update Gi. In practice, a bottom up update is suggested (update Fi before Fj for
i < j) and each Fi can go several rounds of additive boosting steps towards its current pseudo-label.

When training a neural network, the initialization can be achieved by assigning random Gaussian
noise to each parameter, then the procedure can move on to the next stage for parameter update. For
tree-structured model described here, it is not a trivial task to draw a random tree structure from the
distribution of all the possible tree configurations, therefore instead of initializing the tree structure at
random, we produce some Gaussian noise to be the output of intermediate layers and train some very
tiny trees to obtain F 0

i , where index 0 denote the tree structures obtained in this initialization stage.
Then the training procedure can move on to iterative update forward mappings and inverse mappings.
The whole procedure is summarized in Algorithm 1 and illustrated in Figure 1.

Algorithm 1: Training multi-layered GBDT (mGBDT) Forest
Input: Number of layers M , layer dimension di, training data X ,Y , final loss function L,

α, γ,K1,K2, epoch E, noise injection σ2

Output: A trained mGBDT
F 0
1:M ← Initialize(); G0

2:M ← Initialize(); o0← X; oj ← F 0
j (oj−1) for j = 1, 2, . . . ,M

for t = 1 to E do
ztM ← oM − α∂L(oM ,Y )

∂oM
// Calculate the pseudo-label for the final layer

for j = M to 2 do
Gt

j ← Gt−1
j

onoise
j−1 ← oj−1 + ε, ε ∼ N (0, diag(σ2))

for k = 1 to K1 do
Linv
j ← ‖Gt

j(F
t−1
j (onoise

j−1 ))− onoise
j−1 ‖

rk ← −[
∂Linv

j

∂Gt
j(F

t−1
j (onoise

j−1 ))
]

Fit regression tree hk to rk, i.e. using the training set (F t−1
j (onoise

j−1 ), rk)
Gt

j ← Gt
j + γhk

end
ztj−1 ← Gt

j(z
t
j) // Calculate the pseudo-label for layer j − 1

end
for j = 1 to M do

F t
j ← F t−1

j

// Update F t
j using pseudo-label ztj for K2 rounds

for k = 1 to K2 do
Lj ← ‖F t

j (oj−1)− ztj‖
rk ← −[ ∂Lj

∂F t
j (oj−1)

]

Fit regression tree hk to rk, i.e. using the training set (oj−1, rk)
F t
j ← F t

j + γhk
end
oj ← F t

j (oj−1)

end
end
return FT

1:M , GT
2:M
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It is worth noticing that the work in Rory and Eibe [2017] utilized GPUs to speed up the time required
to train a GBDT and Korlakai and Ran [2015] showed an efficient way of conducting drop-out
techniques for GBDTs which will give a performance boost further. For a multi-dimensional output
problem, the naïve approaches using GBDTs would be memory inefficient and Si et al. [2017]
proposed an efficient way of solving such problem which can reduce the memory by an order of
magnitude in practice.

In classification tasks, one could set the forward mapping in the output layer as a linear classifier.
There are two main reasons of doing this: First, by doing so, the lower layers will be forced to learn
a feature re-representation that is as linear separable as possible which is a useful property to have.
Second, often the difference of the dimensionality between the output layer and the layer below is
big, as a result, an accurate inverse mapping may be hard to learn. When using a linear classifier as
the forward mapping at the output layer, there is no need to calculate that particular corresponding
inverse mapping since the pseudo-label for the layer below can be calculated by taking the gradient
of the global loss with respect to the output of the last hidden layer.

A similar procedure such as target propagation [Bengio, 2014] has been proposed to use the inter-layer
feedback mappings to train a neural network. They proved that under certain conditions, the angle
between the update directions for the parameters of the forward mappings and the update directions
when trained with back-propagation is less than 90 degree. However, the proof relies heavily on the
computing the Jacobians of Fi and Gi, therefore, their results are only suitable for neural networks.

The following theorem proves that, under certain conditions, an update in the intermediate layer
towards its pseudo-label helps to reduce the loss of the layer above, and thus helps to reduce the
global loss. The proof here does not rely on the differentiable property of Fi and Gi.

Theorem 1. Denote an update of foldi−1 to fnewi−1 moves its output from hi to h′i, where hi and h′i
are in Rdi and denote the input for fi−1 as hi−1 which is in Rdi−1 . Assume each fi is t-Lipchize
continuous on Rdi and gi = f−1i is 1/t-Lipchize continuous.2. Now suppose such update for fi−1
reduced its local loss, that is, ‖fnewi−1 (hi−1)− Targeti−1‖ ≤ ‖foldi−1(hi−1)− Targeti−1‖, then it
helps to reduce the loss for the layer above, that is, the following holds:

‖fi(h′i)− Targeti‖ ≤ ‖fi(hi)− Targeti‖ (1)

Proof. By assumption, it is easy to show that ‖f−1i fi(x)− f−1i fi(y)‖ ≤ ‖fi(x)− fi(y)‖/t and
‖g−1i gi(x)− g−1i gi(y)‖ ≤ t‖gi(x)− gi(y)‖. Then we have the following:

‖fi(h′i)− Targeti‖ ≤t‖gi(fi(h′i))− gi(Targeti)‖
=t‖h′i − Targeti−1‖
=t‖fnewi−1 (hi−1)− Targeti−1‖
≤t‖foldi−1(hi−1)− Targeti−1‖
≤t‖fi(foldi−1(hi−1))− fi(Targeti−1)‖/t
=‖fi(foldi−1(hi−1))− fi(Targeti−1)‖
=‖fi(hi)− Targeti‖

To conclude this section, here we discuss several reasons for the need to explore non-differential
components in designing multi-layered models. Firstly, current adversarial attacks [Nguyen et al.,
2015; Huang et al., 2017] are all based on calculating the derivative of the final loss with respect to the
input. That is, regardless of the training procedure, one can always attack the system as long as chain
rule is applicable. Non-differentiable modules such as trees can naturally block such calculation,
therefore, it would more difficult to perform malicious attacks. Secondly, there are still numerous
data sets of interest that are best suitable to be modeled by trees. It would be of great interests and

2Clarke inverse function theorem [Clarke, 1976] proved the existence of such gi under mild conditions on
generalized derivatives of fi without loss of generality.
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potentials to come up with algorithms that can blend the performance of tree ensembles with the
benefit of having a multi-layered representation.

4 Experiments

The experiments for this section is mainly designed to empirically examine if it is feasible to jointly
train the multi-layered structure proposed by this work. That is, we make no claims that the current
structure can outperform CNNs in computer vision tasks. More specifically, we aim to examine the
following questions: (Q1) Does the training procedure empirically converge? (Q2) What does the
learned features look like? (Q3) Does depth help to learn a better representation? (Q4) Given the same
structure, what is the performance compared with neural networks trained by either back-propagation
or target-propagation? With the above questions in mind, we conducted 3 sets of experiments with
both synthetic data and real-world applications which results are presented below.

4.1 Synthetic Data

As a sanity check, here we train two small multi-layered GBDTs on synthetic datasets.

(a) Original (b) Transformed

Figure 2: Supervised classification

(a) Input (b) Reconstructed

Figure 3: Unsupervised mGBDT autoencoder

(a) Dimension 1 and 2 (b) Dimension 1 and 5 (c) Dimension 4 and 5 (d) Dimension 3 and 5

Figure 4: Visualizations in the 5D encoding space of unsupervised mGBDT autoencoder

We generated 15, 000 points with 2 classes (70 % for training and 30 % for testing) onR2 as illustrated
in Figure 2a. The structure we used for training is (input− 5− 3− output) where the input points
are in R2 and the output is a 0/1 classification prediction. The mGBDT used in both forward and
inverse mappings have a maximum depth of 5 per tree with learning rate of 0.1. The output of the
last hidden layer (which is in R3) is visualized in Figure 2b. Clearly, the model is able to transform
the data points that is easier to separate.

We also conducted an unsupervised learning task for autoencoding. 10, 000 points in R3 with shape
S were generated, as shown in Figure 3a. Then we built an autoencoder using mGBDTs with
structure (input− 5− output) with MSE as its reconstruction loss. The hyper-parameters for tree
configurations are the same as the 2-class classification task. In other words, the model is forced to
learn a mapping from R3 to R5, then maps it back to the original space with low reconstruction error
as objective. The reconstructed output is presented in Figure 3b. The 5D encodings for the input 3D
points are impossible to visualize directly, here we use a common strategy to visualize some pairs of
dimensions for the 5D encodings in 2D as illustrated in Figure 4. The 5D representation for the 3D
points is indeed a distributed representation [Hinton et al., 1986] as some of the dimension captures
the curvature whereas others preserve the relative distance among points.

4.2 Income Prediction

The income prediction dataset [Lichman, 2013] consists of 48, 842 samples (32, 561 for training
and 16, 281 for testing) of tabular data with both categorical and continuous attributes. Each sample
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(a) Original representation (b) 1st layer representation (c) 2nd layer representation

Figure 5: Feature visualization for income dataset

consists of a person’s social background such as race, sex, work-class, etc. The task here is to predict
whether this person makes over 50K a year. One-hot encoding for the categorical attributes make each
training data in R113. The multi-layered GBDT structure we used is (input− 128− 128− output).
Gaussian noise with zero mean and standard deviation of 0.3 is injected in Linverse. To avoid training
the inverse mapping on the output layer, we set the final output layer to be a linear with cross-entropy
loss, other layers all use GBDTs for for forward/inverse mappings with the same hyper-parameters in
section 4.1. The learning rate α at output layer is determined by cross-validation. The output for
each intermediate layers are visualized via T-SNE [van der Maaten and Hinton, 2008] in Figure 5.
We wish to highlight that all the mGBDTs used exactly the same hyper-parameters across all the
experiments: 5 additive trees per epoch (K1 = K2 = 5), the maximum depth is fixed to be 5. Such
rule-of-thumb setting is purposely made in order to avoid a fine-tuned performance report.

(a) Training loss (b) Training accuracy

(c) Testing loss (d) Testing accuracy

Figure 6: Learning curves of income dataset

For a comparison, we also trained the exact same structure (input− 128− 128− output) on neural
networks using the target propagation NNTargetProp and standard back-propagation NNBackProp,
respectively. Since the goal here is to compare the predictive accuracy given the same representational
dimensions therefore other NN architectures are not reported in details. (Actually smaller NNs won’t
help, for instance, (input− 32− 32− output) achieved 85.20% and (input− 16− 16− output)
achieved 84.67%.) Adam [Kingma and Ba, 2014] with a learning rate of 0.001 and ReLU activation
are used for both cases. Dropout rate of 0.25 is used for back-prop. A vanilla XGBoost via cross-
validation search for hyper-parameters with 100 additive trees with a maximum depth of 7 per tree is
also trained for comparison, the optimal learning rate found for XGBoost is 0.3. Finally, we stacked 3
XGBoost of the same configurations as the vanilla XGBoost and used one additional XGBoost as the
second stage of stacking via 3-fold validation. More stacking levels will produce severe over-fitting
results and are not included here.
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Experimental results are summarized in Figure 6 and Table 1. First, multi-layered GBDT forest
(mGBDT) achieved the highest accuracy compared to DNN approaches trained by either back-prop
or target-prop, given the same model structure. It also performs better than single GBDTs or stacking
multiple ones in terms of accuracy. Second, NNTargetProp converges not as good as NNBackProp

as expected (a consistent result with Lee et al. [2015]), whereas the same structure using GBDT
layers can achieve a lower training loss without over-fitting.

Table 1: Classification accuracy comparison. For protein dataset, accuracy measured by 10-fold
cross-validation shown in mean ± std.

Income Dataset Protein Dataset
XGBoost .8719 .5937 ± .0324
XGBoost Stacking .8697 .5592 ± .0400
NNTargetProp .8491 .5756 ± .0465
NNBackProp .8534 .5907 ± .0268
Multi-layered GBDT .8742 .5948 ± .0268

4.3 Protein Localization

(a) Original representation (b) 1st layer representation (c) 2nd layer representation

Figure 7: Feature visualization for protein dataset

The protein dataset [Lichman, 2013] is a 10 class classification task consists of only 1484 training
data where each of the 8 input attributes is one measurement of the protein sequence, the goal
is to predict protein localization sites with 10 possible choices. 10-fold cross-validation is used
for model evaluation since there is no test set provided. We trained a multi-layered GBDT using
structure (input − 16 − 16 − output). Due to the robustness of tree ensembles, all the training
hyper-parameters are the same as we used in the previous section. Likewise, we trained two neural
networks NNTargetProp and NNBackProp with the same structure, and the training parameters
were determined by cross-validation for a fair comparison. Experimental results are presented in
Table 1. Again mGBDT achieved best performance among all. XGBoost Stacking had a worse
accuracy than using a single XGBoost, this is mainly because over-fitting has occurred. We also
visualized the output for each mGBDT layer using T-SNE in Figure 7. It can be shown that the quality
of the representation does get improved with model depth.

The training and testing curves for 10-fold cross-validation are plotted with mean value in Figure 8.
The multi-layered GBDT (mGBDT) approach converges much faster than NN approaches in terms of
number of epochs, as illustrated in Figure 8a. Only 50 epoch is needed for mGBDT whereas NNs
require 200 epochs for both back-prop and target-prop scenarios. When measured by the wall-clock
time, mGBDT runs close to NN (only slower by a factor of 1.2) with backprops in our experiments
and mGBDT has a training speed very close to NN with target-prop. Nevertheless, comparing
wall-clock time is less meaningful since mGBDT and NNs use different devices (CPU v.s. GPU)
and different implementation optimizations. In addition, NNTargetProp is still sub-optimal than
NNBackProp and mGBDT achieved highest accuracy among all. We also examined the effect when
we vary the number of intermediate layers on protein datasets. To make the experiments manageable,
the dimension for each intermediate layer is fixed to be 16. The results are summarized in Table 2.
It can be shown that mGBDT is more robust compared with NNTargetProp as we increase the
intermediate layers. Indeed, the performance dropped from .5964 to .3654 when using target-prop
for neural networks whereas mGBDT can still perform well when adding extra layers.
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(a) Training loss (b) Training accuracy

(c) Testing loss (d) Testing accuracy

Figure 8: Learning curves of protein dataset

Table 2: Test accuracy with different model structure. Accuracy measured by 10-fold cross-validation
shown in mean ± std. N/A stands for not applicable.

Model Structure NNBackProp NNTargetProp mGBDT
8->10 .5873 ± .0396 N/A .5937 ± .0324
8->16->10 .5803 ± .0316 .5964 ± .0343 .6160 ± .0323
8->16->16->10 .5907 ± .0268 .5756 ± .0465 .5948 ± .0268
8->16->16->16->10 .5901 ± .0270 .4759 ± .0429 .5897 ± .0312
8->16->16->16->16->10 .5768 ± .0286 .3654 ± .0452 .5782 ± .0229

5 Conclusion and Future Explorations

In this paper, we present a novel multi-layered GBDT forest (mGBDT) with explicit representation
learning ability that can be jointly trained with a variant of target propagation. Due to the excellent
performance of tree ensembles, this approach is of great potentials in many application areas where
neural networks are not the best fit. The work also showed that, to obtain a multi-layered distributed
representations is not tired to differentiable systems. Theoretical justifications, as well as experimental
results confirmed the effectiveness of this approach. Here we list some aspects for future explorations.

Deep Forest Integration. One important feature of the deep forest model proposed in [Zhou and
Feng, 2018] is that the model complexity can be adaptively determined according to the input
data. Therefore, it is interesting to integrating several mGBDT layers as feature extractor into the
deep forest structure to make the system not only capable of learning representations but also can
automatically determine its model complexity.

Structural Variants and Hybird DNN. A recurrent or even convolutional structure using mGBDT
layers as building blocks are now possible since the training method does not making restrictions
on such structural priors. Some more radical design is possible. For instance, one can embed the
mGBDT forest as one or several layers into any complex differentiable system and use mGBDT
layers to handle tasks that are best suitable for trees. The whole system can be jointly trained with a
mixture of different training methods across different layers. Nevertheless, there are plenty of room
for future explorations.
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