
Automatic Successive Reinforcement Learning with Multiple Auxiliary Rewards

Zhao-Yang Fu , De-Chuan Zhan , Xin-Chun Li and Yi-Xing Lu
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

{fuzy,lixc}@lamda.nju.edu.cn, zhandc@nju.edu.cn, YixingLu97@gmail.com

Abstract
Reinforcement learning has played an important
role in decision making related applications, e.g.,
robotics motion, self-driving, recommendation, etc.
The reward function, as a crucial component, af-
fects the efficiency and effectiveness of reinforce-
ment learning to a large extent. In this paper, we
focus on the investigation of reinforcement learn-
ing with more than one auxiliary reward. It is found
that different auxiliary rewards can boost up the
learning rate and effectiveness in different stages,
and consequently we propose the Automatic Suc-
cessive Reinforcement Learning (ASR) for auxil-
iary rewards grading selection for efficient rein-
forcement learning by stages. Experiments and
simulations have shown the superiority of our pro-
posed ASR on a range of environments, includ-
ing OpenAI classical control domains and video
games; Freeway and Catcher.

1 Introduction
Reinforcement learning [Sutton and Barto, 1998] has played
an important role in many realistic domains, such as robotics,
self-driving and recommendation systems. In reinforcement
learning, agents interact with the environment by trial and
error. Meanwhile, a reward signal, indicating how well they
are performing, is given. In general cases, the goal of an agent
is to maximize the expected cumulative reward.

The reward function is crucial to reinforcement learn-
ing [Ng et al., 1999]. For policy-based reinforcement learn-
ing methods, the reward provided by environment determines
the search directions of policies which will eventually af-
fect the final policies obtained. For example, considering
the reward signal in FetchReach environment [Plappert et al.,
2018], which becomes higher as the gripper gets closer to
the target, then the policy obtained will lead the gripper to
approach the target location. For more general cases, the
choices of reward functions can be reflected in the efficien-
cies of general reinforcement learning approaches, e.g., the
shaping reward is more efficient than the original reward in
Pathfinding environment [Brys et al., 2014a]. Though vari-
ous rewards may lead to the final results, a reward function
without elaborate designing may take more exploration.

A severe problem of reinforcement learning is how to train
fast and efficiently using information provided by rewards.
Although reinforcement learning has achieved great success
and has been applied in many domains, existing methods have
difficulty exploring effectively to learn a good policy when
the reward is sparse and rare. They usually need to interact
with the environment millions of times, especially in compli-
cated real-world environments, and consequently leading to
the whole procedure intractable. Delayed rewards and sparse
rewards build a barrier to the widespread applicability of re-
inforcement learning.

It is a natural desire for selecting or designing an appropri-
ate reward for better reinforcement learning with efficiency
considered, especially those with sparse and rare reward func-
tions. In real-world scenarios, rewards can be designed in
many aspects. A typical example is the traffic light problem,
in which car delay and system throughout are two correlated
reward signals [Brys et al., 2014b]. More generally, a rein-
forcement learning task in the real world is usually accompa-
nied by a lot of rewards and domain knowledge. Therefore,
the optimal policy can be calculated in many ways.

Auxiliary rewards have attracted much attention recently.
Inspired by human learning, Bengio et al. proposed curricu-
lum learning, i.e., when training reinforcement learning mod-
els, we can start with easier tasks and gradually increase the
difficulty level of the tasks, and this brings benefits on learn-
ing effectiveness [Bengio et al., 2009]. Reward shaping [Ng
et al., 1999] provides us another way to modify the origi-
nal reward function for optimal policy preserving as well as
boosting the performance.

Making use of auxiliary rewards can definitely improve
the model. Previous work has shown that auxiliary rewards
are useful to the learning rate since the multiple auxiliary re-
wards are expected to capture more information during learn-
ing. However, existing multiple auxiliary rewards methods
are limited to simple linear combinations [Brys et al., 2014a]
or ensemble of multiple rewards [Brys et al., 2017], which
neglect the stage influence of rewards and reward selection
we considered. In this paper, we focus on the investigation
of reinforcement learning with multiple auxiliary rewards ex-
ploitation and selection in different stages.

It is notable that in reinforcement learning the guidance
provided by rewards is various according to the changes of
stages. For example, a simple ball moving task contains re-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2336

wards about approaching a ball, grasping it, moving to a lo-
cation; the reward based on the distance between the gripper
and the ball is more important at first, and consequently as
the gripper approaches the ball, another reward about grasp-
ing becomes more important, etc. Curriculum reinforcement
learning manually designs the stages and invokes different re-
ward functions and learning strategies for better results. How-
ever, in most cases, the hierarchical stages are hard to design.

In this paper, we propose the Automatic Successive Re-
inforcement Learning (ASR) with multiple auxiliary rewards.
ASR performs reward selection automatically at each training
step, which is the “atom” of the training stages. It is expected
that ASR can achieve faster and better training. We empir-
ically investigate the effectiveness of ASR, and it achieves
superior performance on various environments.

In the following of this paper, we start with a brief review
of related work, then give the ASR approach and the experi-
mental results. Finally, we conclude the paper.

2 Related Work
The exploitation of different rewards has attracted much at-
tention recently. In this paper, our method concentrates on
taking advantage of multiple auxiliary rewards. There are two
kinds of methods using multiple rewards: curriculum learn-
ing and multi-objective reinforcement learning (MORL).

Curriculum learning breaks a complicated problem down
to a sequence of manageable stages and tasks manually.
Since the learning process of curriculum learning is simi-
lar to human learning, it has been widely used in robotics.
Most practical curriculum learning approaches use manual
task sequences [Karpathy and van de Panne, 2012]. Some
general frameworks aim to generate increasingly difficult
tasks [Schmidhuber, 2013]. Unlike ASR, all existing studies
in curriculum learning rely on curriculum design from easy
to difficult, and the agent starts with easier tasks and learns
all tasks in order of difficulty. Designing an effective cur-
riculum by human efforts is a complex problem. However,
ASR makes use of multiple auxiliary rewards simultaneously
to help training, and doesn’t require human efforts for cur-
riculum designing. The multiple auxiliary rewards only need
to encode some information for learning the task in ASR.

MORL, from another aspect, focuses on handling tasks
with inherent multiple opposite objectives. By how many
policies are computed in a single run, there are two types of
methods. The first type to solve the MORL involves the use
of scalarization function, known as the single policy methods,
including the min-max method [Lin, 2005], weighted sum
method[Kim and De Weck, 2006], and Chebyshev scalariza-
tion method [Moffaert et al., 2013]. More and more compli-
cated scalarization functions are proposed to approximate the
Pareto frontier better. Other approaches seek to find multiple
policies in a single run, e.g., radial method and Pareto follow-
ing method for discrete Pareto frontier approximation [Parisi
et al., 2014], and the manifold method for continuous Pareto
frontier approximation [Pirotta et al., 2015]. Solutions of
such problems often need to make a trade-off between mul-
tiple objectives since there are conflictions among objectives.
Different from our scenario, MORL aims at the Pareto fron-

tier, which actually is a preprocessing for missing constraints
situations. The goal of ASR is to learn the optimal policy
faster with multiple auxiliary rewards.

Therefore, many researchers have devoted to taking advan-
tage of multiple rewards. However, there is no previous re-
search performing reward selection for deep reinforcement
learning. In this paper, a novel ASR framework is proposed,
which utilizes all rewards to learn an agent and can determine
the importance of each reward automatically. Specifically, by
maximizing the improvement of objective function or size of
parameter update at each training step, ASR could utilize the
gradient information from multiple auxiliary rewards to find
a better update direction. Consequently, faster and better per-
formance can be achieved.

3 Preliminaries
In this section, we introduce the required concepts and meth-
ods for the derivation of ASR. We start from the notations of
reinforcement learning.

3.1 Reinforcement Learning
A reinforcement learning environment usually consists of
four components: state space S, action space A, state tran-
sition function T and scalar reward function R. At time t, an
agent observes the state st ∈ S, then takes action at ∈ A
and receives a real-valued reward rt. A probabilistic policy
π is defined as a mapping from the state space to probability
distributions over the action space.

In general, the state value function V π and state-action
value function Qπ for policy π are defined by discounted
cumulative reward: V π(s) = Eπ [

∑∞
t=0 γ

trt|s0 = s] and
Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt|s0 = s, a0 = a], where γ is the
discount factor. The advantage function is usually defined as:
Aπ(s, a) = Qπ(s, a) − V π(s). The reinforcement learning
algorithms aim to maximize the following expected total re-
ward: Jπ = Eπ [

∑∞
t=0 γ

trt].

3.2 Reward Shaping
Reward shaping is a useful method to incorporate auxiliary
knowledge safely. The purpose of reward shaping is to ex-
plore how to modify the native reward function without mis-
leading the agent. Let F be the shaping function, then R+F
is the new reward. Ng et al. point out that when F is an
arbitrary potential-based shaping function, the optimality of
policies will not be changed [Ng et al., 1999]. According
to this, many shaping functions can be constructed based on
expert demonstrations or domain knowledge. Shaping func-
tion F is potential-based if there exists a real-valued function
Φ : S → R such that ∀s, s′ ∈ S, the Equation 1 holds.

F (s, a, s′) = γΦ(s′)− Φ(s) . (1)

Typically, the potential function indicates how good a state
is, hence it’s beneficial for learning a policy. Potential-based
reward shaping has been successfully applied in many com-
plex environments, such as StarCraft [Efthymiadis and Ku-
denko, 2013], RoboCup TakeAway [Devlin et al., 2011] and
Mario [Brys et al., 2014a].

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2337

4 Proposed Method
Detailed approach and its optimization strategies are pre-
sented in this section. We restrict the discussion in the policy
gradient approaches and propose the method concretely.

4.1 Automatic Successive Reinforcement Learning
Most of the recent deep reinforcement learning algorithms
aim to optimize an objective function using a gradient de-
scent method. Multiple auxiliary rewards can provide more
gradient information, and the improvement of objective func-
tion or size of parameter update could tell us how much an
agent learns at each iteration. Thus we can get a better gradi-
ent direction by combining the multiple gradient directions.
Consequently, we propose the Automatic Successive Rein-
forcement Learning (ASR) framework which focuses on the
exploitation of multiple auxiliary rewards. At each training
step, we determine the weight of each reward automatically,
and then a single reward algorithm is applied to learn an agent
using the weighted sum of multiple rewards.

It’s worthy to emphasize that the setting of ASR is dif-
ferent from MORL’s. MORL attempts to approximate the
Pareto frontier, and usually, the optimal policy is not unique.
However, in this paper, auxiliary rewards are constructed by
potential-based reward shaping, and thus the optimal policy
holds for each auxiliary reward. ASR aims to learn the opti-
mal policy faster and better with the help of auxiliary rewards.

The trust region policy optimization method (TRPO) is one
of the state-of-the-art policy gradient methods [Schulman et
al., 2015]. TRPO is an effective method for optimizing large
nonlinear policies such as neural networks with guaranteed
monotonic improvement. In ASR, we choose TRPO as the
base learner.

Standard TRPO optimization problem is defined by:

max
θ

Lθold(θ) = Êt

[
πθ(a|s)
πθold(a|s)

Qπθold (s, a)

]
s.t. Êt [DKL(πθold(·|s)||πθ(·|s))] ≤ δ ,

(2)

where θ and θold are parameters of policy network, πθold is the
current policy, πθ is the policy to be optimized, Êt[·] repre-
sents the empirical average over several sampling trajectories
like (s0, a0, s1, a1, . . . , sT), and δ is the desired KL diver-
gence. TRPO maximizes an objective function subject to a
constraint on the KL divergence of new policy and old policy.
Such constraint could avoid changing policy parameters too
much. Consequently, the training process is more stable.

In practice, Equation 2 is hard to handle, and consequently,
we usually deal with the approximation problem instead. Let
H be the Hessian matrix of KL divergence. After making a
linear approximation to the objective and a quadratic approx-
imation to the constraint, the approximation problem is:

max
θ

(∇Lθold(θ))
T

(θ − θold)

s.t. 1
2 (θ − θold)TH(θ − θold) ≤ δ .

(3)

Now Equation 3 becomes a natural gradient problem [Amari,
1998]. The search direction z is given by:

z = H−1g , (4)

where g = ∇Lθold is the gradient of the objective function.
The search direction can be computed by approximately solv-
ing the equation Hz = g, which can be efficiently solved us-
ing the conjugate gradient algorithm [Schulman et al., 2015].
Suppose the step size is β, the parameter θ is updated by:

θ = θold + βz . (5)

From the KL divergence constraint 1
2β

2zTHz ≤ δ, the max-
imum value of β is represented as:

β =
√

2δ/(zTHz) . (6)

For the idea maximization of Equation 3 should be along
with the gradient direction of the objective of Equation 2. In
the multiple rewards scenarios, affections on gradient direc-
tions include the importance of each gradient and the differ-
ences between the old policy and the new one. Policy update
is guided by multiple search directions. However, how to se-
lect the rewards using the information of all reward signals as
possible is not an obvious problem. It is notable that the lin-
ear combination of potential-based shaping functions is also
potential-based. We can formulate this problem as calculating
a weighted sum of multiple rewards. At each training step,
the optimal weight of each reward is determined by solving
an optimization problem.

In scenarios where there are multiple reward functions, the
multiple rewards can be denoted as a vector R = [R+F1, R+
F2, . . . , R + Fn], where R is the original reward and Fi is
the potential-based shaping function. Corresponding to the
i-th reward signal, Li represents the TRPO’s objective func-
tion, gi is the gradient of Li, zi is the search direction and wi
is the weight of the i-th reward. Their vector forms are de-
noted by L = [L1, L2, . . . , Ln]T , G = [g1, g2, . . . , gn], Z =
[z1, z2, . . . , zn], and w = [w1, w2, . . . , wn]T . According to
Equation 4, we get each zi = H−1gi, and it holds HZ = G.
The objective function of the weighted sum of multiple re-
wards is given by LTw, the gradient is Gw, and the search
direction is Zw. For the fixed weights w, the optimization
problem for the weighted sum of multiple rewards is:

max
θ

(
∇(LTw)

)T
(θ − θold)

s.t. 1
2 (θ − θold)TH(θ − θold) ≤ δ .

(7)

Note that the solution of Equation 7 is related to weightsw.
ASR aims to determine the weight of each reward automati-
cally, and the weights w is a variable to be optimized. When
w has some specific properties, ASR can select or weight the
auxiliary rewards in different stages of reinforcement learn-
ing. Consequently, ASR can automatically “generate” new
combined reward for better reinforcement learning. In this
paper, we advocate three strategies to determine the weight
of each reward based on maximizing the improvement of ob-
jective function or size of parameter update, including reward
selection, reward shrinking and maximum gradient.

In the ASR framework, each reward’s gradient and search
direction are computed at each iteration first, and then we find
the optimal combinations of rewards by some strategies. A
summary of our ASR framework is shown in Algorithm 1.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2338

Implementation 1: Reward Selection
The target of reward selection strategy is to find the optimal
weights w which can maximize the improvement of objec-
tive function with `1 constraint on w. Then the optimization
problem becomes:

max
w

max
θ

(
∇(LTw)

)T
(θ − θold)

s.t. 1
2 (θ − θold)TH(θ − θold) ≤ δ,
‖w‖1 = 1,
wi ≥ 0, i = 1, 2, . . . , n .

(8)

Substitute the Equation 5 and Equation 6 into Equation 8. We
get the `1 constraint ASR problem:

max
w

wTZTGw

s.t. ‖w‖1 = 1,
wi ≥ 0, i = 1, 2, . . . , n .

(9)

`1 constraint produces sparse solutions, therefore inher-
ently performing reward selection. At each training step, the
reward could obtain maximal improvement is more likely to
be selected to perform parameter update.

Implementation 2: Reward Shrinking
We propose the reward shrinking strategy by applying the `2
constraint on weights. The `2 constraint has a different effect
from `1 constraint; namely, it forces the weights to be spread
out more equally. The `2 constraint is more likely to get a
dense solution. Hence it can take advantage of more rewards
at each iteration. The `2 constraint ASR problem is:

max
w

wTZTGw

s.t. ‖w‖2 = 1,
wi ≥ 0, i = 1, 2, . . . , n .

(10)

Implementation 3: Maximum Gradient
In general case, agents learn the target policy by gradient de-
scent methods. The learning process of an agent is reflected in
the parameter update. An uninformative reward will return a
small gradient, leading to slow learning. Our maximum gra-
dient strategy is the radical one intending to find the search
direction with the biggest change in parameter space. That
is, we maximize the parameter update ‖θ − θold‖2. The opti-
mization problem of maximum gradient strategy is:

max
w

wTZTZw

wTZTHZw
s.t. ‖w‖2 = 1,

wi ≥ 0, i = 1, 2, . . . , n .

(11)

Here we could remove the `2 constraint because the objective
has nothing to do with the weight’s magnitude. Equation 11
can be rewritten as Equation 12.

max
w

wTZTZw

s.t. wTZTHZw = 1,
wi ≥ 0, i = 1, 2, . . . , n .

(12)

Algorithm 1 The pseudo code of ASR framework

Initialize policy π
for Iteration i = 0, 1, . . . until convergence do

Run policy πθold in environment for T time steps
for Reward k = 1, 2, . . . , n do

Compute all advantage values A
πθold

k
Compute gradient gk of Lk and search direction zk

end for
Find optimal weight w
θ ← θ + βZw
θold ← θ

end for

4.2 Optimization
In this section, we mainly focus on the optimization of our
proposed ASR methods. Note that ZTG,ZTZ and ZTHZ
are all n× n matrices, and n usually is very small compared
to parameter size. Thus, solving such problem doesn’t take
much time.

Firstly, Equation 9 is a quadratic programming problem
with linear constraints which is like the optimization prob-
lem of SVM. The SMO algorithm breaks the optimization
problem of SVM into a series of sub-problems that could be
solved analytically [Platt, 1998]. Inspired by the SMO algo-
rithm, we design a similar algorithm to solve Equation 9 effi-
ciently. At every iteration, a pair (wi, wj) is selected first,
and then we compute the maximum of a one-dimensional
quadratic function analytically.

When ignoring the positive weight constraints, Equation 10
is a Rayleigh quotient problem and Equation 12 is a general
Rayleigh quotient problem which could transfer to Rayleigh
quotient problem, so we only need to take into account Equa-
tion 10. Furthermore, the Rayleigh quotient problem can be
solved analytically by matrix eigenvalue decomposition. The
optimal solution is given by the eigenvector v corresponding
to the largest eigenvalue of ZTG.

Suppose the feasible region of Equation 10 is denoted by
D, and PD is a projection operator that projects a vector to
region D. Even though the eigenvector v may be no longer
the optimal solution of Equation 10, PD(v) is an excellent
initial point. After initializing, projected gradient descent is
performed to find a better point.

5 Experiments
In this section, empirical experiments and investigations are
conducted to validate the effectiveness of ASR framework.
We compare our approach to state-of-the-art single reward
methods and multiple rewards methods. Since there are less
ready-made multiple rewards environments, we extend some
popular environments to multiple rewards environments, i.e.,
OpenAI classical control domains MountainCar, CartPole
and Acrobot [Brockman et al., 2016], PLE game Catcher1

and Atari game Freeway. Firstly, we show the comparison
results on three classical control environments and two more

1https://github.com/ntasfi/PyGame-Learning-Environment

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2339

0 200 400 600 800 1000
episodes

−1000

−800

−600

−400

−200

re
wa

rd
MountainCar (Compared to Single Reward Methods)

A2C
ACER
PPO
TRPO
ASR-L1
ASR-L2
ASR-MG

0 200 400 600 800 1000
episodes

0

200

400

600

800

1000

re
wa

rd

CartPole (Compared to Single Reward Methods)
A2C
ACER
PPO
TRPO
ASR-L1
ASR-L2
ASR-MG

0 200 400 600 800 1000
episodes

−500

−400

−300

−200

−100

re
wa

rd

Acrobot (Compared to Single Reward Methods)

A2C
ACER
PPO
TRPO
ASR-L1
ASR-L2
ASR-MG

0 200 400 600 800 1000
episodes

−1000

−800

−600

−400

−200

re
wa

rd

MountainCar (Compared to Multiple Rewards Methods)
ENSEMBLE-L
ENSEMBLE-M
ENSEMBLE-R
LSRH
ASR-L1
ASR-L2
ASR-MG

0 200 400 600 800 1000
episodes

0

200

400

600

800

1000

re
wa

rd

CartPole (Compared to Multiple Rewards Methods)
ENSEMBLE-L
ENSEMBLE-M
ENSEMBLE-R
LSRH
ASR-L1
ASR-L2
ASR-MG

0 200 400 600 800 1000
episodes

−500

−400

−300

−200

−100

re
wa

rd

Acrobot (Compared to Multiple Rewards Methods)

ENSEMBLE-L
ENSEMBLE-M
ENSEMBLE-R
LSRH
ASR-L1
ASR-L2
ASR-MG

Figure 1: Comparisons on classical control domains

complicated video games. Then we demonstrate the visual-
ization on weights during the training process.

5.1 Compared Methods and Configurations
We compare ASR to two kinds of methods. First is the sin-
gle reward policy gradient methods, i.e., A2C [Mnih et al.,
2016], ACER [Wang et al., 2017], TRPO [Schulman et al.,
2015], and PPO [Schulman et al., 2017]. The second kind of
methods is multiple rewards methods, i.e., linear scalarization
reward shaping [Brys et al., 2014a] and ensemble methods
with different voting strategies [Brys et al., 2017]. In detail,
the compared methods are listed as follows:

Single Reward Methods
• A2C is a synchronous advantage actor-critic approach,

which gives an equal performance with A3C;
• ACER is an off-policy actor-critic model with experience

replay, greatly increasing the sampling efficiency;
• TRPO applies a KL divergence constraint to avoid large

parameter update, improving training stability;
• PPO simplifies TRPO by using a clipped surrogate objec-

tive while retaining similar performance.

Multiple Rewards Methods
• LSRH applies a fixed linear scalarization of multiple shap-

ing rewards;
• ENSEMBLE-L is an ensemble method with linear voting;
• ENSEMBLE-M is an ensemble method with majority vot-

ing;
• ENSEMBLE-R is an ensemble method with rank voting.

Single reward methods are implemented by OpenAI Base-
lines,2 which are high-quality implementations of reinforce-
ment learning algorithms. Since our proposed ASR methods

2https://github.com/openai/baselines

are based on TRPO, for fairness, the base learner of multiple
rewards methods is TRPO too.

For classical control environments, we perform one million
time steps of training for each method. For video games, we
perform ten million time steps of training for each method.
Each method is run with five random seeds. We demonstrate
the average training curves of two runs with the highest aver-
age cumulative reward over the entire training period, and the
shade in figures shows the error in the estimate of the mean.

5.2 Comparisons on Classical Control Domains
Classical control is a collection of classical reinforcement
learning environments implemented by OpenAI. We extend
three classical control environments to multiple rewards envi-
ronments, i.e., CartPole, MountainCar, and Acrobot. Details
of auxiliary reward designs for the selected environments are:

• MountainCar The goal of MountainCar environment is to
drive the car up the mountain. The original reward is −1
for every step taken. Therefore, the reward function is very
uninformative especially when the car doesn’t arrive at the
goal location. We suggest using height, speed and position
as potential functions to construct auxiliary rewards;

• CartPole A pole is attached by an unactuated joint to a
cart, which moves along a frictionless track. The original
reward is 1 for every step taken. We suggest using cart po-
sition and pole angle to construct the potential functions,
since keeping cart position and pole angle small is con-
ducive to preventing the pole from falling over;

• Acrobot Acrobot is a 2-link pendulum with only the sec-
ond joint actuates. The goal is to swing the end-effector at
a height at least the length of one link above the base. Sim-
ilar to MountainCar environment, the original reward func-
tion is very uninformative. Heuristically, we use the height
of end-effector as a potential function, since encouraging
the agent to move up will help to reach the target height.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2340

0 200 400 600 800 1000
episodes

0

5

10

15

20

25

30
re
wa

rd

Freeway

ENSEMBLE-L
ENSEMBLE-M
ENSEMBLE-R
LSRH
ASR-L1
ASR-L2
ASR-MG

0 200 400 600 800 1000
episodes

0

50

100

150

200

250

300

re
wa

rd

Catcher
ENSEMBLE-L
ENSEMBLE-M
ENSEMBLE-R
LSRH
ASR-L1
ASR-L2
ASR-MG

Figure 2: Comparisons on video games

The learning curves of all methods are shown in Figure 1.
We plot the first one thousand episodes of each method, and
the vertical axis is the cumulative reward of each episode.
From the results, we can see some learning curves are flat
because of the low learning rate. And the multiple rewards
methods, especially ASR and LSRH, are faster than single re-
ward methods, which verifies that auxiliary rewards could im-
prove the training speed. Moreover, compared to multiple re-
wards methods, especially LSRH with fixed linear scalariza-
tion of rewards, ASR methods are faster and more stable. The
learning curves of ASR show that ASR can provide mono-
tonic and fast improvement during the learning process.

5.3 Comparisons on Video Games
In addition to classical control environments, much more
complex pixel input environments are considered. Atari and
PLE games are widely used video games. We extend two
environments of Atari and PLE to multiple rewards environ-
ments, including Freeway and Catcher.

• Freeway In Freeway, the agent controls chickens run
across a ten lane highway filled with traffic. The goal is to
control chickens to move up and keep away from cars. The
chicken is forced back if hit by a car. If the chicken gets
across, the reward is 1, otherwise 0. The potential function
of this environment is the chicken’s height;

• Catcher In Catcher, the agent controls a paddle to move
left or right to catch falling fruit. The agent receives a pos-
itive reward for each successful fruit catch. If the fruit is
not caught, it receives a negative reward. Since the origi-
nal reward is a little sparse, we introduce a denser reward
in Catcher, i.e., the horizontal distance between paddle and
fruit is used as a potential function.

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

we
ig
ht

Acrobot
CartPole
MountainCar
Catcher
Freeway

Figure 3: Weights of original rewards in ASR

We plot the first one thousand episodes of each method
in Figure 2. From the results, our ASR approaches can
achieve the best performance in Freeway and Catcher, which
attributes to the automatic reward selection. Compared to
LSRH, which applies a fixed linear scalarization of shaping
rewards, the superiority of ASR validates the effectiveness of
determining the weights automatically.

5.4 Visualization on Weights
The weight of a reward could reflect the importance of this
reward. As mentioned before, the original reward functions
are a little uninformative, especially at the preliminary stage.
Therefore, it’s reasonable to give the original reward a lower
weight first. We demonstrate the smoothed curves of weights
during the training process in Figure 3. From the results, the
ASR can assign weights to original rewards lower than aver-
ages, which shows that our ASR methods can find a mean-
ingful and helpful combination at each training step. Conse-
quently, ASR can achieve faster and better performance.

6 Conclusion
Researchers have paid great attention to efficient reinforce-
ment learning, while delayed rewards or uninformative re-
wards usually lead to low efficiency. Considering that mul-
tiple rewards are usually available in many real-world en-
vironments and can provide more information to the agent,
we make use of multiple auxiliary rewards for speeding up
the training process and develop Automatic Successive Rein-
forcement Learning (ASR) framework with the help of multi-
ple auxiliary rewards. Investigations show ASR can increase
the learning rate compared to existing methods. Experimen-
tal results also show that ASR can assign a low weight to the
sparse reward and can take advantage of informative rewards
at the preliminary stage. This observation validates that our
reward selection is meaningful.

Acknowledgements
This work is supported by National Key R&D Program of
China (2018YFB1004300), NSFC(61773198), and Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization of NJU, Jiangsu. De-Chuan Zhan is the cor-
responding author. We thank Prof. Yang Yu for his valuable
comments and suggestions on this work. Yi-Xing Lu is an
undergraduate student of Dept. EE, NJU.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2341

References
[Amari, 1998] Shun-ichi Amari. Natural gradient works ef-

ficiently in learning. Neural Computation, 10(2):251–276,
1998.

[Bengio et al., 2009] Yoshua Bengio, Jérôme Louradour,
Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 41–48, Montréal,
Canada, 2009.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. arXiv
preprint arXiv:1606.01540, 2016.

[Brys et al., 2014a] Tim Brys, Anna Harutyunyan, Peter
Vrancx, Matthew E. Taylor, Daniel Kudenko, and Ann
Nowé. Multi-objectivization of reinforcement learning
problems by reward shaping. In Proceedings of the 2014
International Joint Conference on Neural Networks, pages
2315–2322, Beijing, China, 2014.

[Brys et al., 2014b] Tim Brys, Ann Nowé, Daniel Kudenko,
and Matthew E. Taylor. Combining multiple correlated
reward and shaping signals by measuring confidence. In
Proceedings of the 28th AAAI Conference on Artificial In-
telligence, pages 1687–1693, Québec, Canada, 2014.

[Brys et al., 2017] Tim Brys, Anna Harutyunyan, Peter
Vrancx, Ann Nowé, and Matthew E. Taylor. Multi-
objectivization and ensembles of shapings in reinforce-
ment learning. Neurocomputing, 263:48–59, 2017.

[Devlin et al., 2011] Sam Devlin, Daniel Kudenko, and
Marek Grzes. An empirical study of potential-based re-
ward shaping and advice in complex, multi-agent systems.
Advances in Complex Systems, 14(2):251–278, 2011.

[Efthymiadis and Kudenko, 2013] Kyriakos Efthymiadis
and Daniel Kudenko. Using plan-based reward shaping to
learn strategies in StarCraft: Broodwar. In Proceedings of
the 2013 IEEE Conference on Computational Inteligence
in Games, pages 1–8, Niagara Falls, Canada, 2013.

[Karpathy and van de Panne, 2012] Andrej Karpathy and
Michiel van de Panne. Curriculum learning for motor
skills. In Advances in Artificial Intelligence, pages
325–330, Heidelberg, Germany, 2012.

[Kim and De Weck, 2006] I. Y. Kim and O. L. De Weck.
Adaptive weighted sum method for multiobjective op-
timization: A new method for Pareto front generation.
Structural and Multidisciplinary Optimization, 31(2):105–
116, 2006.

[Lin, 2005] JiGuan G. Lin. On min-norm and min-max
methods of multi-objective optimization. Mathematical
Programming, 103(1):1–33, 2005.

[Mnih et al., 2016] Volodymyr Mnih, Adrià Puigdomènech
Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
Proceedings of the 33rd International Conference on Ma-
chine Learning, pages 1928–1937, New York, NY., 2016.

[Moffaert et al., 2013] Kristof Van Moffaert, Madalina M.
Drugan, and Ann Nowé. Scalarized multi-objective re-
inforcement learning: Novel design techniques. In Pro-
ceedings of the 2013 IEEE Symposium on Adaptive Dy-
namic Programming and Reinforcement Learning, pages
191–199, Singapore, 2013.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart J.
Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings
of the 16th International Conference on Machine Learn-
ing, pages 278–287, Bled, Slovenia, 1999.

[Parisi et al., 2014] Simone Parisi, Matteo Pirotta, Nicola
Smacchia, Luca Bascetta, and Marcello Restelli. Policy
gradient approaches for multi-objective sequential deci-
sion making. In Proceedings of the 2014 International
Joint Conference on Neural Networks, pages 2323–2330,
Beijing, China, 2014.

[Pirotta et al., 2015] Matteo Pirotta, Simone Parisi, and Mar-
cello Restelli. Multi-objective reinforcement learning with
continuous Pareto frontier approximation. In Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence,
pages 2928–2934, Austin, TX., 2015.

[Plappert et al., 2018] Matthias Plappert, Marcin
Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,
Glenn Powell, Jonas Schneider, Josh Tobin, Maciek
Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: Challenging
robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018.

[Platt, 1998] John C. Platt. Sequential minimal optimization:
A fast algorithm for training support vector machines.
Advances in Kernel Methods - Support Vector Learning,
208:185–208, 1998.

[Schmidhuber, 2013] Jürgen Schmidhuber. PowerPlay:
Training an increasingly general problem solver by contin-
ually searching for the simplest still unsolvable problem.
Frontiers in Psychology, 4:313, 2013.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd
International Conference on Machine Learning, pages
1889–1897, Lille, France, 2015.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA., 1998.

[Wang et al., 2017] Ziyu Wang, Victor Bapst, Nicolas Heess,
Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with expe-
rience replay. In Proceedings of 5th International Confer-
ence on Learning Representations, Toulon, France, 2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2342

