

1. Introduction & Motivation

Current parameter-efficient transfer learning (PETL) methods are facing the dilemma that during training the GPU memory footprint is *not* effectively reduced as trainable parameters. PETL will likely fail, if the full fine-tuning encounters the out-of-GPU-memory issue.

Why?

Trainable parameters from these methods are generally **entangled** with the backbone.

∂L	∂L	$\partial o_{i+2} \partial z_{i+2}$	$- \frac{\partial L}{\sigma}$	' W.
$\frac{\partial O_{i+1}}{\partial O_{i+1}}$ -	$\overline{\partial o_{i+2}}$	$\overline{\partial z_{i+2}} \overline{\partial o_{i+1}}$	$-\frac{1}{\partial o_{i+2}}o_i$	$+1^{VV}i+1$

• All corresponding $\{\sigma'_i\}$ in the chain rule have to be cached during fine-tuning, which dominates the GPU memory usage.

Our Solution

- Disentangled Transfer Learning (DTL) which disentangles the trainable parameters from the backbone using a lightweight Compact Side Network (CSN) with:
 - A few low-rank linear mappings to extract information.
 - Adding information back to backbone for feature adaptation. •

DTL: Disentangled Transfer Learning for Visual Recognition

Minghao Fu, Ke Zhu, Jianxin Wu* National Key Laboratory for Novel Software Technology, Nanjing University, China School of Artificial Intelligence, Nanjing University, China fumh@lamda.nju.edu.cn, zhuk@lamda.nju.edu.cn, wujx2001@gmail.com

2. Framework: DTL & DTL+

- DTL: Simplicity Matters
 - Low rank linear transformation:

 $w_i = a_i c_i \in \mathbb{R}^{d \times d}$ $a_i \in \mathbb{R}^{d \times d'}$ $d' \ll d$ $c_i \in \mathbb{R}^{d' \times d}$

- Progressively information gathering: $h_{i+1} = h_i + z_i w_i$ $z_{i+1} = b_i(z_i)$
- Post feature adaptation:

 $z'_{i+1} = \begin{cases} z_{i+1} + \theta(h_{i+1}) & \text{if } i \ge M \\ z'_{i+1} = \begin{cases} z_{i+1} + \theta(h_{i+1}) & \text{if } i \ge M \end{cases}$ $\lfloor z_{i+1} \rfloor$ otherwise

- DTL+: Effectiveness Matters
 - append an additional global depthwise separable convolution (DWConv) layer g.

$$z'_{i+1} = \begin{cases} z_{i+1} + g(\theta) \\ z_{i+1} \end{cases}$$

✓ Disentangled

- $\{\sigma'_i\}$ is drastically reduced.
- Compatible with other backbones.
- Multi-task inference: 45% faster

3. Experiments

	SOTA Comparison																					
					N	latura	al			Specialized			Structured									
	#param (M)	GPU mem (GB)	Cifar100	Caltech101	DTD	Flower102	Pets	NHAS	Sun397	Camelyon	EuroSAT	Resisc45	Retinopathy	Clevr-Count	Clevr-Dist	DMLab	KITTI-Dist	dSpr-Loc	dSpr-Ori	sNORB-Azim	sNORB-Ele	Average
Traditional Fine	Tunin	8																				
Full	85.8	4.7	68.9	87.7	64.3	97.2	86.9	87.4	38.8	79.7	95.7	84.2	73.9	56.3	58.6	41.7	65.5	57.5	46.7	25.7	29.1	68.9
Linear	0	0.6	64.4	85.0	63.2	97.0	86.3	36.6	51.0	78.5	87.5	68.5	74.0	34.3	30.6	33.2	55.4	12.5	20.0	9.6	19.2	57.6
PETL methods																						
BitFit	0.10	2.9	72.8	87.0	59.2	97.5	85.3	59.9	51.4	78.7	91.6	72.9	69.8	61.5	55.6	32.4	55.9	66.6	40.0	15.7	25.1	65.2
VPT	0.56	4.2	78.8	90.8	65.8	98.0	88.3	78.1	49.6	81.8	96.1	83.4	68.4	68.5	60.0	46.5	72.8	73.6	47.9	32.9	37.8	72.0
LST	2.38	2.7	59.5	91.5	69.0	99.2	89.9	79.5	54.6	86.9	95.9	85.3	74.1	81.8	61.8	52.2	81.0	71.7	49.5	33.7	45.2	74.3
LoRA	0.29	3.0	67.1	91.4	69.4	98.8	90.4	85.3	54.0	84.9	95.3	84.4	73.6	82.9	69.2	49.8	78.5	75.7	47.1	31.0	44.0	74.5
AdaptFormer	0.16	2.8	70.8	91.2	70.5	99.1	90.9	86.6	54.8	83.0	95.8	84.4	76.3	81.9	64.3	49.3	80.3	76.3	45.7	31.7	41.1	74.7
NOAH	0.43	3.3	69.6	92.7	70.2	99.1	90.4	86.1	53.7	84.4	95.4	83.9	75.8	82.8	68.9	49.9	81.7	81.8	48.3	32.8	44.2	75.5
FacT	0.07	3.9	70.6	90.6	70.8	99.1	90.7	88.6	54.1	84.8	96.2	84.5	75.7	82.6	68.2	49.8	80.7	80.8	47.4	33.2	43.0	75.6
SSF	0.21	4.9	69.0	92.6	75.1	99.4	91.8	90.2	52.9	87.4	95.9	87.4	75.5	75.9	62.3	53.3	80.6	77.3	54.9	29.5	37.9	75.7
DTL	0.04	1.6	69.6	94.8	71.3	99.3	91.3	83.3	56.2	87.1	96.2	86.1	75.0	82.8	64.2	48.8	81.9	93.9	53.9	34.2	47.1	76.7
DTL+	0.05	1.7	70.4	95.1	71.5	99.4	91.8	87.5	56.8	87.7	96.6	86.9	74.7	81.6	65.1	51.3	82.3	97.2	54.9	36.0	49.3	77.7
DTL+*	0.05	3.1	74.1	94.8	71.8	99.4	91.7	90.4	57.2	87.9	96.7	87.5	74.8	81.9	64.7	51.5	81.9	93.9	54.0	35.6	50.3	77.9

Saving of 43% trainable parameters, 41% GPU memory compared to previous SOTA.

Different variants are consistently effective in terms of recognition accuracy.

\checkmark	Si	m	p	e	
--------------	----	---	---	---	--

Method	Source
LoRA	low-rank matrices in W_q ,
NOAH	low-rank matrices, bottlenecks
FacT	decomposed tensors
SSF	pairs of γ , β
DTL	low-rank matrices
DTL+	low-rank matrices, DWC

4.	Cor	nt

First Author

Different Backbone							
lethod	#p	#m	Nat.	Spe.	Str.	Avg.	
ıll	86.7	6.1	79.2	86.2	59.7	75.0	
inear	0	0.9	73.5	80.8	33.5	62.6	
itFit	0.20	3.7	74.2	80.1	42.4	65.6	
PT	0.16	4.6	76.8	84.5	53.4	71.6	
аcТ	0.14	5.6	83.1	86.9	62.1	77.4	
TL	0.09	1.5	82.4	87.0	64.2	77.9	
TL+	0.13	1.6	82.4	86.8	66.0	78.4	
TL+*	0.14	4.0	83.2	87.0	65.7	78.6	

Generalizable to Hierarchical Transformer.

Inference Latency

Methods	Throughput (imgs/sec)						
Wiethous	bs=1	bs=4	bs=16				
Full	161	636	952				
LST	71	279	729				
NOAH	79	306	798				
AdaptFormer	108	436	876				
DTL+	120	469	877				
DTL	131	528	892				

• More speed up compared to PETL methods.

FEBRUARY 20-27. 2024 | VANCOUVER. CANADA VANCOUVER CONVENTION CENTRE – WEST BUILDING

ributions & Conclusions

✓ We analyze limitations of existing PETL methods from the perspective of GPU memory usage, which has a critical influence on the feasibility of fine-tuning.

 \checkmark We propose DTL, a disentangled and simple framework for efficiently fine-tuning large-scale pre-trained models with significantly less trainable parameters and GPU memory usage.

Extensive experiments are conducted to verify the effectiveness of DTL, which outperforms existing methods with a large margin.

Second Author

Professor

