

1. Introduction & Motivation

This paper focuses on improving the worst-case accuracy of few-shot learning. To accomplish this goal, we propose two strategies, i.e., stability regularization (SR) and adaptability calibration (AC) from the perspective of biasvariance tradeoff.

Key idea

> We aim to boost the worst-case accuracy of few-shot learning.

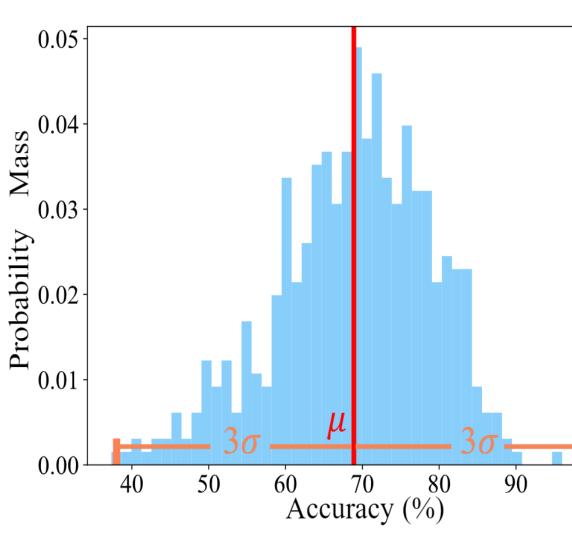
Why worst-case accuracy?

 Current criterion: Average accuracy and 95% confidence interval over many episodes.

A high average accuracy does not necessarily mean a high worst-case accuracy.

Method	$\left \operatorname{ACC}_{m} \right $	$Z_{95\%}$	σ	ACC ₁	ACC_{10}
Negative-Cosine [21]	61.72	0.81	10.12	24.27	36.13
MixtFSL $[2]$	64.31	0.79	9.87	30.67	35.07
$S2M2_R$ [23]	64.93	0.18	9.18	37.58	42.87
PT+NCM [16]	65.35	0.20	10.20	32.00	38.13
CGCS [11]	67.02	0.20	10.20	38.70	44.00
LR-DC [36]	68.57	0.55	10.28^{\flat}	37.33	42.72

- Few-shot learning is very unstable. The worst-case lags far behind the average.
- In real-world applications, worst-case accuracy is very $\vec{-}$ important.



Worst Case Matters for Few-Shot Recognition

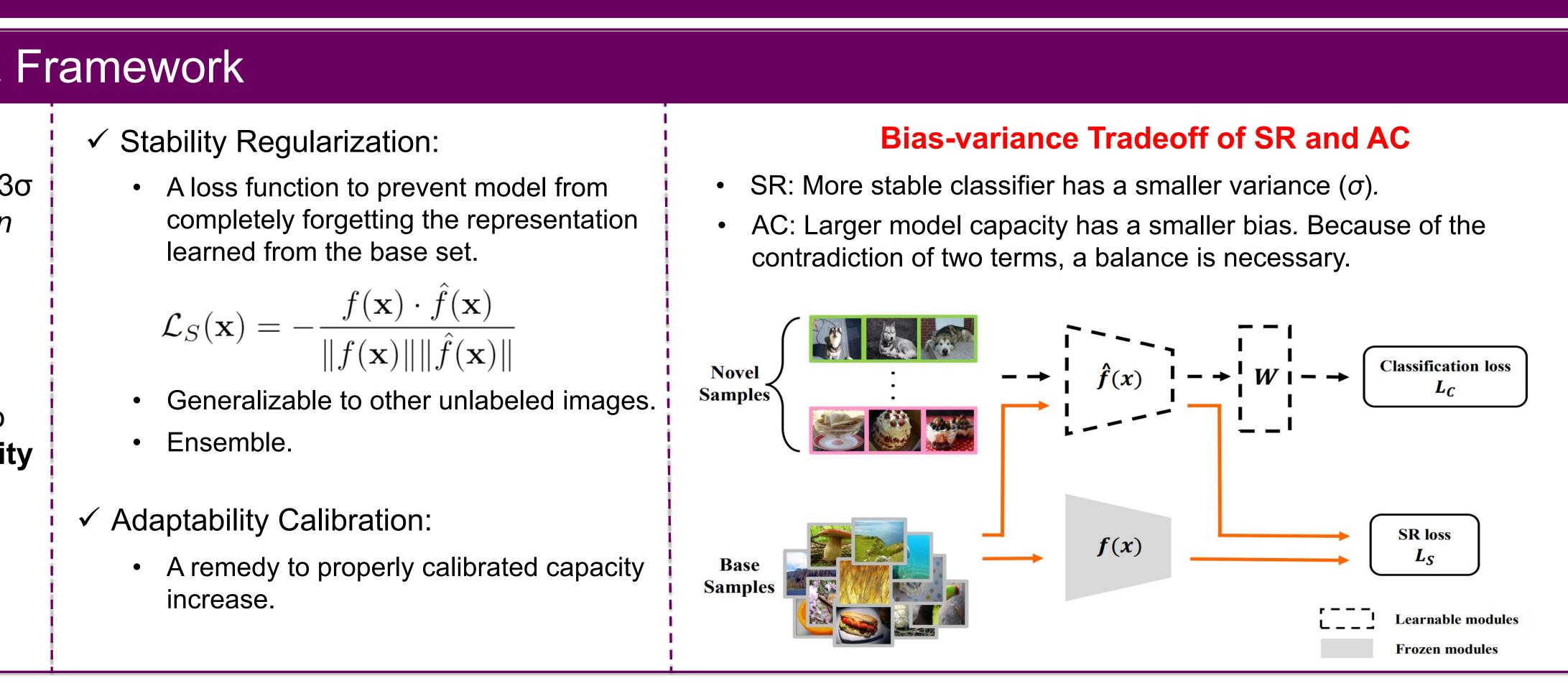
Minghao Fu, Yun-Hao Cao, Jianxin Wu* State Key Laboratory for Novel Software Technology, Nanjing University fumh@lamda.nju.edu.cn, caoyh@lamda.nju.edu.cn, wujx2001@gmail.com

2. Surrogate of worst-case accuracy & Framework

- The accuracy distribution often fits well to a Gaussian. The worst-case accuracy is naturally estimated by the 3σ rule as $\mu - 3\sigma$. Therefore we propose *maximizing mean* accuracy μ and minimizing standard deviation σ simultaneously.
- Since directly optimizing σ is not plausible, according to bias-variance decomposition theory, we propose stability regularization (SR) with model ensemble to reduce variance, and adaptability calibration (AC) to reduce bias.

3. Experiments

	State-of									i
Dataset	Method	$\left ACC_1 \right $	1-s $\mu - 3\sigma$	$\operatorname{hot}_{\sigma}$	ACC_m	$ ACC_1 $	5-sh $\mu - 3\sigma$	$\mathrm{ot} \sigma$	ACC_m	W_{5}
	$ ProtoNet^{\dagger} [29] $	19.76	23.41	10.25	54.16	43.74	49.32	8.12	73.68	
	Transductive-FT [7]	24.00	32.82	10.97	65.73	50.67	53.23	8.39	78.40	v
	Negative-Cosine [21]	24.27	31.36	10.12	61.72	53.30	61.18	6.87	81.79	
	MixtFSL [2]	30.67	34.70	9.87	64.31	46.67	59.16	7.50	81.66	
	PT+NCM [16]	32.00	34.75	10.20	65.35	56.00	63.98	6.63	83.87	
nini-ImageNet	LR-DC [36]	37.33	37.73	10.28	68.57	60.52	63.02	6.62	82.88	i v v
	$S2M2_{R}$ [23]	37.58	37.39	9.18	64.93	58.66	66.35	5.61	83.18	
	CGCS [11]	38.70	36.42	10.20	67.02	49.30	60.90	7.14	82.32	I
	AC+SR (ours)	40.52	40.25	9.71	69.38	63.20	66.46	6.47	85.87	• F
	AC+EnSR (ours)	40.52	40.67	9.64	69.59	63.48	66.71	6.42	85.97	
	ProtoNet [†] [29]	28.00	39.99	11.00	72.99	53.33	67.53	6.37	86.64	
	Negative-Cosine [21]	36.00	40.80	10.62	72.66	70.70	73.29	5.37	89.40	1
	PT+NCM [16]	40.00	49.97	10.20	80.57	69.33	75.85	5.10	91.15	
	MixtFSL [2]	40.00	32.69	13.75	73.94	57.33	67.26	6.25	86.01	D_{sr}
CUB	LR-DC [36]	44.00	49.74	9.94	79.56	68.80	75.49	5.06	90.67	
COD	CGCS [11]	50.67	42.53	10.71	74.66	57.33	70.01	6.12	88.37	· · ·
	$S2M2_R$ [23]	52.00	50.32	10.12	80.68	73.86	74.35	5.50	90.85	mini
	AC+SR (ours)	52.78	58.44	8.90	85.14	76.00	81.85	4.19	94.42	CUB
	AC+EnSR (ours)	53.04	58.84	8.86	85.42	77.58	82.14	4.13	94.53	
	thod performs							ge a	ccuracy.	Cars DTE Pets Flow CIFA



4. Cont

Results for different degree of AC											
7	$\begin{bmatrix} AC \\ 5 & 4 & 3 & 2+1 \end{bmatrix}$	ACC	σ	1-sho	ot ACC10	ACC100	ACC	σ	5-sho	ot ACC10	ACC100
/	•					45.05	•				

59.53	9.99	30.42	35.09	45.05	73.61	8.16	44.54	50.16	61.36
62.76	10.16	32.78	37.55	47.84	79.23	7.62	46.14	56.96	67.91
62.77	10.38	30.12	35.44	47.46	79.91	7.54	45.60	57.84	68.77
62.80	10.50	22.96	34.93	47.27	80.04	7.57	45.58	57.74	68.85
62.19	10.50	25.60	35.29	46.68	79.87	7.58	48.00	57.41	68.67

Fine-tuning W+ 'res5' is the AC strategy used in our method.

Generalize SR to other data

	$\left ACC_{m} \right $	σ	ACC_1	ACC_{10}	ACC_{100}
	60.09	10.13	25.60	34.55	45.24
nageNet	62.33	10.27	32.00	37.03	47.36
B 4]	60.66	9.99	30.14	36.43	46.29
8]	61.05	10.29	30.94	36.64	46.20
5]	61.99	10.23	31.20	36.75	47.23
5]	61.57	9.95	32.00	36.62	47.27
[24]	61.03	10.07	32.26	36.51	46.37
-100 [19]	60.47	10.04	30.68	36.69	46.02

Don't require images used in SR to be visually similar or semantically correlated to support samples.

• SR is consistently useful.

tributions & Conclusions

 \checkmark We are the first to emphasize the importance and to advocate the adoption of worst case accuracy in fewshot learning.

 \checkmark We argue that in addition to maximizing the average accuracy µ, we must also **simultaneously** reduce the standard deviation σ .

✓ We propose stability regularization (SR) with model ensemble and adaptability calibration (AC) strategies from the perspective of bias-variance tradeoff.

✓ Our method shows superior results compared to current state-of-the-art methods in terms of not only average, but also worst-case accuracy.