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Abstract

When pre-trained models become rapidly larger, the cost
of fine-tuning on downstream tasks steadily increases, too.
To economically fine-tune these models, parameter-efficient
transfer learning (PETL) is proposed, which only tunes a
tiny subset of trainable parameters to efficiently learn qual-
ity representations. However, current PETL methods are fac-
ing the dilemma that during training the GPU memory foot-
print is not effectively reduced as trainable parameters. PETL
will likely fail, too, if the full fine-tuning encounters the out-
of-GPU-memory issue. This phenomenon happens because
trainable parameters from these methods are generally entan-
gled with the backbone, such that a lot of intermediate states
have to be stored in GPU memory for gradient propagation.
To alleviate this problem, we introduce Disentangled Trans-
fer Learning (DTL), which disentangles the trainable param-
eters from the backbone using a lightweight Compact Side
Network (CSN). By progressively extracting task-specific in-
formation with a few low-rank linear mappings and appropri-
ately adding the information back to the backbone, CSN ef-
fectively realizes knowledge transfer in various downstream
tasks. We conducted extensive experiments to validate the ef-
fectiveness of our method. The proposed method not only re-
duces a large amount of GPU memory usage and trainable
parameters, but also outperforms existing PETL methods by
a significant margin in accuracy, achieving new state-of-the-
art on several standard benchmarks.

Introduction
The pipeline of large-scale pre-training plus fine-tuning has
been popularized in various domains (Devlin et al. 2018;
Lewis et al. 2019; He et al. 2022; Caron et al. 2021). But
traditional fine-tuning can be intractable due to GPU mem-
ory or time budget (He et al. 2022), since parameters of the
entire large model have to be updated. Recently, parameter-
efficient transfer learning (PETL) is proposed to update only
a tiny subset of trainable parameters (Houlsby et al. 2019).
Because of its efficacy and the ability to prevent over-fitting,
numerous variants (Jia et al. 2022; Hu et al. 2022; Zhang,
Zhou, and Liu 2022; Lian et al. 2022; Jie and Deng 2023) of
PETL successively emerged.
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Figure 1: Top-1 accuracy on VTAB-1K (Zhai et al. 2019) vs.
different numbers of trainable parameters and GPU memory
footprint. Our DTL achieves the highest accuracy with the
least trainable parameters and GPU memory usage.

Nevertheless, a huge decrease on trainable parameters
does not necessarily mean an equivalent reduction in GPU
memory usage: the percentage of saved GPU memory is still
small (around 25%, cf. Fig. 1). Even the PETL pipeline may
still fail if a large model cannot be fine-tuned due to GPU
memory shortage. This drawback is critical and fundamen-
tal. Hence, it is critical to devise a new method that effec-
tively reduces GPU memory usage and fully explores the
utility of large-scale pre-trained models.

One common characteristic of PETL methods (Hu et al.
2022; Houlsby et al. 2019; Jia et al. 2022) is that they closely
entangle the small trainable modules with the huge frozen
backbone. As indicated by Sung, Cho, and Bansal (2022),
for a specific network parameter to be correctly updated, the
model has to cache related intermediate gradients from acti-
vation values. This entangled design makes the cache a con-
siderable part of GPU memory footprint, and thus hinders
large pre-trained models from being applied in various tasks.

To address this fundamental drawback, we propose Dis-
entangled Transfer Learning (DTL), which disentangles the
weights update from the backbone network by proposing a
lightweight Compact Side Network (CSN). DTL not only
greatly reduces GPU memory footage, but also achieves
high accuracy in knowledge transfer (cf. Fig. 1).

As shown in Fig. 2, CSN composes of several low-rank
linear mapping matrices to extract task-specific information,
which is completely disentangled from the backbone. By in-
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Figure 2: Illustration of DTL’s network architecture for ViT (Dosovitskiy et al. 2021). Our Compact Side Network (CSN) with
scarce trainable parameters is plugged in parallel to the backbone blocks. Specifically, before the forward calculation in each
block, a low-rank linear mapping (Hu et al. 2022) is applied to the input features to aggregate task-specific side information
(orange arrows). This side information is added back to the output of later backbone blocks (green arrows) for adapting back-
bone features to downstream tasks. During fine-tuning, only parameters of the CSN module and the task-specific classification
head are updated (illustrated in orange). Best viewed in color.

jecting this information back to a few later backbone blocks,
part of the intermediate features generated by pre-trained
model are adaptively calibrated to make the features more
discriminative for downstream tasks. We can also enhance
DTL to DTL+, which inserts an additional global depth-
wise separable convolution (DWConv) layer (Chollet 2017)
to gather spatial information when injecting back from CSN
to the backbone. DTL is very simple and compatible with
various backbone architectures.

The output of early blocks in the backbone (covered by
the gray region in Fig.2) is kept constant during fine-tuning,
making it possible to reuse backbone features across multi-
ple downstream tasks when the same input is provided.

We conducted extensive experiments to verify the effec-
tiveness of the proposed DTL, which achieved superior top-
1 evaluation accuracy with significantly less trainable pa-
rameters and GPU memory during fine-tuning compared to
its traditional PETL counterparts. Our contributions can be
summarized as follows:

• We analyze limitations of existing PETL methods from
the perspective of GPU memory usage, which has a crit-
ical influence on the feasibility of fine-tuning.

• Motivated by our analysis, we propose DTL, a disen-
tangled and simple framework for efficiently fine-tuning
large-scale pre-trained models with significantly less
trainable parameters and GPU memory usage.

• Extensive experiments are conducted to verify the effec-
tiveness of DTL, which outperforms existing methods
with a large margin.

Related Work
PETL adapts a large pre-trained model to downstream tasks
in a parameter-efficient fashion. Now we present some typi-
cal PETL methods in both vision and language communities.

BitFit (Ben Zaken, Goldberg, and Ravfogel 2022) fine-
tunes all bias terms in the backbone network to partially
adapt pre-trained models to downstream tasks. VPT (Jia
et al. 2022) introduces prompt-tuning, which prepends learn-
able tokens P ∈ Rl×d to patch tokens X ∈ Rn×d as

X ′ = [P,X] to act as the input of a ViT block. Jia et al.
(2022) propose two variants: 1) VPT-Shallow, which only
inserts P before the first block; and 2) VPT-Deep, where the
input of every block is concatenated with a different P . Dur-
ing fine-tuning, only P along with the classification head W
are learnable.

Adapter (Houlsby et al. 2019) fine-tunes text Transform-
ers (Vaswani et al. 2017; Devlin et al. 2018) with a bot-
tleneck architecture consisting of a down projection layer
Wdown ∈ Rd×d′

and an up projection layer Wup ∈ Rd′×d.
It’s inserted after the Multi-Head Self-Attention (MHSA)
and Feed-Forward Network (FFN). The computation is for-
mulated as X ′ = X + Θ(XWdown)Wup, where Θ is the
activation function and X is the output of MHSA or FFN.
By setting d′ ≪ d, the number of trainable parameters
({Wdown, Wup}) is limited. AdaptFormer (Chen et al. 2022)
further attaches the bottleneck to FFN in a parallel form:

X ′ = X + FFN (LN (X)) + s ·Θ(XWdown)Wup , (1)

where X is the output of MHSA, LN is layer normaliza-
tion (Ba, Kiros, and Hinton 2016) and s is a scalar factor.

SSF (Lian et al. 2022) linearly transforms the intermediate
features X of the backbone with scale γ ∈ Rd and shift
β ∈ Rd, as X ′ = γ ⊙X + β, in which ⊙ denotes element-
wise product and X comes from the output of all MHSA,
FFN and LN operations. Like other approaches, backbone
parameters are frozen while additional parameters {γ,β} are
set to be learnable during fine-tuning.

LoRA (Hu et al. 2022) decomposes the update of weights
matrix W in a linear layer with W ′ = W + ∆W . ∆W ∈
Rd×d is implemented by a low-rank approximation using
two matrices A ∈ Rd×r and B ∈ Rr×d, with ∆W = AB
and r ≪ d. Then the output after fine-tuning becomes

X ′ = XW +XAB . (2)

By integrating A and B into both query (Wq) and value (Wv)
mapping matrices in MHSA respectively, LoRA achieves
superior results over previous works.

FacT (Jie and Deng 2023) boosts the efficiency of low-
rank tuning using tensorization-decomposition to store the



update of trainable parameters, which contains two vari-
ants. The first one, termed as FacT-TT, decomposes ∆W
as ∆W = s · Σ ×2 UT ×3 V T , where U ∈ Rd×r1 ,
V ∈ Rd×r2 , Σ ∈ R12L×r1×r2 and ×i is mode-i product.
The other one, FacT-TK, further pushes the decomposition
as ∆W = s · C ×1 P

T ×2 U
T ×3 V

T , where U ∈ Rd×r2 ,
V ∈ Rd×r3 , P ∈ R12L×r1 and C ∈ Rr1×r2×r3 , respec-
tively. By setting r1, r2, r3 ≪ d, FacT is parameter-efficient.

NOAH (Zhang, Zhou, and Liu 2022) tries to free up re-
searchers from manual architecture design. They propose to
firstly train a supernet including Adapter, VPT and LoRA
modules. After that, an evolutionary algorithm is performed
to search the reduction dimensionality d′ in Adapter, prompt
length l in VPT and rank r in LoRA under the constraint on
the number of trainable parameters.

Limitations of Current PETL Methods
Suppose there is an N layer feed-forward network y =
fN (fN−1(...f1(x))), where layer i has a weight matrix Wi

and a bias term bi. We denote oi+1, zi+1 as the output
and pre-activation of layer i, respectively. Then, oi+1 =
σ(zi+1) = σ(Wioi + bi), where σ is the activation func-
tion. Sung, Cho, and Bansal (2022) shows that the gradients
back propagated from the loss L to Wi and bi are

∂L

∂Wi
=

∂L

∂oi+1
σ′
ioi ,

∂L

∂bi
=

∂L

∂oi+1
σ′
i , (3)

where σ′
i is the abbreviation of ∂oi+1/∂zi+1. Furthermore,

the term ∂L/∂oi+1 can be recursively expressed as
∂L

∂oi+1
=

∂L

∂oi+2

∂oi+2

∂zi+2

∂zi+2

∂oi+1
=

∂L

∂oi+2
σ′
i+1Wi+1 . (4)

To correctly calculate the gradients, except for parameters
from the model (in this case, Wi and bi), all corresponding
{σ′

i} in the chain rule have to be cached during fine-tuning,
which dominates the GPU memory usage.

We have introduced several representative PETL methods
in the related work section, and all these methods closely
entangle the trainable parameters with the backbone, which
hardly reduces the GPU memory usage in caching {σ′

i}.
This property shows that the GPU memory footprint cannot
be effectively reduced compared to a full fine-tuning, even
though the number of trainable parameters is very small.

To solve this fundamental difficulty, we propose a new
learning paradigm called Disentangled Transfer Learning
(DTL). The central idea of DTL is to disentangle the weight
updating of the small extra modules from the the back-
bone network (cf. Fig. 2). Therefore, the relevant σ′

i stored
for back propagation can be drastically reduced (cf. Eq. 3
and 4). In this way, DTL successfully pushes the limits
of current PETL further from not only being parameter-
efficient but also reducing the necessary GPU memory size
in fine-tuning large-scale pre-trained models.

Method
We propose a disentangled, simple and effective approach to
fine-tune large-scale pre-trained models properly. In order

to trade off the recognition accuracy and architectural com-
plexity in different environments, we introduce two variants
of our method, termed as DTL and DTL+.

DTL: Simplicity Matters
We first show the simplest version of our solution. In Fig. 2
we illustrate the pipeline of the proposed architecture for the
ViT (Dosovitskiy et al. 2021) backbone, which is mainly
built up with a Compact Side Network (CSN). CSN is
plugged into the backbone for information aggregation and
feature adaptation. Note that the proposed method is com-
patible with other types of backbones, which will be dis-
cussed soon.

Given a ViT backbone containing N blocks, the forward
calculation can be formulated as z = bN (bN−1(...b1(x))),
where bi is the i-th block, x ∈ R(n+1)×d is the input to-
kens (patch tokens plus one cls token) and z ∈ R(n+1)×d

is the output tokens, respectively. Denote zi+1 as the out-
put of bi, hence zi+1 = bi(zi) and z1 = x. Our CSN
composes of N low-rank linear transformation matrices (Hu
et al. 2022), with each being plugged into one block to ex-
tract task-specific information. Denote wi = aici ∈ Rd×d

as the weight matrix accounting for the i-th block, with
ai ∈ Rd×d′

, ci ∈ Rd′×d and d′ ≪ d, CSN progressively
gathers information from each block as

hi+1 = hi + ziwi , (5)
zi+1 = bi(zi) , (6)

where hi+1 is the output of the i-th layer of CSN (h1 = 0).
After that, starting from the M -th block, the aggregated task-
specific information hi+1 is used to adapt zi+1 to down-
stream tasks by adding it back to zi+1. Hence, when i ≥ M ,

z′i+1 = zi+1 + θ(hi+1) , (7)

where z′i+1 is the adapted output of bi and θ is the Swish ac-
tivation (Ramachandran, Zoph, and Le 2017), where θ(x) =

x
1+e−βx . To prevent z′i+1 from drastically shifting away from
zi+1 at the beginning of fine-tuning, ai is initialized follow-
ing a uniform distribution and ci is zero-initialized. To sum
up, the output from the i-th block is

z′i+1 =

{
zi+1 + θ(hi+1) if i ≥ M

zi+1 otherwise .
(8)

We find that a small d′ (2 or 4) performs fairly well, which
suggests high redundancy in the backbone features. There-
fore, in addition to keep d′ small, we use a large β (100)
in Swish (i.e., θ) to further reduce the redundancy. Conse-
quently, about half of θ(hi+1) is close to zero.

DTL+ : Effectiveness Matters
To further boost the effectiveness of the proposed method,
we append an additional global depthwise separable convo-
lution (DWConv) layer (Chollet 2017) g to each side layer
after θ is applied. The formulation of DTL+ is

z′i+1 =

{
zi+1 + g(θ(hi+1)) if i ≥ M

zi+1 otherwise .
(9)



The stride of g is set to 1 and zero-padding is used to ensure
that g does not change feature size. Note that g is shared
across different CSN layers, so that the number of trainable
parameters in g is small compared to the initial CSN, and
the whole CSN module is still lightweight. The introduction
of g makes spatial information properly processed by our
CSN module. With this operation, it’s easier for the model
to recognize new categories.

Advantages
The proposed approach has some significant advantages,
which we discuss explicitly.

Disentangled. As shown in Fig. 2, the proposed CSN is a
plugin mostly detached from the backbone, which interacts
with the backbone in a plug-and-play manner. This charac-
teristic makes our method easy to implement, and is compat-
ible with almost all backbone networks. Modern deep neural
networks are mostly divided into several intermediate stages
and the feature dimensionality within one stage is the same.
By re-initializing the hidden state of CSN hi to 0 at the be-
ginning of each stage, our method can be easily transferred
to different backbone architectures.

From the perspective of GPU memory usage, in previ-
ous methods weight update is directly entangled with the
backbone. As we have analyzed before, although the num-
ber of trainable parameters is small, they still require a lot
of GPU memory to cache many {σ′

i} for gradient propaga-
tion. Our method alleviates this issue by 1) separating the
forward pass of the backbone from CSN; and 2) only entan-
gling them at late stages (i ≥ M ). Within our framework,
no gradients are back propagated to the first M blocks in
the backbone (the gray region in Fig. 2). Hence, the number
of cached {σ′

i} is drastically reduced in CSN, resulting in a
highly efficient way to realize GPU memory reduction.

Finally, we discuss another advantage drawn from our dis-
entangled architecture: the possibility of feature reuse. Con-
sider a scenario where we need to perform different tasks on
one input image (e.g., simultaneously predict age and gen-
der for a human). We have several fine-tuned models, and
in previous methods the intermediate features zi+1 gener-
ated by these fine-tuned models are different to each other.
In other words, there is no way to share computation in the
backbone across different tasks. Therefore a standard pro-
cess is learning a group of task-specific parameters for each
task (cf. Table 1) and conducting each task individually.

Conversely, as shown in the gray region of Fig. 2, in our
DTL the intermediate features before block M remain the
same after fine-tuning, such that we can share part of the
backbone computation between different tasks.

We take the 19 datasets in VTAB-1K (Zhai et al. 2019)
to illustrate the above-described situation. We fine-tune to
obtain 19 models, and assume that we need to get all 19
classification results for the one input image using all these
19 models. The goal is to check how much speedup can
be achieved during inference. Firstly, we feed the same in-
put image into 19 different models after fine-tuning with
LoRA (Hu et al. 2022), which acts as the baseline. Then we
implement our method to simultaneously conduct 19 tasks
but with the backbone feature shared in the first 6 blocks

Method Source #unit
LoRA low-rank matrices in Wq , Wv 24
NOAH low-rank matrices, bottlenecks, prompts 36
FacT decomposed tensors 144
SSF pairs of γ, β 148
DTL low-rank matrices 12
DTL+ low-rank matrices, DWConv 13

Table 1: Statistics of number of minimal structural units
in different methods. “Source” denotes the types of mini-
mal structural units. “#unit” denotes the number of minimal
structural units in the backbone.

(by setting M = 7). Experimental results show that approx-
imately 45% inference latency is saved during inference.

Simple. Since the CSN is disentangled from the backbone
network, our method naturally shows higher simplicity com-
pared to previous methods. Since all PETL methods add var-
ious types of structural units as extra trainable parameters, to
verify the simplicity of our DTL in more detail, we compare
the number of such minimal structural units of our method
with previous methods in Table 1.

In this context, the phrase minimal structural unit means
the atomic modules inserted into the backbone network. For
example, in LoRA (Hu et al. 2022), one minimal structural
unit comprises of a pair of A and B matrices to constitute
∆W (cf. Eq. 2). Since it inserts ∆W into both Wq and Wv

for MHSA in every Transformer block, the total number of
these units is 24. It is similarly defined for other methods as
well, which include: 1) pairs of γ and β in SSF; 2) the mod-
ules to be searched in supernet and maintained in subnet in
NOAH; 3) decomposed tensors in FacT; 4) pairs of matri-
ces ai and ci in our DTL; 5) the additional global DWConv
layer in DTL+. As shown in Table 1, the proposed method
requires much fewer minimal structural units compared to
existing methods.

We notice that a previous work LST (Sung, Cho, and
Bansal 2022) also has a side network design. However, their
architecture is very complicated and requires sophisticated
techniques (Li et al. 2017) to initialize, resulting in the ex-
istence of large number of trainable parameters as shown in
Table 2 (about 50× compared to ours). As analyzed before,
we reduce the fine-tuning redundancy by setting d′ to a very
small value (2 or 4), which is far less than previous counter-
parts (e.g., 8 in LoRA and Adapter). This choice makes our
DTL not only simple in structure, but also contains much
fewer trainable parameters than other methods.

Effective. We conducted extensive experiments to ver-
ify the effectiveness of the proposed method. The results
demonstrate that our method shows superior recognition ac-
curacy across multiple architectures, achieving new state-of-
the-art on several standard benchmarks.

Experiments
We conducted thorough experiments to evaluate the pro-
posed method. First, we present results on the VTAB-
1K (Zhai et al. 2019) benchmark with two prevalent back-
bones, ViT-B/16 (Dosovitskiy et al. 2021) and Swin-B (Liu
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Traditional Fine-Tuning
Full 85.8 4.7 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 0 0.6 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
PETL methods
BitFit 0.10 2.9 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.2
VPT 0.56 4.2 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
LST 2.38 2.7 59.5 91.5 69.0 99.2 89.9 79.5 54.6 86.9 95.9 85.3 74.1 81.8 61.8 52.2 81.0 71.7 49.5 33.7 45.2 74.3
LoRA 0.29 3.0 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
AdaptFormer 0.16 2.8 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
NOAH 0.43 3.3 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5
FacT 0.07 3.9 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 75.6
SSF 0.21 4.9 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.7
DTL 0.04 1.6 69.6 94.8 71.3 99.3 91.3 83.3 56.2 87.1 96.2 86.1 75.0 82.8 64.2 48.8 81.9 93.9 53.9 34.2 47.1 76.7
DTL+ 0.05 1.7 70.4 95.1 71.5 99.4 91.8 87.5 56.8 87.7 96.6 86.9 74.7 81.6 65.1 51.3 82.3 97.2 54.9 36.0 49.3 77.7
DTL+* 0.05 3.1 74.1 94.8 71.8 99.4 91.7 90.4 57.2 87.9 96.7 87.5 74.8 81.9 64.7 51.5 81.9 93.9 54.0 35.6 50.3 77.9

Table 2: Results on the VTAB-1K benchmark with ViT-B/16 as the backbone. “#param” denotes the number of trainable
parameters. “GPU mem” specifies the peak GPU memory footprint when fine-tuning with batch size 32. ”Average” is the
group-wise average accuracy over three groups. The best results among PETL methods are in bold face.

et al. 2021). Then we verify the generalization ability of our
method on few-shot learning and domain generalization. Fi-
nally, ablation studies are conducted for further analysis.

Implementation Details
Following previous work (Lian et al. 2022; Jie and Deng
2023), we take AdamW (Loshchilov and Hutter 2019) with
cosine learning rate schedule as the optimizer. β in Swish is
fixed to 100. All pre-trained models are fine-tuned by 100
epochs with batch size 32. The rank d′ of low-rank linear
mappings in CSN is 2 for ViT and 4 for Swin-B. We set M
(cf. Eq. 8-9) of DTL and DTL+ as 7 for the ViT backbone,
which means half of the later blocks’ output is calibrated by
adding back the output from CSN. It is similarly defined for
Swin-B with half of the layers adapted as well. Note that
unlike previous methods (Zhang, Zhou, and Liu 2022; Lian
et al. 2022), except for the standard data augmentation, we
do not use any additional tricks such as mixup (Zhang et al.
2018), cutmix (Yun et al. 2019) or label smoothing (Szegedy
et al. 2016). More details are available at https://www.lamda.
nju.edu.cn/fumh/files/DTL/DTL appendix.pdf.

Experiments on VTAB-1K
Datasets. VTAB-1K was introduced by Zhai et al. (2019)
to evaluate the generalization ability of representation learn-
ing approaches. It contains diverse images from 19 different
datasets, grouped as 1) Natural images captured by standard
cameras; 2) Specialized images captured by specialist equip-
ment; and 3) Structured images generated in simulated envi-
ronments. They vary in task-specific objectives (e.g., classic
visual recognition, object counting or depth prediction) and

there are only 1,000 images in each dataset for training. It
is a challenging benchmark to evaluate PETL methods. We
report the top-1 recognition accuracy on the test set.

Baseline methods. First, two traditional fine-tuning tech-
niques are included in all experiments. One is ‘Full’, which
fine-tunes the entire pre-trained model. The other is ‘Linear’,
which only fine-tunes task-specific classification head. Sec-
ond, we choose BitFit (Ben Zaken, Goldberg, and Ravfogel
2022), VPT (Jia et al. 2022), LST (Sung, Cho, and Bansal
2022), AdaptFormer (Chen et al. 2022), LoRA (Hu et al.
2022), NOHA (Zhang, Zhou, and Liu 2022), FacT (Jie and
Deng 2023) and SSF (Lian et al. 2022) as PETL baselines.
We follow the setting in (Zhang, Zhou, and Liu 2022; Lian
et al. 2022) to report the results for a fair comparison.

In addition to DTL and DTL+ (M = 7), we further extend
DTL+ where all of the blocks are adapted (i.e., M = 1,
denoted as ‘DTL+*’).

Main results. Results on ViT-B/16 are shown in Table 2.
Our DTL shows a 1.0% gain on average accuracy compared
to the previous state-of-the-art method SSF. By integrating
a global DWConv, DTL+ further increases the average im-
provement to 2.0%. Specifically, DTL+ reaches the best top-
1 accuracy on 11 out of 19 datasets, where the improvements
compared to SSF range from 0.3% to 19.9%. Even if the
dataset ‘dSpr-Loc’ with the most significant gain of 19.9%
is removed, DTL+ is still far ahead on average accuracy of
the remaining 18 datasets and outperforms SSF by 1.3%.

DTL only introduces 0.04M trainable parameters, which
is 43% less compared to FacT. DTL+ specifies a few more
trainable parameters (+0.01M) because of the introduction
of a shared DWConv, but is still significantly less than pre-



Method #p #m Nat. Spe. Str. Avg.
Full 86.7 6.1 79.2 86.2 59.7 75.0
Linear 0 0.9 73.5 80.8 33.5 62.6
BitFit 0.20 3.7 74.2 80.1 42.4 65.6
VPT 0.16 4.6 76.8 84.5 53.4 71.6
FacT 0.14 5.6 83.1 86.9 62.1 77.4
DTL 0.09 1.5 82.4 87.0 64.2 77.9
DTL+ 0.13 1.6 82.4 86.8 66.0 78.4
DTL+* 0.14 4.0 83.2 87.0 65.7 78.6

Table 3: Results on VTAB-1K with Swin-B backbone. ‘#p’
is the number of trainable parameters. ‘#m’ is peak GPU
memory footprint in fine-tuning. Nat./Spe./Str./Avg. are the
results in three VTAB groups and their group-wise average.

vious PETL methods. Moreover, DTL and DTL+ consume
1.6GB and 1.7GB GPU memory during fine-tuning, respec-
tively, which is far less than other PETL baselines. Com-
pared to full fine-tuning, the GPU memory saving rate is
about 65% on average (or saving roughly two thirds).

Another interesting observation is DTL+ and DTL+*
show different distributions on accuracy improvements be-
tween three groups. For the ‘Natural’ group with smaller
domain discrepancy between pre-trained models and down-
stream tasks, DTL+* outperforms DTL+ by 1%. For the
‘Structured’ group with a large domain gap, DTL+ surpasses
DTL+* by 0.5% instead. This observation also appears sim-
ilarly in Table 3 on Swin-B. We thus conjecture that since
DTL+* has larger capacity than DTL+, it is prone to over-
fitting when facing large domain gaps.

We observe that DTL+* shows more improvements in
top-1 accuracy compared to DTL+, which indicates that the
feature adaptation in early blocks within backbone is, in gen-
eral, useful for transfer learning. However, the GPU memory
usage in this case is increased to 3.1 GB, yet with only 0.2%
accuracy gain compared to DTL+, implying the limited cost-
efficiency of adapting early features.

As presented in Table 3, the performance of DTL and
DTL+ on Swin-B shows similar trends with ViT. DTL+
achieves new state-of-the-art, outperforming FacT with a
significant margin of 1% on average accuracy. DTL keeps
the least trainable parameters and GPU memory footprint.
Compared to full fine-tuning, DTL drastically saves GPU
memory usage by 75%.

Experiments on Few-shot Learning
Datasets. Now we further evaluate on five fine-grained
few-shot learning benchmark: Aircraft (Maji et al. 2013),
Pets (Parkhi et al. 2012), Food-101 (Bossard, Guillaumin,
and Van Gool 2014), Cars (Krause et al. 2013) and Flow-
ers102 (Nilsback and Zisserman 2008). Following Jie and
Deng (2023), we fine-tune the pre-trained model with train-
ing set containing {1, 2, 4, 8, 16}-shot per class and report
the average accuracy on test set over 3 seeds.

Main results. As illustrated in Fig. 3, the proposed DTL
and DTL+ outperform all baseline PETL methods in all
cases. Furthermore, we observe that the average improve-
ments of DTL+ compared to previous state-of-the-art FacT

Method Source Target

ImageNet -Sketch -V2 -A -R

Adapter 70.5 16.4 59.1 5.5 22.1
VPT 70.5 18.3 58.0 4.6 23.2
LoRA 70.8 20.0 59.3 6.9 23.3
NOAH 71.5 24.8 66.1 11.9 28.5

DTL 78.3 35.4 67.8 14.0 34.4
DTL+ 78.7 35.7 67.8 14.2 34.4

Table 4: Top-1 accuracy on domain generalization experi-
ments with ViT-B/16 as the backbone. Our method shows
significant gains w.r.t baseline methods.

across different shots are gradually decreased from 4.7% in
1-shot to 0.8% in 16-shot, which reveals that our method is
consistently effective, especially in low-data regimes.

Experiments on Domain Generalization
Datasets. We follow Zhang, Zhou, and Liu (2022) to con-
duct experiments on domain generalization to evaluate the
robustness of our method when domain shift (Zhou et al.
2023) is inevitable. In this scenario, the training set to fine-
tune the pre-trained ViT-B/16 model is sampled from the
original training set of ImageNet-1K, with each class con-
taining 16 shot of images. Apart from the validation set of
ImageNet-1K, the model is evaluated on 4 datasets, which
are 1) ImageNet-Sketch (Wang et al. 2019) composed of
sketch images sharing the same label space with ImageNet-
1K, 2) ImageNet-V2 (Recht et al. 2019) collected from dif-
ferent sources compared with ImageNet-1K, 3) ImageNet-
A (Hendrycks et al. 2021b) consisting of adversarial exam-
ples, and 4) ImageNet-R (Hendrycks et al. 2021a) contain-
ing various artistic renditions of ImageNet-1K. The reported
accuracy is average by 3 different random seeds.

Main results. The results of domain generalization ex-
periments are shown in Table 4. We observe that compared
to previous state-of-the-art method NOAH, DTL and DTL+
achieve impressive gains in evaluation accuracy, especially
on ImageNet, ImageNet-Sketch and ImageNet-R, where the
average improvement is up to about 8%. These comparisons
show excellent robustness of DTL and DTL+ for alleviat-
ing the domain shift problem and well demonstrate the ef-
fectiveness of the proposed method together with previous
experiments.

Ablation Studies
Sensitivity to M . In DTL and DTL+, the beginning index
(M ) of blocks in the backbone to add back the output of
CSN for feature adaptation is critical for final performance.
In Fig. 4 we plot the curve of accuracy and GPU mem-
ory footprint by varying M . There is a clear trend that the
number of GPU memory usage decreases almost linearly
as M becomes larger. By decreasing M from 12 to 11,
the recognition accuracy is significantly boosted to 76.7%
from 75.9%, and the improvements gradually saturate when
M < 6, implying the feasibility and effectiveness of feature
sharing as we described in the methods section. Finally, the
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Figure 3: Top-1 accuracy on fine-grained few-shot benchmark with ViT-B/16 as the backbone. Best viewed in color. Note that
our approach with less trainable parameters and GPU memory footprint outperforms all baseline methods.
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Figure 4: Top-1 accuracy and peak GPU memory footprint
under various M in Eq. 9. Our method is consistently effec-
tive across different M .

d′ Swish (θ) DWConv (g) Avg.

2 76.0
2 ✓ 76.7
2 ✓ ✓ 77.7
4 ✓ ✓ 77.6
1 ✓ ✓ 77.2

Table 5: Ablation results by varying different architectural
choices, where the second and third lines denote default
DTL and DTL+, respectively.

range of accuracy across different M is 2.1%, indicating that
the recognition accuracy is not sensitive to the exact value of
M , so by default we set M = 7 to pursue the best trade-off
between effectiveness and efficiency.

Modular ablation. In Table 5, we provide ablation results
on the VTAB-1K benchmark from ViT-B/16. The first line,
where the layer-wise output of CSN with rank (d′ = 2) is
directly added back to backbone (i.e, z′i+1 = zi+1 + hi+1

when i ≥ M ), is the baseline. It achieves a 76.0% average
accuracy. By progressively integrating the Swish activation
function θ in DTL and a global DWConv g in DTL+, the
accuracy is consistently improved. For DTL+, a higher (d′ =
4) or lower (d′ = 1) rank both make the accuracy worse than
the default (d′ = 2). Interestingly even when the trainable
parameters of CSN are extremely limited with d′ = 1, our
DTL+ is still more effective than previous PETL methods.

Methods Throughput (imgs/sec)
bs=1 bs=4 bs=16

Full 161 636 952

LST 71 279 729
NOAH 79 306 798
AdaptFormer 108 436 876
DTL+ 120 469 877
DTL 131 528 892

Table 6: Throughput (number of images processed per sec-
ond with ViT-B/16 as the backbone) measured on a single
NVIDIA 3090 GPU with mixed precision inference.

Inference efficiency. We further study the efficiency of
our method during inference by comparing the throughput
with some baselines. As illustrated in Table 6, thanks to its
simplicity, the empirical throughput of DTL+ is consistently
higher than previous PETL counterparts. The simplest ver-
sion of our method, DTL, boosts the inference efficiency a
step further and significantly shows more speedup compared
to traditional PETL methods.

Conclusions and Limitations
In this paper, we proposed Disentangled Transfer Learning,
a new paradigm for fine-tuning large-scale pre-trained mod-
els. To trade off the efficiency and effectiveness, we designed
two variants, DTL and DTL+. The most important property
of DTL is, by disentangling weights update of trainable pa-
rameters from the backbone, it drastically reduces the GPU
memory footprint required during fine-tuning. At the same
time, the proposed method contains less trainable parame-
ters and achieves competitive or even better accuracy com-
pared to traditional PETL methods. Extensive experiments
on several standard benchmarks plus ablations clearly show
that our method is not only effective but also efficient for
fine-tuning, indicating its great potential for practical usage.

An obvious limitation of DTL is that its granularity of
interaction between the backbone and the trainable modules
is very coarse. This is caused by the disentangled design. In
the future, a better trade-off may be made between the two
desired properties: disentanglement and interaction.
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