
Appendix for DTL: Disentangled Transfer Learning for Visual Recognition

Implementation Details
Data Augmentation
Following Lian et al. (2022); Zhang, Zhou, and Liu (2022),
we directly resize the input image to 224 × 224 for VTAB-
1K (Zhai et al. 2019) benchmark. In few-shot learning and
domain generalization experiments, we follow Zhang, Zhou,
and Liu (2022) to apply color-jitter and RandAugmentation
for fine-tuning, and then resize the input images into 256 ×
256 with center crop 224 × 224 to conduct evaluation.

Fine-tuning Details
Following (Lian et al. 2022; Zhang, Zhou, and Liu 2022),
we take AdamW (Loshchilov and Hutter 2019) as the op-
timizer, with weight decay 0.05. The cosine scheduler is
adopted to decay the learning rate. By default, all pre-trained
models are fine-tuned by 100 plus 10 warm-up epochs with
batch size 32. Following Lian et al. (2022), the learning
rate is selected according to the accuracy on the validation
set for different datasets. Note that unlike previous meth-
ods (Zhang, Zhou, and Liu 2022; Lian et al. 2022), except
for the standard data augmentation, we do not use any addi-
tional tricks such as mixup (Zhang et al. 2018), cutmix (Yun
et al. 2019) or label smoothing (Szegedy et al. 2016) to boost
the recognition accuracy.

In CSN, the d′ in linear mapping, is 2 for ViT and 4 for
Swin-B. β in Swish is fixed to 100. We set M of DTL and
DTL+ as 7 for the ViT backbone to adapt half of the later
blocks’ output. For Swin-B, there are in total 24 blocks, in
this case similarly M is set to 15 for adapting roughly half of
the later blocks. Finally, for all models, we take the average
of all patch tokens as the input of task-specific classification
head to generate predictions.
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