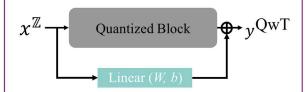


Quantization without Tears


Minghao Fu, Hao Yu, Jie Shao, Junjie Zhou, Ke Zhu, Jianxin Wu National Key Laboratory for Novel Software Technology, Nanjing University, China School of Artificial Intelligence, Nanjing University, China

Background & Motivation

Summary:

- > QwT generates a quantized network.
- It gradually compensates for the information loss introduced during the quantization of each block by incorporating full-precision linear layers.

Advantages: 💥

- > **Speed:** The process is completed in ~2 minutes.
- > Simplicity: No tedious hyperparameter tuning. The compensation module, based on simple linear layers, has a closed-form solution.
- > Generality: Applicable across a variety of
- ✓ architectures—CNNs, Transformers, LLMs, DiTs;
- ✓ tasks—Recognition, Detection, Generation.
- > Practical Deployment: QwT can be integrated with existing PTQ methods and deployed on infrastructures that support fixed-point inference.

Method Overview					Main Results									
Key Idea:					Network	Method Full-precision	#Bits 32/32	Size 22.9	Top-1 72.2		Iethod ull-precis		s Size A 2 164.5 4	P ^{box} AP ^{mask} 42.0 -
✓ QwT uses lightweight linear layers to counteract the information loss due to quantization.					IGQ-ViT [†] [38] RepQ-ViT [27] RepQ-ViT + QwT	- 4/4 4/4 4/4	- 3.3 4.2	62.5 58.2 61.4	ResNet-50	linMax linMax + linMax	QwT 6/6 8/8	49.4	40.0 -	
Process:					DeiT-T	$\frac{\text{RepQ-ViT} + \text{QwT}^*}{\text{IGQ-ViT}^{\dagger} [38]}$	<u>4/4</u> <u>6/6</u>		64.8 71.2		/linMax +		58.4 4 2 276.5 4	
(1) Apply <i>any</i> quantization method to obtain the quantized model: $\{l\} \Rightarrow \{l^{\mathbb{Z}}\}.$						RepQ-ViT [27] RepQ-ViT + QwT RepQ-ViT + QwT*	6/6 6/6 6/6	4.6 5.5 5.5	71.0 71.2 71.6	Swin-S	epQ-ViT	[27] 4/4 + QwT 4/4	- 36.1 4 44.0 4	42.6 40.0 43.1 40.4
(2) Get the quantized output: $Y^{\mathbb{Z}} = l^{\mathbb{Z}}(X^{\mathbb{Z}})$. (3) Get the FP output: $Y = l(X^{\mathbb{Z}})$.						- Full-precision - IGQ-ViT [†] [38] RepQ-ViT [27]	- <u>32/32</u> - <u>4/4</u> - <u>4/4</u>	113.2	81.4 77.8 73.0	I	epQ-ViT ull-precis	+ QwT 6/6 ion 32/3	61.2 4 2 427.8 5	48.0 43.1 51.9 45.0
(a) Get the PP output $Y = t(X)$. (a) Get $\{W, b\}$ using linear regression: $\{X^{\mathbb{Z}}, Y - Y^{\mathbb{Z}}\}$. (b) Finish compensation: $Y^{QwT} = l^{\mathbb{Z}}(X^{\mathbb{Z}}) + WX^{\mathbb{Z}} + b$.				Swin-T	$RepQ-ViT + QwT$ $RepQ-ViT + QwT^{*}$ $\overline{IGQ}-ViT^{\dagger} [\overline{38}]$	4/4 4/4 676	19.2 19.2	75.5 79.3 80.9	+ Cascade F Mask R-CNN F	epQ-ViT	+ QwT 4/4	- 64.8 4	49.9 - 43.4 - 51.4 - 44.6 -	
$(5) \text{Finish compensation. } Y^{+w} = i^{-}(X^{-})^{+}WX^{-} + b.$					RepQ-ViT [27] RepQ-ViT + QwT RepQ-ViT + QwT*	6/6 6/6 6/6	21.7 26.0 26.0	80.6 80.7 80.9	Swin-B F	ull-precis	ion 32/3	2 579.9	$\frac{51.9}{49.3}$ $\frac{45.0}{43.1}$ -	
Model Size & Inference Latency						- Full-precision - CL-Calib [†] [47] Percentile[23]	- <u>32/32</u> - <u>4/4</u> - <u>4/4</u>	102.2	76.6 75.4 68.4	Mask R-CNN F	epQ-ViT		112.1	51.5 44.8
Fu	lethod Ill-precision	Size 22.9	Latency 11.6	Top-1 72.2	ResNet-50	Percentile + QwT Percentile + QwT*	4/4 4/4	16.0 16.0	74.5 75.8	De	etection	& Segme	ntation	
Pe	ercentile [23] ercentile + QwT	5.9 6.8	2.8 3.2	71.2 71.5		CL-Calib [†] [47] Percentile[23]	6/6 6/6	19.9	76.0			0' 0.00		10 (4)
	all-precision ercentile [23]	113.2 28.6	34.5 9.5	81.4 80.8		Percentile + QwT Percentile + QwT*	6/6 6/6	21.9 21.9	76.8 76.8	Method Full-precisio		Size (MB) 1349	FID (↓) 5.32	18 (†) 236.17
	ercentile + QwT all-precision	32.9 198.4	10.9 61.0	81.0 83.2		Image Classi		RepQ-ViT GPTO	8/8 8/8	677 690		234.74 218.90		
	ercentile [23] ercentile + QwT	50.1 58.0	16.0 17.9	82.1 83.0	Method	#D'((D))	2 (1) (1)	1. 01. 1		Q-DiT Q-DiT + Qw	8/8	683 707		236.52 236.91
Fu ViT-S Pe	all-precision ercentile [23] ercentile + OwT	88.2 22.5 26.0	28.3 5.8 6.6	81.4 79.2 80.1	Full-precis GPTQ GPTQ + Q	4 5.73 6	2 (1) C4 (5.24 8.9 5.65 9.4 5.63 9.3	4 64	<u>vg (↑)</u> 10 90 .18	RepQ-ViT GPTQ O-DiT	4/8 4/8 4/8	339 351 347	319.68 9.94 6.75	2.20 166.35 208.38
Fu ViT-B Pe	all-precision ercentile [23]	346.3 87.4 101.6	85.3 15.5 17.5	84.5 75.8 82.8	Language Generation (LLaMA3-8B)					Q-DiT + QwT 4/8 361 6.06 215.70 Image Generation (DiT-XL/2)				