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Abstract. Few-shot recognition learns a recognition model with very
few (e.g., 1 or 5) images per category, and current few-shot learning
methods focus on improving the average accuracy over many episodes.
We argue that in real-world applications we may often only try one
episode instead of many, and hence maximizing the worst-case accuracy
is more important than maximizing the average accuracy. We empiri-
cally show that a high average accuracy not necessarily means a high
worst-case accuracy. Since this objective is not accessible, we propose to
reduce the standard deviation and increase the average accuracy simulta-
neously. In turn, we devise two strategies from the bias-variance tradeoff
perspective to implicitly reach this goal: a simple yet effective stability
regularization (SR) loss together with model ensemble to reduce variance
during fine-tuning, and an adaptability calibration mechanism to reduce
the bias. Extensive experiments on benchmark datasets demonstrate the
effectiveness of the proposed strategies, which outperforms current state-
of-the-art methods with a significant margin in terms of not only average,
but also worst-case accuracy.

1 Introduction

Most people have the ability to learn to recognize new patterns via one or a few
samples (e.g., images), thanks to the accumulated knowledge. Naturally, few-
shot learning [35] aims at learning from scarce data, which is already studied
long before the deep learning era. In this paper, we focus on the image recogni-
tion task, also known as few-shot image classification, a widely studied few-shot
task [33,29,9,30,5,21,1,23,7,2,36]. Deep learning techniques have further pushed
few-shot learning’s average accuracy over multiple runs (i.e., episodes) towards
a high level that appears to be already applicable to real-world applications.

In this task, a pretrained model is first derived from the base set, a large
set of labeled images. Then, given some unseen categories and very few training
images per category (the novel set), the model must learn to adapt to classifying
new examples from these novel categories. Differently sampled novel sets lead
to different episodes, different trained models and test accuracies. The common
evaluation criterion is to run a large number of (usually 500 to 10000) episodes for
the same task, and report the average accuracy and its 95% confidence interval.
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Fig. 1. Distribution of accuracy rates of 500 episodes in our experiments, with 5-way
1-shot experiments of the LR-DC [36] method on mini-ImageNet. Best viewed in color.

We aim at making few-shot recognition more practical, too. But, we argue
that both metrics (mean accuracy and 95% confidence interval) are not helping
us towards reaching this goal, given the recent progress in this task. Fig. 1 shows
the distribution of accuracy of 500 episodes for the same task, whose average
accuracy estimate is 68.96% and the 95% confidence interval is [68.07, 69.85]—
this interval has 95% chance of the true average accuracy landing on it, not
the chance of a single episode’s accuracy dropping inside! In other words, both
metrics are used to describe the mean accuracy of 500 episodes, not the accuracy
of a single experiment.

In fact, the worst episode among these 500 in Fig. 1 has only 37.33% accuracy
while that of the best is close to 100%. That is, few-shot learning is very unstable,
and the accuracy varies dramatically. The worst-case lags far behind the average.

Furthermore, now that we aim at making few-shot learning practical, we
have to accept that in most real-world applications, we can run the experiment
only once, but do not have the luxury of running 500 (or more) experiments and
pick the best or average episode among them. In other words, the worst-case
scenario (if one is unlucky) is naturally more important than the average case—
in commercial applications, we welcome a product with an acceptable worst-case
performance more than one that performs well on average but occasionally goes
calamitous. We argue that we need to pay attention to one episode instead of
the average of 500 episodes, and to maximize the worst case’s accuracy instead
of the mean.

But, it is in general very challenging to explicitly optimize the worst-case
scenario even when there are many training examples, let alone in the few-shot
setting. We propose an alternative, indirect line of attack. As shown in Fig. 1,
the accuracy distribution often fits well to a Gaussian. Then, the worst-case
accuracy is naturally estimated by the 3σ rule as µ− 3σ, where µ is the average
accuracy and σ is the accuracy’s standard deviation—in a normal distribution,
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the chance to fall on the left of µ − 3σ is only 0.135%. Fig. 1 clearly supports
this approximation. In other words, we do need to increase the mean accuracy µ
(as in current methods), but also need to simultaneously minimize the standard
deviation σ.

Unfortunately, directly optimizing σ is not plausible, because it involves dif-
ferent episodes and different models, which is beyond the capability of end-to-end
deep learning. To tackle this issue, we propose to resort to the bias-variance de-
composition theory [14], which states that the expected error (1−µ) is the sum
of squared bias plus variance (σ2). From this classic theory, we know that stable
learning machines lead to small σ, and hence propose a novel stability regulariza-
tion (SR) to utilize the base set to achieve stability. We also incorporate model
ensemble, because it is well-known for its effect of reducing both bias and vari-
ance. Similarly, this theory also states that a model with larger capacity often
lead to smaller bias, hence we propose an adaptability calibration (AC) strategy
to properly increase the model capacity without overfitting, so as to indirectly
reduce the bias and to increase the average accuracy µ in turn.

Our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to emphasize the importance
and to advocate the adoption of worst case accuracy in few-shot learning.

2. Motivated by Fig. 1, we argue that in addition to maximizing the average
accuracy µ, we must also simultaneously reduce the standard deviation σ.

3. We propose to achieve this goal from the bias-variance tradeoff perspective.
We propose a simple yet effective stability regularization (SR) loss together
with model ensemble to reduce variance during fine-tuning. The SR loss is
computed in an unsupervised fashion, and can be easily generalized to data
beyond the base set. We also propose adaptability calibration (AC) to vary
the number of learnable parameters to reduce bias.

As a result, our method not only achieves higher average accuracy than cur-
rent state-of-the-art methods, but more importantly enjoys significantly higher
worst case accuracy on benchmark few-shot recognition datasets.

2 Related Work

Generalizing from base categories, few-shot learning aims at designing effective
recognition systems with limited training data from novel categories. Current
few-shot learning research can be roughly divided into two branches: those based
on meta learning and those based on transfer learning. We now give a brief
introduction of representative methods within both branches. Besides, since we
propose using the ensemble technique for better regularizing the model stability,
model ensemble methods in few-shot problems will be discussed as well.

Meta learning. This line of methods model the training process of few-shot
learning by pretending the episodes (which are usually large in quantity) are
to be learned in a way of “learning to learn”. One line of work [9,20,22,28,10]
learns a set of good initial weights to fast adapt to unseen episodes with a limited
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number of gradient descent steps. Another line of work [29,30,33,4,17] leverages
the characteristics of different distance metrics to classify unknown samples by
comparing with embeddings or their variants (e.g., prototypes) derived from the
training examples.

Transfer learning. These methods [5,13,3,12,8,21,1,23,7,2,16,36] take ad-
vantage of the standard transfer learning pipeline, which first pretrain a model on
base classes, then revise the feature embeddings output by the pretrained model
with limited novel samples. [5] used cosine classifier to normalize the magnitude
of both embeddings and classification weights for compacting the intra-class in-
tensity. [12] proposed to pretrain with self-supervised auxiliary tasks for boosting
few-shot learning. [21] introduced a negative margin loss during pretraining to
increase the discriminability of features. [1] used the associative alignment strat-
egy to learn novel features by aligning them with closely related samples from
the base set. [23] explored the way to pretrain with manifold mixup [32] for
good generalization. [7] proposed a baseline for transductive fine-tuning with
novel samples. [16] introduced a new pipeline, which first preprocessed features,
then classified them with an optimal-transport inspired algorithm. [36] adjusted
novel distributions using base categories to generate imaginary training samples.

Model ensemble. It is a well-known strategy [14] to incorporate a number of
weak models to build a strong model, which will effectively increase the stability
and robustness during inference. Very recently, for the few-shot classification
problem, [8] harmonized the cooperation and diversity between deep models to
pursue better ensemble performance. E3BM [22] tackled few-shot problems with
the ensemble of epoch-wise base-learners whose hyper-parameters were generated
by task-specific information. Different from these methods, our ensemble stability
regularization directly increases the diversity of deep models by dealing with
different parts of data from the base set, keeping simplicity while achieving
superior performance.

3 The Worst-case Accuracy and Its surrogate

We first give some background information about how a few-shot problem is
defined, then describe the relationship between the commonly used 95% confi-
dence interval and the standard deviation (σ). Lastly, our solution that advocates
indirectly optimizing for the worst-case will be presented.

In the few-shot recognition setting, there exists a dataset with abundant
labeled images called the base set, denoted as Db = {xb

i , y
b
i }

Nb
i=1, where xb

i ∈ RD

is the i-th training image, ybi ∈ Yb is its corresponding category label, and Nb

is the number of examples. In addition, there also exists another dataset with
scarce labeled images from new categories (usually 1 or 5 per category) called the
novel set, denoted as Dn = {xn

j , y
n
j }

Nn
j=1, where ynj ∈ Yn and Yb ∩ Yn = ∅, with

Nn being the number of examples it contains. In every episode, N categories
will be sampled to constitute the novel set, and K examples will be sampled
from each of those categories (called N -way K-shot). Learned with this tiny set
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Table 1. 5-way 1-shot recognition results of existing methods on mini-ImageNet (500
episodes). ♭ means that σ is calculated by our implementation due to undisclosed n
in published papers. ACCm, ACC1 and ACC10: higher is better; Z95% and σ: lower is
better. The best results are shown in boldface.

Method ACCm Z95% σ ACC1 ACC10

Negative-Cosine [21] 61.72 0.81 10.12 24.27 36.13
MixtFSL [2] 64.31 0.79 9.87 30.67 35.07
S2M2R [23] 64.93 0.18 9.18 37.58 42.87
PT+NCM [16] 65.35 0.20 10.20 32.00 38.13
CGCS [11] 67.02 0.20 10.20 38.70 44.00

LR-DC [36] 68.57 0.55 10.28♭ 37.33 42.72

of images (and optionally Db), a few-shot recognizer needs to recognize unseen
examples from the N categories in this episode.

3.1 Existing and Proposed Metrics

Existing methods evaluate their performance by averaging the accuracy of n
episodes, including the average accuracy µ and a 95% confidence interval [µ −
Z95%, µ+ Z95%]. As aforementioned, both metrics are estimates for the average
accuracy random variable, not estimating the accuracy of one episode. Hence,
the interval radius Z95% is often surprisingly small, as shown in Table 1.

As established in Sec. 1, we need to focus more on the worst-case accuracy
among all n episodes, which is denoted as ACC1. In addition, we also report
the average accuracy of the 10 worst cases as ACC10. The empirical average
accuracy is denoted as ACCm. Although it is a general trend that ACCm and
ACC1 are positively correlated, the 6 methods rank significantly differently using
ACCm and ACC1. For example, S2M2R is 3.64% lower than LR-DC in terms of
µ (ACCm), but 0.25% higher in ACC1 (worst-case accuracy). That is, although
maximizing µ is useful, it is far from being enough. We argue that for few-shot
recognition to be practically usable, we need to maximize ACC1 instead.

The Z95% metric is also misleading, as it measures uncertainty in estimating
µ. In fact, based on its definition, we have

σ = Z95% ·
√
n

1.96
, (1)

where σ is the standard deviation of accuracy across episodes. Hence, a small
Z95% may well be because n is large (e.g., n = 10000), instead of due to a small
σ, which is illustrated clearly in Table 1. For example, MixtFSL has almost 3x
larger Z95% than that of CGCS, but has a smaller σ within the pair. And different
papers often use different n values, which renders Z95% difficult to interpret.

Furthermore, the proposed worst-case accuracy ACC1 is not only semanti-
cally more meaningful than ACCm (µ), but also more stable. We use ACCk to
denote the average accuracy of the k worst episodes. Results in Table 1 exhibits
that ACC1 and ACC10 ranks the methods consistently.
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3.2 Implicitly Optimizing the Worst-Case Accuracy

As briefly introduced in Sec. 1, we can only implicitly maximize ACC1, and we
propose to use µ− 3σ as a surrogate. As empirically shown in Fig. 1, when the
accuracy distributes as a Gaussian, µ − 3σ is a perfect surrogate, as it pins to
the 0.135-th percentile of ACC1, because Φ(−3) = 0.00135 in which Φ is the
cumulative distribution function of the standard normal distribution N(0, 1).
Even if the accuracy distribution is highly non-normal (which empirical data
suggests otherwise), the one-sided Chebyshev inequality also guarantees that
µ− 3σ is no larger than the 10th percentile (i.e., no better than the 10% worst
cases), because the inequality states that Pr(X ≤ µ − kσ) ≤ 1

1+k2 for any
distribution X and any k > 0, while k = 3 in our case.

But, this surrogate loss is still a qualitative one instead of a variable that can
be directly maximized, because σ non-linearly involves all n episodes, including
the n models and the n training sets. Hence, we transform our objective to
simultaneously maximize µ and minimize σ, and propose to use the bias-variance
tradeoff for achieving both objectives indirectly.

3.3 The Bias-Variance Tradeoff in the Few-Shot Scenario

The bias-variance decomposition states that the expectation of error rate (i.e.,
1 − µ) equals the sum of the squared bias and the variance [14].1 Although
the definitions for bias and variance of a classifier are not unique, the following
qualitative properties are commonly agreed upon [14]:

1. A classifier has large variance if it is unstable (small changes in the input
cause large changes in the prediction), and vice versa; Hence, we expect a
smaller σ (equivalently, variance) if we make the recognizer more stable.

2. A classifier with larger capacity (e.g., more learnable weights) in general has
a smaller bias, and vice versa. Hence, we prefer a model with larger capacity
to reduce the bias.

3. Although minimizing both bias and variance simultaneously amounts to
maximizing the expected accuracy, the two terms are often contradictory to
each other. Larger models are more prone to overfitting and in turn larger
variance, too. Hence, a properly calibrated capacity increase is necessary to
strike a balance.

3.4 Reducing Variance: Stability Regularization

To fulfill these goals, our framework (cf. Fig. 2) follows the common practice
to train a backbone network f(x) (its classification head discarded) using the
base set Db. Then, in one episode, a N -way K-shot training set is sampled as the
novel set Dn to fine-tune the backbone (with a randomly initialized classification

head W ) into f̂(x) using a usual cross entropy classification loss LC .

1 Here µ is the population mean, but we also use the same notation for sample mean.
They can be easily distinguished by the context.
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Fig. 2. The proposed few-shot recognition framework. A backbone network f(x) is
trained using the base set samples and its classification head is discarded. Using images
from the novel set, the backbone is fine-tuned into f̂(x), plus a new classification head
W . Stability of f̂(x) is maintained by the stability regularization (SR) loss LS , while the
capacity increase (adaptability) is calibrated by fine-tuning a selected subset of layers
in the backbone f̂(x). The classification loss LC minimizes error (i.e., to increase the
average accuracy µ). Best viewed in color.

The danger is: becauseK is very small (mostly 1 or 5), the fine-tuning process
easily gets overfit and is extremely unstable—different sampled training sets lead
to dramatically different prediction accuracy. To increase the stability (and thus

to reduce the variance σ2), we must not allow the weights in f̂(x) to be dominated
by the small novel training set and completely forget the representation learned
from the base set, i.e., the knowledge in f(x).

Because the base classification head has been discarded, the stability is reg-
ularized by requiring the original learned representation (f(x) for an input x)

and the fine-tuned representation (f̂(x) for the same input) to remain similar
to each other, or at least not to deviate dramatically. A simple negative cosine
similarity loss function realizes this stability requirement:

LS(x) = − f(x) · f̂(x)
∥f(x)∥∥f̂(x)∥

. (2)

In order to avoid overfitting, the x in our stability regularization (SR) loss is not
sampled from the novel set. In each mini-batch, we randomly sample 256 images
from the base set with replacement to calculate LS and back-propagate to f̂(x)

(but f(x) is frozen). The proposed SR loss is minimized if f̂(x) and f(x) are the

same (modulo a scale factor), which makes f̂(x) produce similar representations
to f(x) for all base set images, hence we can expect that it will be stable given
different training sets sampled from the novel split.

It is worth noting that the proposed SR loss is very flexible since only unla-
beled images are required to compute the loss. Hence, it can be easily extended
to use other unlabeled images. Results on using images from other than the base
or novel set are presented in Sec. 4.4.
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Fig. 3. Results of 5-way accuracy on mini-ImageNet w.r.t. the number of learnable
blocks using the ResNet backbone [15]. The left-most column means only W is learn-
able. The column ‘5’ means W plus the ‘res5’ group in ResNet are learnable, etc. The
whole backbone together with W are updated at the right-most column ‘2+1’.

The other loss function LC in Fig. 2 is a regular cross entropy loss, which
aims at maximizing the average accuracy µ. Hence, the overall objective is L =
LC + α · LS , where α is always 0.1 in all experiments.

3.5 Reducing Bias: Adaptability Calibration

As aforementioned, to reduce the bias, we adjust the capacity of our model. In
many few-shot learning methods [21,2,36,29,16], either the features extracted
by the backbone f(x) are directly used, or the backbone is freezed during fine-

tuning. In other words, f̂(x) ≡ f(x) and the capacity of the model is only
determined by the linear classification head W (or its alike), which has very low
capacity, and in turn leads to high bias according to the bias-variance tradeoff.
Other methods [7] fine-tune the entire backbone network, i.e., all parameters in

the backbone f(x) are learnable and f̂(x) is completely different from f(x). Such
a high capacity model inevitably leads to overfitting and ultra high variance,
despite having a small bias. As aforementioned, we need to strike a good balance.

We propose a simple remedy called adaptability calibration (AC), which
freezes part of the layers in the backbone f(x) and fine-tune the rest layers to

form f̂(x). The less layers frozen, the higher is the model’s adaptability. The
calibration is experimentally determined.

Backbone models in the ResNet [15] family have 5 groups of residual blocks,
denoted as ‘res1’ (close to the input) till ‘res5’ (close to the classification head
W ). In Fig. 3, from left to right we gradually make ‘res5’ to ‘res1’ learnable. In
the 5-shot scenario, allowing both W and ‘res5’ updatable in fact consistently
strikes the best tradeoff between bias and variance. However, in the difficult
1-shot case, only learning W seems to be the best while W+‘res5’ is the runner-
up. Hence, considering both cases, our adaptability calibration chooses to update
both W and ‘res5’ (the column ‘5’ in Fig. 3).
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3.6 Reducing both Variance and Bias: Model Ensemble

It is well-known that model ensemble is an effective way in reducing both the
variance and the bias of a classifier system [38], and hence it is potentially useful
for our task. Diversity among models in the ensemble (i.e., models need to predict
differently for the same input) is crucial to the success of ensemble learning,
while diversity is often obtained by sampling different training sets (or example
weights) for different models on the same task (e.g., in one episode of few-shot
learning).

However, the sampled novel sets for fine-tuning few-shot recognizers are so
small that it leaves almost no space for sampling training sets once more for
ensemble learning (e.g., consider a 1-shot task). With the proposed stability
regularization and its inclusion of the base set Db, ensemble learning becomes
possible and natural.

We randomly divide the base set Db into M = 4 disjoint subsets, Dm
b

(m = 1, 2, 3, 4). Then we train M few-shot recognizers for one episode, each
trained with the sampled novel set and stability regularized by one Dm

b . During
inference, the classification probabilities output by these M models are averaged
to generate recognition results of the ensemble model.

4 Experiments

4.1 Implementation Details

Datasets. We evaluate the proposed method on three benchmark datasets,
which are mini -ImageNet [33], CUB-200-2011 (CUB) [34] and CIFAR-FS [4].
mini -ImageNet consists of 100 categories randomly selected from the ImageNet
dataset [27] with each category containing 600 images sized 84×84. Follow-
ing [26], it is further split to 64 base, 16 validation and 20 novel categories.
CUB is composed of 200 classes (11,788 images) with size of 84×84, which is
split into 100 base, 50 validation and 50 novel categories. CIFAR-FS is produced
by arbitrarily dividing CIFAR-100 [19] into 64 base, 16 validation and 20 novel
classes. There are 600 images with size of 32×32 pixels within each class.

Training Details. To validate the effectiveness of the proposed method, we
take WRN-28-10 [37] or models in the ResNet series [15] as the backbone f(x),
and the cosine classifier used in [5] as the classification head W . We follow [23] to

conduct pretraining. At the fine-tuning stage, we train f̂(x) and W by adapting
the pretrained model f(x) to novel categories. For each few-shot episode, the
sampled novel set is used to fine-tune the model for 100 epochs with the label
smoothed cross-entropy loss [31] (ϵ=0.1), by using SGD with learning rate 0.1,
weight decay 1e-4 and momentum 0.9.

Evaluation Protocols. We conduct evaluation in the form of N -way K-
shot Q-query, where firstly N categories from the novel split of different datasets
are selected arbitrarily, then mutually exclusive K and Q samples of each cate-
gory are further chosen in the same manner, respectively. The N ×K samples
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Table 2. 5-way accuracy (%) on mini-ImageNet, CUB and CIFAR-FS with WRN-28-
10 as the backbone. ACCm is the average accuracy copied from published papers if not
otherwise noted.

Dataset Method
1-shot 5-shot

ACCm ACC1 ACC10 ACC100 ACCm ACC1 ACC10 ACC100

mini-ImageNet

ProtoNet† [29] 54.16 19.76 26.08 37.62 73.68 43.74 49.78 59.46
Negative-Cosine [21] 61.72 24.27 36.13 46.92 81.79 53.30 58.12 68.86
MixtFSL [2] 64.31 30.67 35.07 46.68 81.66 46.67 60.13 71.23
S2M2R [23] 64.93 37.58 42.87 53.40 83.18 58.66 66.21 74.73
PT+NCM [16] 65.35 32.00 38.13 48.41 83.87 56.00 64.00 73.89
Transductive-FT [7] 65.73 24.00 33.73 47.60 78.40 50.67 53.73 63.09
CGCS [11] 67.02 38.70 44.00 53.50 82.32 49.30 56.30 67.30
LR-DC [36] 68.57 37.33 42.72 53.54 82.88 60.52 64.98 74.24
AC+SR (ours) 69.38 40.52 44.51 54.97 85.87 63.20 66.51 76.28
AC+EnSR (ours) 69.59 40.52 44.94 55.32 85.97 63.48 66.74 76.40

CUB

Negative-Cosine [21] 72.66 36.00 42.20 55.22 89.40 70.70 72.69 79.51

ProtoNet† [29] 72.99 28.00 35.14 47.90 86.64 53.33 60.65 70.20
MixtFSL [2] 73.94 40.00 44.93 55.76 86.01 57.33 66.40 76.65
CGCS [11] 74.66 50.67 56.00 68.59 88.37 57.33 63.33 72.76
LR-DC [36] 79.56 44.00 54.80 66.52 90.67 68.80 76.16 84.30
PT+NCM [16] 80.57 40.00 52.67 65.83 91.15 69.33 76.13 84.67
S2M2R [23] 80.68 52.00 56.56 69.70 90.85 73.86 77.72 85.47
AC+SR (ours) 85.14 52.78 57.46 71.31 94.42 76.00 80.83 87.76
AC+EnSR (ours) 85.42 53.04 58.10 71.58 94.53 77.58 81.12 87.99

CIFAR-FS

ProtoNet♢ [29] 61.60 25.34 30.62 43.08 79.08 51.20 57.40 66.62
Inductive-FT [7] 68.72 33.33 38.40 50.32 86.11 56.00 61.47 71.73

Negative-Cosine♢ [21] 68.90 26.66 39.76 52.58 83.82 52.00 61.54 71.88

MixtFSL♢ [2] 69.42 29.33 38.53 51.51 81.05 57.33 62.40 69.19

LR-DC♢ [36] 72.52 32.26 42.08 54.72 83.92 57.60 63.30 72.48
CGCS [11] 73.00 33.33 41.33 55.53 85.80 56.00 62.13 69.16
PT+NCM [16] 74.64 34.67 42.53 56.60 87.64 54.67 62.13 71.57
S2M2R [23] 74.81 35.74 42.06 56.49 87.47 56.26 63.38 72.17
AC+SR (ours) 74.00 36.54 42.73 56.83 86.65 56.26 65.97 75.23
AC+EnSR (ours) 74.85 34.96 42.91 57.70 87.27 59.48 66.61 75.84

♢ ACCm from our implementation † ACCm from [5]

are regarded as Dn to adapt the pretrained model to these new categories, af-
terwards the model is evaluated on the N ×Q test samples. The above process
is collectively called one episode. We keep N=5, Q=15 and vary K=1 or 5 to
conduct experiments. We report the average of all (Accm), worst 1 (Acc1), av-
erage of worst 10 (Acc10), average of worst 100 (Acc100) accuracy and standard
deviation (σ) over 500 pre-sampled episodes by 5 runs then average. Specifically
for previous methods with only Accm reported, we get other results following
their official implementations. All experiments we conduct on one dataset are
based on the same 500 episodes, which makes the comparison fair.

4.2 Comparing with State-of-the-art Methods

We compare 5-way accuracy of our method with state-of-the-art methods in
Table 2. ‘AC’ and ‘SR’ stand for adaptability calibration and stability regular-
ization, respectively, and ‘EnSR’ means ensemble of SR.

The proposed method (denoted as AC+SR) outperforms existing methods
using the traditional ACCm metric by 1–5% in both 1-shot and 5-shot scenarios
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on the first two datasets, and is slightly (< 1%) worse on CIFAR-FS. When
model ensemble is used, our AC+EnSR almost consistently outperforms existing
methods.

More importantly, in the worst-case (ACC1) and near-worst case average met-
rics (ACC10, ACC100), our methods are almost consistently better, and mostly
higher by > 2% margins. In the worst-case metrics, model ensemble (AC+EnSR)
is again better than single model. And, the ranking from ACCm is significantly
different from that based on ACC1, but the ranking orders are almost consistent
among the 3 worst-case metrics. Hence, the worst-case metric is more stable than
the average accuracy metric.

4.3 Relationships: µ, σ, µ − 3σ, ACC1 and ACCm

Table 3 presents a few important evaluation metrics, including the commonly
used average accuracy ACCm (µ), the proposed worst-case accuracy ACC1 that
we advocate, the standard deviation σ, and the surrogate µ− 3σ that motivates
the proposed method.

As aforementioned, because the worst-case accuracy ACC1 is unable to be
directly modeled or optimized using few-shot samples, we alternatively resort to
the surrogate µ − 3σ inspired by the 3σ rule. This objective is again difficult
because σ is unable to be directly accessed, and we resort to the bias-variance
decomposition: reducing σ and increasing µ simultaneously.

As Table 3 shows, both µ and σ are correlated with ACC1, but not tightly
correlated. For example, S2M2R [23] often has the smallest σ, but because its µ
(ACCm) is not the most competitive, its worst-case ACC1 is significantly lower
than ours. We do need to optimize both µ and σ simultaneously.

µ − 3σ, which motivates our method, correlates better with ACC1 than σ
or µ, as Table 3 shows. However, this quantity is still far from being a perfect
surrogate. It is still a great challenge to model the worst-case ACC1 end-to-end.

4.4 Ablation Analyses

Switching backbone. Table 4 shows the results of 5-way classification on mini -
ImageNet by switching to different backbones. Our adaptability calibration (AC)
alone is sometimes harmful in the 1-shot scenario, but always beneficial for 5-
shot, which coincides well with the observations in Fig. 3.

On the other hand, the proposed stability regularization (SR) is consistently
helpful in all cases and all metrics, especially in the 1-shot case. The proposed
model ensemble method (EnSR) is almost consistently improving all evaluation
metrics on all backbone models, in particular for the difficult 1-shot scenario.

Switching pretraining methods. We further conduct experiments to ex-
plore the influence of pretraining methods on the proposed strategies. Specifi-
cally, we additionally adopt two pretraining methods from [5], denoted as Base-
line and Baseline++, respectively, for simplicity. As shown in Table 5, when
pretrained with Baseline, after applying AC and SR, ACC1 and ACC10 are in-
creased (on average by 2% in 1-shot and 1% in 5-shot), although ACCm is slightly
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Table 3. Key evaluation metrics, including the commonly used average accuracy
ACCm (µ), the proposed worst-case accuracy ACC1, the standard deviation σ, and
the surrogate µ− 3σ that motivates the proposed method.

Dataset Method
1-shot 5-shot

ACC1 µ− 3σ σ ACCm ACC1 µ− 3σ σ ACCm

mini-ImageNet

ProtoNet† [29] 19.76 23.41 10.25 54.16 43.74 49.32 8.12 73.68
Transductive-FT [7] 24.00 32.82 10.97 65.73 50.67 53.23 8.39 78.40
Negative-Cosine [21] 24.27 31.36 10.12 61.72 53.30 61.18 6.87 81.79
MixtFSL [2] 30.67 34.70 9.87 64.31 46.67 59.16 7.50 81.66
PT+NCM [16] 32.00 34.75 10.20 65.35 56.00 63.98 6.63 83.87
LR-DC [36] 37.33 37.73 10.28 68.57 60.52 63.02 6.62 82.88
S2M2R [23] 37.58 37.39 9.18 64.93 58.66 66.35 5.61 83.18
CGCS [11] 38.70 36.42 10.20 67.02 49.30 60.90 7.14 82.32
AC+SR (ours) 40.52 40.25 9.71 69.38 63.20 66.46 6.47 85.87
AC+EnSR (ours) 40.52 40.67 9.64 69.59 63.48 66.71 6.42 85.97

CUB

ProtoNet† [29] 28.00 39.99 11.00 72.99 53.33 67.53 6.37 86.64
Negative-Cosine [21] 36.00 40.80 10.62 72.66 70.70 73.29 5.37 89.40
PT+NCM [16] 40.00 49.97 10.20 80.57 69.33 75.85 5.10 91.15
MixtFSL [2] 40.00 32.69 13.75 73.94 57.33 67.26 6.25 86.01
LR-DC [36] 44.00 49.74 9.94 79.56 68.80 75.49 5.06 90.67
CGCS [11] 50.67 42.53 10.71 74.66 57.33 70.01 6.12 88.37
S2M2R [23] 52.00 50.32 10.12 80.68 73.86 74.35 5.50 90.85
AC+SR (ours) 52.78 58.44 8.90 85.14 76.00 81.85 4.19 94.42
AC+EnSR (ours) 53.04 58.84 8.86 85.42 77.58 82.14 4.13 94.53

CIFAR-FS

ProtoNet♢ [29] 25.34 23.38 12.74 61.60 51.20 53.58 8.50 79.08

Negative-Cosine♢ [21] 26.66 34.49 11.47 68.90 52.00 60.21 7.87 83.82

MixtFSL♢ [2] 29.33 33.09 12.11 69.42 57.33 56.48 8.19 81.05

LR-DC♢ [36] 32.26 36.94 11.86 72.52 57.60 60.94 7.66 83.92
Inductive-FT [7] 33.33 36.29 10.81 68.72 56.00 63.37 7.58 86.11
CGCS [11] 33.33 39.13 11.29 73.00 56.00 61.59 8.07 85.80
PT+NCM [16] 34.67 42.51 10.71 74.64 54.67 64.69 7.65 87.64
S2M2R [23] 35.74 45.74 9.69 74.81 56.26 67.58 6.63 87.47
AC+SR (ours) 36.54 39.35 11.55 74.00 56.26 64.45 7.40 86.65
AC+EnSR (ours) 34.96 40.14 11.57 74.85 59.48 65.16 7.37 87.27

♢ ACCm from our implementation † ACCm from [5]

decreased (about 0.2%). This observation not only shows our AC+SR’s effective-
ness, but also indicates that average and worst-case accuracy are not aligned in
general. With AC+EnSR, the accuracy for all metrics gains significant margins
than the naive Baseline method, in particular, 4-5% for 1-shot.

When pretraining with Baseline++, the accuracy in all cases are generally
improved by gradually deploying AC+SR or AC+EnSR, too. The proposed tech-
niques are compatible with various pretraining methods.

Calibrating adaptability differently. Table 6 shows the results by varying
the number of learnable convolutional groups in ResNet 18 to experiment with
different calibration of adaptability. First, there is a clear distinction between
the first row (W only) and other rows, indicating that it is harmful to freeze the
entire backbone and only fine-tune the classification head W .

Second, when more residual groups are made learnable, there is not a clear
winner, especially when we consider different evaluation metrics. For example,
every row in Table 6’s last 3 rows has been the champion for at least one evalua-
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Table 4. Ablation results of 5-way classification on mini-ImageNet with different back-
bones. The first row is the baseline and our AC or SR are gradually incorporated. Note
that EnSR always includes SR.

Backbone AC SR EnSR
1-shot 5-shot

ACCm σ ACC1 ACC10 ACC100 ACCm σ ACC1 ACC10 ACC100

ResNet 18

59.53 9.99 30.42 35.09 45.05 73.61 8.16 44.54 50.16 61.36

! 60.09 10.13 25.60 34.55 45.24 78.58 7.62 45.86 56.34 67.32

! ! 62.33 10.27 32.00 37.03 47.36 79.02 7.68 46.14 56.48 67.62

! ! ! 62.76 10.16 32.78 37.55 47.84 79.23 7.62 46.14 56.96 67.91

ResNet 34

59.94 9.64 30.94 35.73 46.08 74.63 7.68 45.60 52.25 63.17

! 56.76 9.81 24.56 32.09 42.51 77.58 7.54 47.48 55.54 66.38

! ! 61.42 9.87 32.54 37.17 47.00 78.59 7.43 51.46 57.76 67.43

! ! ! 61.80 9.90 33.86 37.76 47.26 78.74 7.41 51.74 58.03 67.58

ResNet 50

62.44 10.04 29.32 36.64 47.74 76.92 7.93 50.66 54.67 65.04

! 61.56 9.85 29.06 36.69 47.25 80.15 7.21 52.26 59.07 69.29

! ! 63.60 9.90 30.94 37.36 49.00 80.33 7.46 53.06 57.89 68.93

! ! ! 63.79 9.84 31.67 38.05 49.36 80.43 7.36 53.30 58.89 69.24

WRN-28-10

67.86 9.89 37.58 42.87 53.40 84.57 6.50 58.66 66.21 74.73

! 67.36 9.79 36.80 41.44 52.80 85.53 6.50 60.54 65.63 75.95

! ! 69.38 9.71 40.52 44.51 54.97 85.87 6.47 63.20 66.51 76.28

! ! ! 69.59 9.64 40.52 44.94 55.32 85.97 6.42 63.48 66.74 76.40

Table 5. Ablation results of 5-way classification on mini-ImageNet with the ResNet
18 backbone pretrained by other methods.

Pretraining Method AC SR EnSR
1-shot 5-shot

ACCm σ ACC1 ACC10 ACC100 ACCm σ ACC1 ACC10 ACC100

Baseline [5]
50.37 10.59 18.42 24.91 35.43 74.13 8.14 44.82 51.20 62.15

! ! 50.27 10.37 21.86 26.45 35.43 73.92 8.22 46.94 51.49 61.85

! ! ! 54.42 10.26 23.20 29.39 39.61 74.88 8.16 47.46 52.89 62.78

Baseline++ [5]
57.59 9.50 29.06 33.58 43.99 75.35 7.66 49.08 55.66 64.17

! ! 59.30 9.91 29.58 34.08 44.77 77.57 7.63 54.68 58.36 66.19

! ! ! 59.58 9.82 30.66 34.83 45.20 77.73 7.60 56.80 58.94 66.51

tion metric in 5-shot. But, if we consider 1-shot, it is obviously observed that the
second row (fine-tuningW+‘res5’) is significantly better. This is the adaptability
calibration we choose in our experiments.

Generalize SR to other data. Since only raw images are required to
compute the SR loss, it enjoys the flexibility to use others images (i.e., those
not from Db) for its computation (i.e., being generalizable). We use CUB [34],
Cars [18], Describable Textures (DTD) [6], Pets [25], VGG Flower (Flower) [24]
and CIFAR-100 [19] as the images to compute our stability regularization loss
when the base set is mini -ImageNet. All these images are resized to 84×84.

Results in Table 7 reveals an interesting observation. No matter what images
are used to compute the SR loss, the accuracy is consistently higher than the
baseline (AC without SR), regardless of which metric is considered. That is, the
stability regularization is indeed generalizable.

Moreover, although Db (the base set) performs the best in general, using
other images for SR computation leads to results that are on par with it. That
is, we do not require images used in this regularization to be visually similar or
semantically correlated. Our stability regularization is consistently useful.



14 M. Fu et al.

Table 6. Ablation results of 5-way classification on mini-ImageNet with ResNet 18
as the backbone by varying the number of learnable blocks (! means learnable) to
control the degree of AC. The number beneath the column AC stands for the index of
convolutional groups in ResNet 18. AC+EnSR is used in all experiments.

W
AC 1-shot 5-shot

5 4 3 2+1 ACCm σ ACC1 ACC10 ACC100 ACCm σ ACC1 ACC10 ACC100

! 59.53 9.99 30.42 35.09 45.05 73.61 8.16 44.54 50.16 61.36

! ! 62.76 10.16 32.78 37.55 47.84 79.23 7.62 46.14 56.96 67.91

! ! ! 62.77 10.38 30.12 35.44 47.46 79.91 7.54 45.60 57.84 68.77

! ! ! ! 62.80 10.50 22.96 34.93 47.27 80.04 7.57 45.58 57.74 68.85

! ! ! ! ! 62.19 10.50 25.60 35.29 46.68 79.87 7.58 48.00 57.41 68.67

Table 7. 5-way 1-shot results on mini-ImageNet by deploying AC+SR with ResNet
18 as the backbone, while the SR loss is computed with images from different datasets,
denoted as Dsr. The first row (‘−’) is the baseline with only AC, and the second row
is AC+SR, where SR uses the base set (mini-ImageNet).

Dsr ACCm σ ACC1 ACC10 ACC100

- 60.09 10.13 25.60 34.55 45.24
mini-ImageNet 62.33 10.27 32.00 37.03 47.36

CUB [34] 60.66 9.99 30.14 36.43 46.29
Cars [18] 61.05 10.29 30.94 36.64 46.20
DTD [6] 61.99 10.23 31.20 36.75 47.23
Pets [25] 61.57 9.95 32.00 36.62 47.27
Flower [24] 61.03 10.07 32.26 36.51 46.37
CIFAR-100 [19] 60.47 10.04 30.68 36.69 46.02

5 Conclusions

This paper advocated to use the worst-case accuracy in optimizing and evalu-
ating few-shot learning methods, which is a better fit to real-world applications
than the commonly used average accuracy. Worst-case accuracy, however, is
much more difficult to work on. We designed a surrogate loss inspired by the 3σ
rule, and in turn proposed two strategies to implicitly optimize this surrogate:
a stability regularization (SR) loss together with model ensemble to reduce the
variance, and an adaptability calibration (AC) to vary the number of learnable
parameters to reduce the bias.

The proposed strategies have achieved significantly higher worst-case (and
also average) accuracy than existing methods. In the future, we will design more
direct attacks to reduce the worst-case error, because the current surrogate is
not a highly accurate approximation of the worst-case performance yet.
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