» Traditional few-shot learning evaluation relies on a split
between base and novel sets, which is impractical.
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® Drawback:

« Base and novel sets are semantically closely related.
* Recognize a few categories.
« Sophisticated evaluation procedure (=500 runs).

® As a stark contrast, we human can:

« Accumulate prior knowledge as both common-sense and
domain knowledge from many diverse domains.

* Learn many instead of a few novel concepts.

Our Solution

» PFSL: Practical Few-Shot Learning

v" Much more analogous to human prior knowledge.
 Removing the base set.
« Unsupervised pre-trained model based on big data.
 Many-way FSL.

v" Much easier to evaluate.
« Usually 3 runs is enough for evaluation.

v" Much more challenge than traditional FSL.

ﬂ  Traditional FSL Is saturated to a certain extent, we believe
this new setting can push the technical frontier further.
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2. IbM2: Instance-based Max-margin

® O C(Class One

» Margin maximization in an instance-based manner
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when d is large.
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v' i.i.d. generate R virtual samples z;,- centered at z;
SNN(O, Id)

* Virtual examples reside around a shell.

'Gaussian Annulus Theorem: Almost all the probability of '
a high-dimensional spherical Gaussian with unit variance is
concentrated in a thin annulus of width O(1) with radius Vd

* Hypersphere of different examples can overlap.

Decision Boundary v° Maximize radius e meanwhile requires virtual examples
to be correctly classified.

> How to maximize € ?

training accuracy.

« Slack trick: accuracy
threshold T does not
need to be 1 (~0.9).

> E

ignores the structural

« An improved version:
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* Binary search based on

 Isotropic noise sampling

r=2; + €(s©; ;)

Instance-based Max-margin for Practical Few-shot Recognition
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Algorithm 1 Pseudo code for searching ¢

# Inputs:

B X : training features of a few—-shot task
B y : training labels of a few—-shot task
i R : sampling times for an 1nstance

i T : accuracy threshold for searching

# Outputs:

i eps : epsilon for sampling

left = 0.0

right = a large value

eps = right / 2

W = init_classifier

lipsoidal calibration

property of training example

while True:

acc = train_and_eval (W, x, vy, eps, R)
if acc > T:

left = eps # increase epsilon
else:

right = eps # decrease epsilon
eps = (left + right) / 2.0

if right - left < 0.05:
break

3. Experiments

Results on pFSL setting

Dataset

Pre-training Backbone IbM?

Method

Shot per Class
1 2 3 4 5 8 16

DINO

ViT-S/16

392403 492+02 54104 56.7£0.2 58.0£0.1 60.4+0.1 62.7£0.1

Y 392403 494 +03 54.6 + 0.4 57.6 + 0.1 59.3+ 0.1 62.4+ 0.2 65.8 + 0.1

MoCovd | ViTs/ie 307 F06 420F02 469F03 496F04 51.0F01 538+F01 566+£02

V' 3394+0.6 43.2+02 484+ 0.3 51.3+ 0.3 52.8 4+ 0.2 56.1 + 0.1 59.8 + 0.2

VIS F79 L 01 562504 598 £03 616+0.1 624 £02 644£03 66.1 £ 0.1

V478402 564 +04 60.5+0.2 62.5+0.2 63.6+ 0.2 66.0 + 0.2 68.4 + 0.0

. 532102 645104 689102 709+£02 720+03 738+01 75.0+£02

[mageNet-TK | MSN VIEBA o 540401 649405 69.4+0.2 714+ 0.1 727 + 0.4 747 + 0.0 76.4 + 0.2
N S7T3£04 66504 698 £05 71.6£04 722202 73801 751 £01

v 577404 666+05 701406 71.8+04 72.6+ 02 743+ 0.1 76.0 = 0.0

G IR | RecNers 214104 303101361103 398102 420+01 468EF01 51.9L00

VO 23.64+04 33.4+02 39.0+ 0.4 42.0 + 0.3 44.2 + 0.1 48.0 + 0.0 52.7 + 0.0

YOl ReaNers 265103 357F02 415104 451102 472F01518E01 57.1£0.1

| v 275403 37.5+0.1 433+ 0.4 46.8 + 0.2 49.1 + 0.1 53.2 + 0.1 58.0 + 0.1

SINO N 354+12490+05568+08 608+07 652109 706+09 759 +023

Y 362+ 1.4 49.6 + 0.6 57.4 + 1.0 62.0 + 0.6 66.4 & 0.8 72.5+ 0.8 79.0 + 0.2

N 32T 1.6 450206 53.1 206 567 £0.1 614 £05 673 £00 73.6 £ 04

CUR VSN / 33.0+14 458407 532 £09 57.1+04 620+ 1.0 68.4 4 0.1 75.7 £0.2
N 349 £13 494 £04 588 £ 08 627 £09 672103 73808 804£02

v 3754+1.2501+05 590408 62.6+05 67.5+ 0.6 73.9+ 0.4 81.0 £ 0.1

In almost all cases,|IbM2 benefited the few-shot learning and improved the top-1 accuracy.
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Categorical Subset (x100)
what classes can IbM2 help?

IbM2 improves average per-class accuracy in almost
every histogram bin.

Recognition accuracy of more than 65% categories
out of 1000 is improved in all shots.

The more accurate a class is, the higher gains IbM2
can achieve over the baseline.

4. Contributions & Conclusions

v' We propose a practical few-shot learning setting

(PFSL):

many-way (e.g., 200-way) recognition,

uses an unsupervised pre-trained model, and

has no

npase set.
nose IbM2, an instance-based max-

v We pro
margin

algorithm, which suits few-shot, high

dimensionality, and multiclass naturally.

v As shown by extensive experiments, IbM2 con-
sistently improves both traditional FSL and the
proposed pFSL.
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