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Abstract—Complex objects are usually with multiple labels, and can be represented by multiple modal representations, e.g., the
complex articles contain text and image information as well as multiple annotations. Previous methods assume that the homogeneous
multi-modal data are consistent, while in real applications, the raw data are disordered, e.g., the article constitutes with variable number
of inconsistent text and image instances. Therefore, Multi-modal Multi-instance Multi-label (M3) learning provides a framework for
handling such task and has exhibited excellent performance. However, M3 learning is facing two main challenges: 1) how to effectively
utilize label correlation; 2) how to take advantage of multi-modal learning to process unlabeled instances. To solve these problems, we
first propose a novel Multi-modal Multi-instance Multi-label Deep Network (M3DN), which considers M3 learning in an end-to-end
multi-modal deep network and utilizes consistency principle among different modal bag-level predictions. Based on the M3DN, we
learn the latent ground label metric with the optimal transport. Moreover, we introduce the extrinsic unlabeled multi-modal
multi-instance data, and propose the M3DNS, which considers the instance-level auto-encoder for single modality and modified
bag-level optimal transport to strengthen the consistency among modalities. Thereby M3DNS can better predict label and exploit label
correlation simultaneously. Experiments on benchmark datasets and real world WKG Game-Hub dataset validate the effectiveness of
the proposed methods.

Index Terms—Semi-supervised Learning, Multi-Modal Multi-Instance Multi-label Learning, Modal consistency, Optimal Transport.

F

1 INTRODUCTION

W ITH the development of data collection techniques,
objects can always be represented by multiple modal

features, e.g., in the forum of famous mobile game “ Strike of
Kings”, the articles are with image and content information,
and they belong to multiple categories if they are observed
from different aspects, e.g., an article belongs to “Wukong
Sun” (Game Heroes) as well as “golden cudgel” (Game
Equipment) from the images, while it can be categorized
as “game strategy”, “producer name” from contents and
so on. The major challenge for addressing such problem is
how to jointly model multiple types of heterogeneities in a
mutually beneficial way. To solve this problem, multi-modal
multi-label learning approaches utilize multiple modal in-
formation, and require modal-based classifiers to generate
similar predictions, e.g., Huang et al. proposed a multi-
label conditional restricted boltzmann machine, which uses
multiple modalities to obtain shared representations under
the supervision [1]; Yang et al. learned a novel graph-based
model to learn both label and feature heterogeneities [2].
However, a real-world object may contain variable number
of inconsistent multi-modal instances, e.g., the article usu-
ally contains multiple images and content paragraphs, in
which each image or content paragraph can be regarded as
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an instance, yet the relationships between the images and
contents have not been marked as shown in Figure. 1.

Therefore, several Multi-modal Multi-instance Multi-
label methods have been proposed. Nguyen et al. proposed
M3LDA with a visual-label part, a textual-label part, and
a label topic part, in which the topic decided by visual
information and the topic decided by textual information
should be consistent [3]; Nguyen et al. developed a multi-
modal MIML framework based on hierarchical bayesian
network [4]. Nevertheless, there are two drawbacks of the
existing M3 models. In detail, previous approaches rarely
consider the correlations among labels, besides, M3 methods
are all supervised methods, which violate the intuition of
multi-modal learning using unsupervised data.

Thus, considering the label correlation, Yang and He
studied a hierarchical multi-latent space, which can lever-
age the task relatedness, modal consistency and the label
correlation simultaneously to improve the learning per-
formance [5]; Huang and Zhou proposed the ML-LOC
approach which allows label correlation to be exploited
locally [6]; Frogner et al. developed a loss function with
ground metric for multi-label learning, which is based on
the wasserstein distance [7]. Previous works mainly as-
sumed that there exists some prior knowledge such as label
similarity matrix or the ground metric [7, 8]. In reality, se-
mantic information among labels is indirect or complicated,
thus the confidence of the label similarity matrix or ground
metric is weak. On the other hand, considering the labeling
cost, there are many unlabeled instances. The most impor-
tant advantage of multi-modal methods is that they use un-
labeled data, e.g., co-training [9] style methods utilized the
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There is a great correlation between the degree of

difficulty and the level of strength of the heroes in

the King's glory. The heroes with more difficulty in

operation are more powerful in dominant species,

But of course this does not include the operation of

primary school students. Let's talk about the five

most powerful heroes ranked in the game.

This hero has the operation above the skill, especially

for the acceleration of the skills as well as the

prediction of the position of the enemy. All of these

need a strong sense of consciousness in order to truly

complete. Passive skill's maximum health damage

plus 2 skill repelling effects.

This hero is actually terribly difficult to operate, 3

skills will be played out after the absolute

invincibility, marked effects plus continuous use of

big move, basically the enemy is completely

incapable of this hero. The Luna that will play will

even be like a plug-in in the game.

Speaking of this hero, I think a lot of players are

indignant, but this hero really fierce in the game,

especially for the control of passive skills, there is a

reasonable skill of the cast position, in need of the

player's awareness very much .

There is a great correlation between the degree of difficulty and the level of strength

of the heroes in the King's glory. The heroes with more difficulty in operation are

more powerful in dominant species, But of course this does not include the

operation of primary school students. Let's talk about the five most powerful heroes

ranked in the game.

This hero has the operation above the skill, especially for the acceleration of the

skills as well as the prediction of the position of the enemy. All of these need a strong

sense of consciousness in order to truly complete. Passive skill's maximum health

damage plus 2 skill repelling effects.

This hero is actually terribly difficult to operate, 3 skills will be played out after the

absolute invincibility, marked effects plus continuous use of big move, basically the

enemy is completely incapable of this hero. The Luna that will play will even be like

a plug-in in the game.
Speaking of this hero, I think a lot of players are indignant, but this hero really

fierce in the game, especially for the control of passive skills, there is a reasonable

skill of the cast position, in need of the player's awareness very much .
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Fig. 1. An illustration of the M3 (Multi-Modal Multi-instance Multi-label)
Data in an article of WKG Game-Hub. Each article is with context
bag and image bag, each bag contains variable number of instances
(context paragraphs/images), while each article has multiple label repre-
sentations. It is notable that different modalities are heterogeneous, i.e.,
there have no congruent relationships between the articles and images.

complementary principle to label unlabeled data for each
other; co-regularize [10] style methods exploited unlabeled
multi-modal data with consistency principle. Meanwhile, it
is notable that previous proposed M3 based methods are
hard to adopt the unlabeled instances. Therefore, another
issue is how to bypass the limitation of M3 style methods
by using unlabeled multi-modal instances.

In this work, aiming at learning the label prediction
and exploring label correlation with semi-supervised M3
data simultaneously, we proposed a novel general Multi-
modal Multi-instance Multi-label Deep Network, which
models the independent deep network for each modality,
and imposes the modal consistency on bag-level prediction.
To better consider the label correlation, M3DN first adopts
Optimal Transport (OT) [11] distance to measure the quality
of prediction. The adoption provides a more meaningful
measure in multi-label tasks by capturing the geometric
information of the underlying label space. The raw data
may not calculate the raw ground metric confidently, thus
we cast the label correlation exploration as a latent ground
metric learning problem. Moreover, considering the unla-
beled data information, we propose the semi-supervised
M3DN (M3DNS). M3DNS utilizes the instance-level auto-
encoder to build the single modal network, and considers
the bag-level consistency among different unlabeled modal
predictions with the modified OT theory. Consequently,
M3DNS could automatically learn the predictors from d-
ifferent modalities and the latent shared ground metric.

The main contributions of this paper are summarized in
the following points:

• We propose a novel Multi-modal Multi-instance Multi-
label Deep Network (M3DN), which models the deep
independent network for each modality, and imposes
the modal consistency on bag-level prediction;

• We consider label correlation exploration as a laten-
t ground metric learning problem between different
modalities, rather than a fix ground metric using prior
raw knowledge;

• We utilize the extrinsic unlabeled data, by consider-
ing instance-level auto-encoder, and the bag-level con-

sistency among different unlabeled modal predictions
with the modified OT metric;

• We achieve superior performances on real-world appli-
cations, comprehensively evaluate on the performance
and obtain consistently superior performances stably.

Section 2 summarizes related work, our approaches are
presented in Section 3. Section 4 reports our experiments.
Finally, Section 5 gives the conclusion.

2 RELATED WORK

THE exploitation of multi-modal multi-instance multi-
label learning has attracted much attention recently. In

this paper, our method concentrates on deep multi-label
classification for semi-supervised inconsistent multi-modal
multi-instance data, and considers the label correlation us-
ing optimal transport technique. Therefore, our work is
related to M3 learning and the optimal transport.

Multi-modal learning deals with data from multiple
modalities, i.e., multiple feature sets. The goals are to
improve performance and reduce the sample complexity.
Meanwhile, multi-modal multi-label learning has been well
studied, e.g., Fang and Zhang proposed a multi-modal
multi-label learning method based on the large margin
framework [12]. Yang et al. modeled both the modal con-
sistency and the label correlation in a graph-based frame-
work [13]. The basic assumption behind these methods is
that multi-modal data is consistent. However, in real ap-
plications, the multi-modal data are always heterogeneous
on the instance-level, e.g., articles have variable number of
inconsistent images and text paragraphs, videos have vari-
able length of inconsistent audio and image frames. Articles
and videos only have consistency on the bag level, rather
than instance level. Thus, multi-modal multi-instance multi-
label learning is proposed recently. Nguyen et al. develope-
d a multi-modal MIML framework based on hierarchical
bayesian network [4]; Feng and Zhou exploited deep neural
network to generate instance representation for MIML and
it can be extended to multi-modal scenario. Nevertheless,
previous approaches rarely consider the confidence of label
correlation. More importantly, the current M3 approach-
es are supervised, which obviously lose the advantage of
multi-modal learning for processing unlabeled data.

Considering the label correlation, several multi-label
learning methods are proposed [15, 16, 17]. Recently, Op-
timal Transport (OT) [11] is developed to measure the
difference between two distributions based on given ground
metric, and it has been widely used in computer vision and
image processing fields, e.g., Qian et al. proposed a novel
method that exploits knowledge in both data manifold and
feature correlation [18]; Courty et al. proposed a regularized
unsupervised optimal transportation model to perform the
alignment of the representations [19]. However, previous
works mainly assumed that prior knowledge for cost matrix
already exists, and ignored deficiency of information or
domain knowledge. Thus, Cuturi and Avis, Zhao and Zhou
suggested to formulate the cost metric learning problem
with the side information [20, 21]. On the other hand,
existing M3 methods are almost supervised methods, while
multi-modal methods aim to utilize the complementary [9]
or consistency [10] principle using the unlabeled instance.
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Fig. 2. The flowchart of the M3DN, the raw articles can be divided into
two homogeneous modal bag with variable number of heterogeneous
instances, i.e., the image bag with four images and content bag with 5
text paragraphs. The instances of different modalities can be calculated
with different deep networks, and finally represented as x1

lp
or x2

lp
, the

output features are fully connected with the labels, and we can get the
bag-concept layer for different modalities. Eventually, we can acquire the
final prediction by mean-max pooling the bag-concept layer of different
modalities.

Thereby how to take unlabeled data into consideration
becomes a challenge.

3 PROPOSED METHOD

3.1 Notation

IN the multi-instance extension of the multi-modal
multi-label framework, we are given N bags of

instances, let Y = {y1,y2, · · · ,yNl} denotes the
label set, yi ∈ RL is the label vector of i−th bag,
where yi,j = 1 denotes positive class, and yi,j = 0
otherwise. On the other hand, suppose we are given K
modalities, without any loss of generality, we consider
two modalities in our paper, i.e., images and contents. Let
D = {([X1

1,X
2
1],y1), ([X1

2,X
2
2],y2), · · · , ([X1

Nl
,X2

Nl
],yNl),

([X1
Nl+1,X

2
Nl+1]), · · · , ([X1

Nl+Nu
,X2

Nl+Nu
])} represents

the training dataset, where Nl/Nu denotes the number of
labelled/unlabelled instances. X1

i = {x1
i,1,x

1
i,2, · · · ,x1

i,mi
}

denotes the bag representation of mi instances of
X1
i , similarly, X2

i = {x2
i,1,x

2
i,2, · · · ,x2

i,ni
} is the bag

representation of ni instances of X2
i , it is notable that bags

of different modalities may contain variable number of
instances.

The goal is to generate a learner to annotate new bags
based on its inputs X1,X2, e.g., annotate a new complex
article with its images and contents.

3.2 Optimal Transport
Traditionally, several measurements such as Kullback-
Leibler divergences, Hellinger and total variation, have been
utilized to measure the similarity between two distributions.
However, these measurements play little effect when the
probability space has geometrical structures. On the other
hand, Optimal transport [11], also known as Wasserstein
distance or earth mover distance [22], defines a reason-
able distance between two probability distribution over the
metric space. Intuitively, the Wasserstein distance is the
minimum cost of transporting the pile of one distribution

into the pile of another distribution, which formulates the
problem of learning the ground metric as minimizing the
difference between two polyhedral convex functions over a
convex set of distance matrices. Therefore, the Wasserstein
distance is more powerful in such situations by considering
the pairwise cost.
Definition 1. (Transport Polytope) For two probability vec-

tors r and c in the simplex
∑
L, U(r, c) is the transport

polytope of r and c, namely the polyhedral set of L× L
matrices,

U(r, c) = {P ∈ RL×L+ |P1L = r, P>1L = c}

Definition 2. (Optimal Transport) Given a L×L cost matrix
M , the total cost of mapping from r to c using a transport
matrix (or coupling probability) P can be quantified as
〈P,M〉. The optimal transport (OT) problem is defined
as,

dM (r, c) = min
P∈U(r,c)

〈P,M〉

When M belongs to the cone of metric matrices M,
the value of dM (r, c) is a distance [11] between r and c,
parameterized by M . In that case, assuming implicitly that
M is fixed and only r and c vary, we will refer to the
optimal transport distance between r and c. It is notable that
dM (r, c) is the cost of the optimal plan for transporting the
predicted mass distribution r to match the target distribu-
tion c. The penalty increases when more mass is transported
over longer distances, according to the ground metric M .
Theorem 1. dM defined in Def. 2 is a distance on

∑
L

whenever M is a metric matrix [11].

3.3 Multi-Modal Multi-instance Multi-label Deep Net-
work (M3DN)
Multi-modal Multi-instance Multi-label (M3) learning pro-
vides a framework for handling the complex objects, and we
propose a novel M3 based parallel deep network (M3DN).
Based on the M3DN, we can bypass the limitation of initial
label correlation metric using the Optimal Transport (OT)
theory, and further take advantage of unlabeled data con-
sidering the modal consistency. In this section, we propose
the Multi-Modal Multi-instance Multi-label Deep Network
(M3DN) framework. M3DN models deep networks for dif-
ferent modalities and imposes the modal consistency.

The raw articles contain variable number of heteroge-
neous multi-modal information, i.e., when no correspond-
ing relationships exist among each the contents and im-
ages, it is difficult to utilize the consistency principle with
previous multi-modal methods. Thus, we turn to utilize
the consistency among the bags of different modalities,
rather than the instance-level. Specifically, raw articles can
be divided into two modal bags of heterogeneous instances,
i.e., the image bag with 4 images and content bag with 5 text
paragraphs as shown in Fig. 2, while only the homogeneous
bags share the same multiple labels. Each instance x1(x2) in
different modal bag can be calculated among several layers
and can be finally represented as xlp1(xlp2).

Without any loss of generality, we use the convolu-
tional neural network for images and the fully connect-
ed networks for text. Then, the output features are fully
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Fig. 3. The schematic of the bag-concept layer. We can acquire the
bag-concept layer with the output feature representations of a bag of
instances, in which each column represents corresponding prediction
of each instance. Eventually, the final label prediction is calculated by
row-wise max pooling.

connected with the bag-concept layer. All parameters in-
cluding deep network facts and fully connected weights
can be organized as Θ1 = {θl1 , θl2 , · · · , θlp1−1

,W1}(Θ2 =
{θl1 , θl2 , · · · , θlp2−1

,W2}). Concretely, once the label predic-
tions of the instances for a bag Xv

i are obtained, we propose
a fully connected 2D layer (bag-concept layer) with the size
of mi(ni) × L as shown in Fig. 3, in which each column
represents corresponding prediction of each instance in the
image/content bag. Formally, for a given bag of instances
Xv
i , the (k, j)-th node in the 2D bag-concept layer represents

the prediction score between the instance xvi,j and the k−th
label. Therefore, the j-column has the following form of
activation:

ŷvj = g(Wvx
v
i,j + bv) (1)

Here, g(·) can be any convex activation function, and we use
softmax function here. In the bag-concept layer, we utilize
the row-wise max pooling: fv(i) = max(ŷi,·). The final
prediction value is:f = f1+f2

2 .

3.4 Explore Label Correlation
However, fully connection to the label output rarely con-
siders the relationship among labels. Recently, Optimal
Transport (OT) theory [11] is used in multi-label learning,
which captures geometric information of the underlying
label space. According to the Def. 2 and Def. 1, the loss
function implied in the parallel network structure can be
formulated without any loss of generality as:

min
Pv∈U(f(Xvi ),yi)

2∑
v=1

N∑
i=1

〈Pv,M〉

s.t. U(f(Xv
i ),yi) = {Pv ∈ RL×L

+ |Pv1L = f(Xv
i ), P>v 1L = yi}

(2)

where M is the shared latent cost matrix. However, this
method requires prior knowledge to construct the cost ma-
trix M . However, in reality, indirect or incomplete informa-
tion among labels leads to weak cost matrix M and poor
classification performance.

Therefore, we can define the process of learning cost met-
ric as an optimization problem. Optimizing the cost metric
directly is difficult and it consumes O(L2) constraints. Thus,

[20, 21] proposed to formulate the cost metric learning prob-
lem with the side information, i.e., the label similarity matrix
S as [21], and [20] has proved that the cost metric matrix M ,
which computes corresponding optimal transport distance
dM between pairs of labels, agrees with the side informa-
tion. More precisely, this criterion favors matrixM , in which
the distance dM (r; c) is small for pairs of similar histograms
r and c (corresponding S(r; c) is large) and large for pairs
of dissimilar histograms (corresponding S(r; c) is small).
Consequently, optimizing M can be turned to optimize the
S. Finally, the goal of M3DN can be turned to learn label
predictor and explore label correlation simultaneously.

In detail, we first introduce the connection between
nonlinear transformation and pseudo-metric:
Definition 3. With the nonlinear transformation ∅(·), the Eu-

clidean distance after the transformation can be denoted
as:

D∅(r, c) = ‖∅(r)− ∅(c)‖2.

And [23] proved that D∅ satisfies all properties of a well-
defined pseudo-metric in the original input space.

Theorem 2. For a pseudo-metric M defined in Def. 3 and
histograms r, c ∈

∑
L, the function (r, c)→ 1r 6=cdM (r, c)

satisfies all four distance axioms, i.e., non-negativity,
symmetry, definiteness and sub-additivity (triangle in-
equality) as in [20].

Thus, M can be turned to learn the kernel S defined by
the non-linear transformation ∅(·):

Sij = S(yi,yj) = ∅(yi)>∅(yj) (3)

where the yi represents the label vector of i−th instance.
Besides, it is notable that the cost matrix M is computed as
Mij = D2

∅(yi,yj), while the kernel S is defined as Eq. 3.
Thus, the relation between M and S can be derived as:

Mij = Sii + Sjj − 2Sij . (4)

The non-linear mapping preserves pseudo metric properties
in Def. 3, therefore it only needs a projection to positive
semi-definite matrix cone when learning the kernel matrix
S. Thus, we can avoid the projection to metric space which
is complicated and costly. Therefore, we propose to conduct
the label predictions and label correlation exploration si-
multaneously based on substituted optimal transport, the
combination of Eq. 4 and Eq. 2 can be reformulated as:

min
S,Pv∈U(f(Xvi ),yi)

2∑
v=1

N∑
i=1

〈Pv,M〉+ λ1r(S, S0)

s.t. U(f(Xv
i ),yi) = {Pv ∈ RL×L

+ |Pv1L = f(Xv
i ), P>v 1L = yi}

S ∈ S+, Mij = Sii + Sjj − 2Sij

(5)

where λ1 is a trade-off parameter, S+ denotes the set of
positive semi-definite matrix. We adopt OT distance as
the loss between prediction and groundtruth, and then
incorporate the ground metric learning by kernel biased
regularization in 2nd term, where λ1r(S, S0) can be any
convex regularization. The regularizer S+ × S+ → R+

allows us to exploit prior knowledge on the kernelized
similar matrix, encoded by a reference matrix S0. Since
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Fig. 4. The flowchart of the M3DNS consider unlabeled data. Similar to
M3DN, the raw articles can be divided into two homogeneous modal
bags with variable number of heterogeneous instances. The instances
of different modalities can be calculated with different deep networks,
and finally represented as x1

lp
or x2

lp
. The output features of labeled

data are fully connected with the labels, while we add decoder networks
for each modality to process the unlabeled data. On the other hand, we
can get bag representations of all data from the bag-concept layer for
different modalities. Eventually, we can acquire the final predictions of
different modalities and calculate the semi-supervised loss.

typically no strong prior knowledge is available, we use
S0 = Y ′ × Y . Following common practice [24], we utilize
the asymmetric Burg divergence, which yields:

r(S, S0) = tr(SS−1
0 )− logdet(SS−1

0 )− p

where p is the balance parameter, and we set as 1 in our
experiments.

3.5 Consider Unsupervised Data
M3DN provides a framework for handling complex multi-
modal multi-instance multi-label objects, and it considers
the label correlation as an optimization problem in Eq. 8.
The limitation of manual labeling is that, in real application,
it leaves over large number of unlabeled data. In other
words, unlabeled data is readily available, while labeled
data tends to be of smaller size. The basic intuition of multi-
modal learning is to utilize the complement or consistent
information of unlabeled data, to get better performance. Yet
M3DN leaves the unlabeled data without consideration, and
this obviously loses the advantage of multi-modal learning.
Consequently, how to extend M3DN to semi-supervised
scenario is an urgent problem.

To consider the extrinsic consistency, i.e., the unlabeled
information of different modalities, we propose a semi-
supervised M3DN (M3DNS) methods for learning each
modal predictors. Different from previous co-regularize
style methods using instance-level consistency principle,
M3 learning only has bag-level consistency among differ-
ent modalities, rather than instance-level consistency. Thus,
there exist two challenges in using unlabeled data in M3
learning: 1) how to utilize different modal instance-level
unlabeled data; 2) how to utilize different modal bag-level
consistency of unlabeled data.

To solve this problem, M3DNS utilizes the instance-level
unlabeled instances with auto-encoder and bag-level unla-
beled instances with modified OT. As shown in Fig. 4, since
different modal bags include various number of instances,

and the correspondences among different modal instances
are unknown, we turn to utilize the auto-encoder based
networks to reconstruct the input instances for different
modalities, which can build more robust encoder networks.
On the one hand, bag-level correspondences are known,
thereby for the bag-level unlabeled data, we utilize modified
OT consistency term to constraint different modalities.

Specifically, each modal ordinal network can be replaced
by auto-encoder (AE) network, which minimizes the re-
construction error of all the instances, i.e., auto-encoder
CNN for image modality and auto-encoder fully connected
network for content modality. Without any loss of generality,
AE can be formulated as square loss:

AE(xk) = min
Θfv ,Θrv

Nu∑
i=Nl+1

‖xiv − rv(fv(xiv ))‖2F (6)

where Θfv ,Θrv are the weight parameters of encoder net-
work fv and decoder network rv of the v−th modality.

On the other hand, Eq. 2 only utilizes the supervised
information, while neglect the unlabeled modal bag-level
correspondences. Thus, with the unlabeled information, Eq.
2 can be reformulated as:

min
Pv∈U,P̂∈Û

2∑
v=1

Nl∑
i=1

〈Pv,M〉+

Nu∑
i=1

〈P̂ ,M〉

s.t. U = {Pv ∈ RL×L
+ |Pv1L = f(Xv

i ), P>v 1L = yi}
Û = {P̂ ∈ RL×L

+ |P̂1L = f(X1
i ), P̂>1L = f(X2

i )}

(7)

where P̂ is the pseudo transport matrix (or coupling prob-
ability) for unlabeled data. The extra unlabeled modal
predictions can be regarded as the pseudo labels in P̂
for constructing more discriminative predictors. In detail,
when learning one modal predictor, the predictions of other
modalities can act as the pseudo label, which can assist
learning more discriminative predictors with unlabeled da-
ta. Thus M3DNS can well utilize the bag-level consistency
among different modalities. Therefore, M3DNS can acquire
more robust ground metricM , which potentially utilizes the
consistency between different modal bags.

As a result, with the unlabeled information, we can
combine the Eq. 7 and Eq. 6. The semi-supervised M3DN
method (M3DNS) can be given as:

min
Pv∈U,P̂∈Û

2∑
v=1

Nl∑
i=1

〈Pv,M〉+
Nu∑

i=Nl+1

AE(xvi ) +
Nu∑
i=1

〈P̂ ,M〉

+ λ1r(S, S0)

s.t. U = {Pv ∈ RL×L+ |Pv1L = f(Xv
i ), P>v 1L = yi}

Û = {P̂ ∈ RL×L+ |P̂1L = f(X1
i ), P̂>1L = f(X2

i )}
S ∈ S+, Mij = Sii + Sjj − 2Sij

(8)

3.6 Optimization

The P̂ is similar with the P when considering the extra
modal predictions as the pseudo label. Thus, we analyze the
optimization of the Eq. 5, and Eq. 8 has similar solution.
In detail, The 1st term in Eq. 5 involves the product of
predictors f and cost matrix S, which makes the formula-
tion not joint convex. Consequently, the formulation cannot
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Algorithm 1 The pseudo code of learning the predictors
Input:
• Sampled Batch Dataset: {[X1

i , X
2
i ],y}ni=1, kernelized

similar matric St, current mapping f1, f2

• Parameter: λ
Output:
• Gradient of the target mapping: ∂L/∂f1, ∂L/∂f2

1: Calculate M ← Eq. 4
2: Initialize K = exp(−λM − 1), ∇ ← 0
3: for v = 1, 2 do
4: for i = 1, 2, · · · , n do
5: uvi ← 1
6: while uvi not converged do
7: uvi ← fv(x

v
i )� (K(yvi �K>uvi ))

8: end while
9: ∇fv ← ∇fv +

loguvi
λ − loguvi

>1
λL · 1

10: end for
11: end for

be optimized easily. We provide the optimization process
below:

Fix S, Optimize f1, f2: When updating f1, f2 with a
fixed S, the 2nd term of Eq. 5 is irrelevant to f1, f2, and
the Eq. 5 can be reformulated as follows:

min
Pv∈U(f(Xvi ),yi)

2∑
v=1

N∑
i=1

〈Pv,M〉

s.t. U(f(Xv
i ),yi) = {Pv ∈ RL×L

+ |Pv1L = f(Xv
i ), P>v 1L = yi}

(9)

The empirical risk minimization function of Eq. 9 can be
optimized by stochastic gradient descent. However, it re-
quires to evaluate the descent direction for the loss, with
respect to the predictor f . Computing the exact subgradient
is quite costly, it needs to solve a linear program with O(L2)
constraints, which are with high expense with the L (the
label dimension) increase.

Similar to [7], the loss is a linear program, and the sub-
gradient can be computed using Lagrange duality. There-
fore, we use primal-dual approach to compute the gradient
by solving the dual LP problem. From [25], we know that
the dual optimal α is, in fact, the subgradient of the loss of
training sample (Xv,y) with respect to its first argument
fv . However, it is costly to compute the exact loss directly.
In [26], Sinkhorn relaxation is adopted as the entropy regu-
larization to smooth the transport objective, which results
in a strictly convex problem that can be solved through
Sinkhorn matrix scaling algorithm, at a speed that is faster
than that of transport solvers [26].

For a given training bag of instances ([X1,X2],y), the
dual LP of Eq. 9 is:

dM (fv(X
v), y) = max

α,β∈CM
α>f(Xv

i ) + βy, (10)

where CM = {α, β ∈ RL : αi + βj < Mi,j}.

Definition 4. (Sinkhorn Distance) Given a L×L cost matrix
M , and histograms (r, c) ∈

∑
L. The Sinkhorn distance

Algorithm 2 The pseudo code of M3DN
Input:
• Dataset: D = {[X1

i , X
2
i ],y}Ni=1

• Parameter: λ1, λ
• maxIter: T , learning rate: {αt}Tt=1

Output:
• Classifiers: f1, f2

• Label similar matric: S,M
1: Initialize S0 ← Y ′ × Y
2: while true do
3: Create Batch: Randomly pick up n examples from D

without replacement
4: Calculate St+1 ← Eq. 13, Eq. 14
5: Calculate ∂L/∂f t1, ∂L/∂f

t
2 ← Alg. 1

6: Weight Propagation step: Obtain the derivative
∂f t1/∂Θ1, ∂f t2/∂Θ2;

7: Update parameters Θ1,Θ2

8: Funct+1
obj ← calculate obj. value in Eq. 5 with F t+1

9: if ‖Funct+1
obj − Functobj‖ ≤ ε or t ≥ T then

10: Break;
11: end if
12: end while

is defined as:

dλM (r, c) = min
Pλ∈U(r,c)

〈Pλ,M〉

Pλ = arg min
P∈U(f(Xvi ),yi)

〈P,M〉 − 1

λ
H(P )

(11)

where H(P ) = −
∑L
i=1

∑L
j=1 pij logpij is the entropy of P ,

and λ > 0 is entropic regularization coefficient.
Based on the Sinkhorn theorem, we conclude that the

transportation matrix can be written in the form of P ? =
diag(u)Kdiag(v), whereK = exp(−λM−1) is the element-
wise exponential of λM − 1. Besides, u = exp(λα) and v =
exp(λβ).

Therefore, we adopt the well-known Sinkhorn-Knopp
algorithm, which is used in [20, 26] to update the target
mapping fv given the ground metric. fv can be defined as
Eq. 1. The detailed procedure is summarized in Algorithm 1,
then with the help of Back Propagation technique, gradient
descent could be adopted to update the network parameter-
s.

Fix f1, f2, Optimize S:
When updating S with the fixed f1, f2, the sub-problem

can be rewritten as following:

min
S

2∑
v=1

N∑
i=1

〈P,M〉+ λ1r(S, S0)

s.t. K ∈ S+, Mij = Sii + Sjj − 2Sij .

(12)

This sub-problem has closed-form solution. The differential
can be formulated as:

S = (P̄ + S−1
0 − p)−1 (13)

where

P̄ =


− 2Pij , when i 6= j,
L∑
k 6=i

(Pik + Pki), when i = j
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TABLE 1
Comparison results (mean ± std.) of M3DN/M3DNS with compared methods on benchmark datasets.

Methods Coverage ↓ Macro AUC ↑

FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

M3LDA 12.345±.214 11.620±.042 47.400±.622 6.670±.205 .532±.015 .526±.003 .507±.015 .509±.012
MIMLmix 17.114±1.024 15.720±.543 64.130±1.121 14.167±1.140 .472±.018 .554±.096 .471±.019 .493±.020

CS3G 8.168±.137 7.153±.178 50.138±2.146 8.028±.907 .837±.007 .817±.006 .717±.011 .530±.022

DeepMIML 9.242±.331 8.931±.421 27.358±.654 8.369±.119 .766±.035 .795±.022 .827±0.006 .823±.005
M3MIML 11.760±1.121 9.125±.553 42.420±.2.696 5.210±.920 .687±.087 .724±.033 .650±.032 .649±.084
MIMLfast 12.155±.913 12.711±.315 41.048±.831 8.634±.028 .524±.050 .485±.009 .506±.010 .522±.008

SLEEC 9.568±.222 9.494±.105 47.502±.448 7.390±.275 .706±.007 .675±.007 .661±.014 .620±.006
Tram 7.959±.187 8.156±.163 28.417±.945 9.934±.026 .780±.009 .746±.007 .776±.011 .493±.007
ECC 14.818±.086 14.229±.258 47.124±.675 7.941±.194 .532±.013 .484±.009 .630±.023 .634±.009
ML-KNN 10.379±.115 9.523±.072 27.568±.066 4.610±.062 .591±.008 .723±.006 .823±.003 .736±.008
RankSVM 11.439±.196 11.941±.078 37.300±.835 8.292±.054 .512±.019 .499±.009 .521±.033 .501±.001
ML-SVM 11.311±.158 11.755±.270 39.258±.294 7.890±.020 .503±.010 .502±.010 .497±.016 .561±.001

M3DN 7.502±.129 6.936±.065 26.921±.320 4.599±.050 .822 ±.009 .798±.002 .811±.004 .826±.006
M3DNS 3.947±.307 4.214±.202 6.119±.262 2.764±.071 .892±.004 .876±.003 .838±.003 .898±.008

Methods Ranking Loss ↓ Example AUC ↑

FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

M3LDA .301±.009 .377±.002 .247±.001 .257±.006 .707±.008 .630±.005 .770±.006 .652±.009
MIMLmix .609±.036 .675±.012 .609±.040 .583±.081 .391±.036 .325±.012 .391±.040 .417±.082

CS3G .118±.005 .155±.005 .202±.009 .170±.032 .881±.005 .835±.005 .798±.009 .642±.032

DeepMIML .149±.012 .166±.017 .089±.002 .164±.007 .791±.044 .834±.017 .911±.002 .835±.007
M3MIML .271±.053 .250±.011 .191±.016 .284±.030 .729±.053 .751±.011 .811±.017 .717±.031
MIMLfast .275±.033 .435±.021 .194±.006 .430±.009 .724±.033 .626±.013 .811±.005 .646±.009

SLEEC .316±.009 .413.006 .455±.005 .512±.008 .843±.003 .761±.005 .796±.002 .713±.008
Tram .132±.004 .203±.007 .117±.004 .456±.004 .867±.004 .797±.007 .883±.005 .591±.001
ECC .804±.024 .928±.013 .461±.009 .617±.020 .642±.005 .529±.012 .775±.005 .697±.013
ML-KNN .235±.005 .264±.004 .097±.002 .176±.003 .764±.005 .736±.004 .903±.001 .824±.003
RankSVM .236±.006 .344±.001 .199±.098 .323±.008 .763±.006 .656±.001 .801±.098 .677±.001
ML-SVM .232±.005 .337±.009 .179±.004 .314±.002 .768±.005 .662±.009 .822±.004 .686±.002

M3DN .108±.003 .151±.002 .085±.002 .117±.002 .891±.003 .850±.003 .915±.003 .883±.001
M3DNS .108±.001 .142±.002 .112±.003 .119±.003 .899±.004 .858±.005 .898±.008 .881±.006

Methods Average Precision ↑ Micro AUC ↑

FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

M3LDA .371±.005 .311±.007 .399±.007 .338±.005 .693±.006 .609±.002 .773±.005 .657±.008
MIMLmix .207±.038 .183±.008 .213±.041 .167±.020 .436±.024 .438±.060 .434±.026 .472±.015

CS3G .749±.008 .622±.006 .542±.012 .597±.031 .867±.005 .827±.006 .738±.007 .557±.021

DeepMIML .621±.027 .619±.025 .633±.005 .583±.008 .835±.009 .802±.017 .914±.002 .852±.003
M3MIML .423±.056 .490±.020 .446±.030 .443±.076 .745±.034 .707±.017 .816±.020 .762±.020
MIMLfast .432±.064 .339±.013 .413±.005 .365±.021 .712±.022 .540±.010 .745±.012 .630±.005

SLEEC .608±.006 .473±.010 .565±.003 .392±.007 .824±.004 .736±.005 .795±.002 .701±.005
Tram .653±.011 .523±.008 .494±.007 .336±.002 .842±.003 .782±.007 .883±.006 .554±.002
ECC .416±.012 .278±.011 .462±.007 .438±.014 .646±.004 .514±.008 .779±.005 .702±.009
ML-KNN .398±.006 .403±.010 .585±.002 .439±.006 .752±.005 .729±.003 .905±.002 .817±.004
RankSVM .467±.005 .364±.004 .427±.066 .401±.001 .748±.005 .649±.004 .791±.093 .680±.003
ML-SVM .466±.006 .367±.006 .441±.007 .443±.007 .753±.004 .656±.009 .825±.004 .724±.001

M3DN .719±.006 .634±.003 .680±.005 .691±.001 .876±.003 .834±.001 .918±.002 .877±.003
M3DNS .698±.002 .637±.007 .691±.004 .634±.003 .858±.003 .863±.004 .877±.006 .878±.005

Then, we project S back to positive semi-definite cone
as:

S = Proj(S) = Umax(σ, 0)U> (14)

where Proj is a projection operator, U and σ correspond to
the eigenvectors and eigenvalues of S. The whole procedure
is summarized in Algorithm 2.

Eq. 8 can be easily optimized as M3DN with GCD
method. Without any loss of generality, in semi-supervised
scenario, the extra modal prediction f(X3−i) can be regard-
ed as the pseudo label similar to the y in the supervised term
when updating f1, f2. S can be updated in similar form,

where

P̄ =


− 2(Pij + P̂ij), when i 6= j,
L∑

k 6=i

(Pik + Pki + P̂ik + P̂ki), when i = j

4 EXPERIMENTS

4.1 Datasets and Configurations
M3DN/M3DNS can learn more discriminative multi-modal
feature representation on bag level for supervised/semi-
supervised multi-label classification, while considering the
label correlation among different labels. Thus, in this sec-
tion, we provide empirical investigations and performance
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TABLE 2
Comparison results (mean ± std.) of M3DN/M3DNS with compared methods on WKG Game-Hub dataset. 6 commonly used criteria are

evaluated. The best performance for each criterion is bolded. ↑ / ↓ indicates the larger/smaller the better of the criterion.

Methods Content Modality

Coverage ↓
(×102)

Macro
AUC ↑

Ranking
Loss ↓

Example
AUC ↑

Average
Precision ↑

Micro
AUC ↑

M3LDA .466±.020 .470±.015 1.000±1.000 .360±.056 .098±.001 .381±.036
MIMLmix .334±.003 .507±.002 .445±.006 .539±.001 .111±.001 .540±.003

CS3G .362±.002 .593±.001 .340±.003 .659±.003 .371±.002 .614±.007

DeepMIML .341±.010 .533±.018 .415±.027 .186±.025 .600±.030 .634±.014
M3MIML N/A N/A N/A N/A N/A N/A
MIMLfast .363±.040 .496±.050 .414±.056 .585±.056 .162±.033 .567±.040

M3DN .258±.006 .761±.016 .276±.008 .723±.008 .329±.002 .753±.007
M3DNS .246±.002 .763±.001 .255±.002 .744±.002 .332±.001 .763±.001

Methods Image Modality

Coverage ↓
(×102)

Macro
AUC ↑

Ranking
Loss ↓

Example
AUC ↑

Average
Precision ↑

Micro
AUC ↑

M3LDA .466±.010 .455±.054 1.000±.000 .359±.019 .098±.001 .384±.030
MIMLmix .329±.002 .502±.003 .427±.005 .557±.001 .114±.001 .560±.002

CS3G .395±.004 .545±.001 .405±.003 .595±.003 .304±.003 .563±.006

DeepMIML .383±.006 .512±.002 .515±.009 .484±.009 .121±.001 .488±.018
M3MIML N/A N/A N/A N/A N/A N/A
MIMLfast .402±.070 .512±.061 .433±.059 .566±.059 .170±.037 .547±.058

M3DN .175±.001 .896±.001 .210±.002 .789±.002 .402±.001 .586±.000
M3DNS .164±.001 .910±.003 .196±.001 .803±.001 .407±.000 .869±.000

Methods Overall

Coverage ↓
(×102)

Macro
AUC ↑

Ranking
Loss ↓

Example
AUC ↑

Average
Precision ↑

Micro
AUC ↑

M3LDA .466±.008 .468±.026 1.000±.000 .359±.030 .098±.001 .383±.017
MIMLmix .358±.003 .504±.002 .488±.007 .496±.001 .101±.001 .519±.003

CS3G .361±.004 .589±.003 .346±.004 .653±.004 .365±.001 .612±.004

DeepMIML .362±.005 .518±.002 .488±.008 .512±.008 .125±.001 .524±.018
M3MIML N/A N/A N/A N/A N/A N/A
MIMLfast .393±.060 .509±.064 .430±.052 .596±.052 .170±.036 .549±.054

SLEEC .603±.013 .518±.004 .756±.007 .493±.005 .150±.006 .583±.006
Tram .712±.005 .429±.008 .109±.010 .545±.003 .164±.008 .464±.006
ECC .622±.017 .630±.002 .632±.009 .530±.017 .198±.002 .592±.011
ML-KNN .675±.020 .712±.006 .175±.003 .802±.015 .265±.004 .814±.001
RankSVM N/A N/A N/A N/A N/A N/A
ML-SVM .742±.023 .561±.002 .223±.009 .782±.008 .234±.003 .793±.002

M3DN .163±.003 .924±.002 .190±.004 .809±.004 .401±.003 .866±.003
M3DNS .149±.002 .933±.001 .180±.009 .828±.003 .409±.001 .880±.001

comparisons of M3DN on multi-label classification and label
correlation. Without any loss of generality, we experiment
on 4 public real-world datasets, i.e., FLICKR25K [27], IAPR
TC-12 [28], MS-COCO [29] and NUS-WIDE [30]. Besides,
we experiment on 1 real-world complex article dataset, i.e.,
WKG Game-Hub. FLICKR25K: consists of 25,000 images
collected from Flickr website, and each image is associ-
ated with several textual tags. The text for each instance
is represented as a 1386-dimensional bag-of-words vector.
Each point is manually annotated with 24 labels. We s-
elect 23,600 image-text pairs that belong to the 10 most
frequent concepts; IAPR TC-12: consists of 20,000 image-
text pairs which annotate 255 labels. The text for each point
is represented as a 2912-dimensional bag-of-words vector;
NUS-WIDE: contains 260,648 web images, and images are
associated with textual tags where each point is annotated

with 81 concept labels. We select 195,834 image-text pairs
that belong to the 21 most frequent concepts. The text for
each point is represented as a 1000-dimensional bag-of-
words vector; MS-COCO: contains 82,783 training, 40,504
validation image-text pairs which belong to 91 categories.
We select 38,000 image-text pairs that belong to the 20 most
frequent concepts. The text for each point is represented
as a 2912-dimensional bag-of-words vector; WKG Game-
Hub: consists of 13,750 articles collected from the Game-
Hub of “ Strike of Kings” with 1744 concept labels. We select
11,000 image-text pairs that belong to the 54 most frequent
concepts. Each article contains several images and content
paragraphs, and the text for each point is represented as a
300-dimensional w2v vector.

We run each compared method 30 times for all datasets,
and then randomly select 70% for training and the remain-
ing are for test. For all the training examples, we randomly
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Fig. 6. Objective function value convergence and corresponding classification performance (Coverage, Ranking Loss, Average Precision, Macro
AUC, example AUC and Micro AUC) vs. number of iterations of M3DN and M3DNS

Fig. 5. Illustration of learned label correlations for different datasets,
and the value has been scaled in [-1,1]. Red color indicates a positive
correlation, and blue one indicates a negative correlation.

choose 30% as the labeled data, and the other 70% as
unlabeled ones as [31]. For the 4 benchmark datasets, each
image is divided into 10 regions using [32] as image bag,
while the corresponding text tags are also separated into
several independent tags as text bag. For the WKG Game-
Hub dataset, each article is denoted as an image bag and
a content bag. The deep network for image encoder is im-
plemented the same as Resnet-18 [33]. We run the following
experiments with the implementation of an environment on
NVIDIA K80 GPUs server, and our model can be trained
around 290 images per second with a single K80 GPGPU.
In the training phase, the parameters λ1 is selected by 5-
fold cross validation from {10−5, 10−4, · · · , 104, 105} with
further splitting on only the training datasets, i.e., there
is no overlap between the test set and the validation set
for parameter picking up. Empirically, when the variation
between the objective values of Eq. 13 is less than 10−6 in
iteration, we treat M3DN or M3DNS converged.

4.2 Compared methods

In our experiments, first, we compare our methods
with multi-modal multi-instance multi-label methods, i.e.,
M3LDA [3], MIMLmix [4]. Besides, M3DN can be degen-
erated into different settings, we also compare with multi-
modal multi-label methods, i.e., CS3G [34]; multi-instance
multi-label methods, i.e., DeepMIML [14], M3MIML [35],
MIMLfast [36]. Moreover, we compare our methods with
multi-label methods, i.e., SLEEC [37], Tram [38], ECC [39],
ML-KNN [40], RankSVM [41], ML-SVM [42]. Specifically, for
multi-modal multi-label methods, we calculate the average
of all instances’ representations as the bag-level feature rep-
resentation. In the multi-instance multi-label methods, all
modalities of a dataset are concatenated together as a single
modal input. As to the multi-label learners, we first calcu-
late bag-level feature representation for different modalities
independently, then we concatenate all modalities together
as a single modal input. As to the semi-supervised sce-
nario, considering that existing M3 methods are supervised
methods, we compare our methods with semi-supervised
multi-modal multi-label methods, i.e., CS3G [34]; and semi-
supervised multi-label methods, i.e., Tram [38], COINS [17],
iMLU [43].

4.3 Benchmark Comparisons

M3DN is compared with other methods on 4 benchmark
datasets to demonstrate the abilities. Results of compared
methods and M3DN/M3DNS on 6 commonly used criteria
are listed in Tab. 1. The best performance for each criterion
is bolded. ↑ / ↓ indicates that the larger/smaller, the better
of the criterion. From the results, it is obvious that our
M3DN/M3DNS approaches can achieve the best or second
performance on most datasets with different performance
measures. Therefore the M3DN/M3DNS approach are high-
ly competitive multi-modal multi-label learning methods.
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Zhuge

Liang

Zhuge Liang has always been loved by the majority of players

since the beginning of the game. It not only has super high value,

but also has superior output ability and unresolved recruiting

skills. The Wizard is not a surname.

Wizard
The Book of Sage adds a high amount of spell attack, and later 

equipment damages extremely high.

Intensity

Line skills: Zhuge Liang is a relatively dominant hero on the 

line. Both skill and passivity can consume enemy heroes. When 

using a skill, he is close to the soldier to release. This can 

passively stack three layers. 

Battlefront

Cooperation

Team fighting skills: Zhuge Liang and Gao Cao are different 

from this type of explosive mage. Zhuge Liang can continue to 

play high damage in team battles, and Gao Cao is instantly 

dismembering the enemy. They have their own strengths.

Arthur

Arthur is a must-have for novice heroes. Arthur, who has meat

output, is also an enemy nightmare. Silent skills are also rare

control skills in the WKG.

Wizard

Li Bai

Game 

Information

The first place in the Wizard's winning percentage list is Gao

Yang. The high-graduation group AOE damage is really terrible,

and the CD short-term movement is likely to open two big

moves in the group battle.

Di Renjie's second skill release gives Di Renjie a very strong

survivability, no longer as before, being controlled for a set of

seconds.

Look at the first place in the assassin's winning list, which was

occupied by Li Bai.

These are all of today's content. If you want to see more

information, please click on the latest game information.

Guan Gong

Cai Wenji

Da Qiao

Equipments

As one of the few heroes with mounts in the King's Canyon,

how should Guan Gong play?

Cai Wenji can easily interrupt Guan Gong’s charge status, and

Cai Wenji’s frequent dizziness makes Guan Gong unable to run.

Da Qiao’s silence can also make Guan Yu, who has just started

off, stop again. It’s difficult to enter the assault state and can’t

enter Guan Gong’s state of charge. The power of the skill will be

greatly reduced.

Early stage: resistance boots + armored bow. Mid-term:

ominous signs + tyrants reload.

Guan Gong

Wizard

Han Xin

Bianque. Positioning: Wizard / Auxiliary Features: Remote

consumption/recovery. Very recently, Bianque has been rectified.

One skill is to store three pill bottles, which can better consume

the enemy!

Jiang ziya. Positioning: Wizard / Auxiliary Special: Group

control / remote consumption. As a mage and an assistant,

there are too many things that are lacking. Fortunately, it has

been adjusted in the near future, and the big move can

effectively attack the defensive tower, and even the move is

more convenient.

Han Xin. Positioning: Assassin/Warrior Special: Sudden. Han

Xin’s call to the summoner who was going to play was really

very powerful. After being weakened, Han Xin’s requirements

for operation were even higher!

Zhou 

Zhuang

Liu Chan

Li Bai

Ne Zha

Seventh place: Zhuang Zhou - Kun. It is said that Zhuang Zhou

is a hero who rides a fish, but his mount is not a fish, but a Kun.

Fourth place: Liu Chan - the agency panda. Liu Chan’s “driver”

is a high-tech product and an “organ panda”. Liu Chan’s “driver”

is also connected with the skills.

Third place: Taiyi Zhenren - stove. The background of Taiyi

Zhenren in the game is a royal certified alchemist, so his

"driver" is a stove. The most powerful thing about this stove is

that it can resurrect teammates. Who wouldn't like this strong

"driver"?

First place: Ne Zha - hot wheels. The "driver" of the singer is a 

bit special compared to the previous ones, because his "driver" 

is a hot wheel, which is one of the magic weapons.

Genghis 

Khan

Mo Xie

Li Bai

Wizard

The WKG Genghis Khan is a Wizard, which relies mainly on

skills, while shooters rely mainly on level A. Compared with the

longer developmental period of AD, the Wizard usually has a

chance after four levels. Whether it is catching people or

consuming, obviously the Master is better than AD.

WKG Mo Xie. To really talk about it, AD plays a higher role in

the later stage than the Wizard. The output of the latter is mainly

based on AD. In the latter stage, the best situation is to kill the

opposite side of the back. In fact, it is to protect our back.

WKG Li Bai. Although the damage of AD is lower than that of

the Wizard, AD is also indispensable. Although there is no

lineup of AD in the KPL, is it necessary for everyone to have a

partiality?

Fig. 7. Sample test complex articles predictions of the WKG Game-Hub. Left is the image bag, middle are label predictions, right is the context bag.

4.4 Complex Article Classification

In this subsection, M3DN approach is tested on the real-
world complex article classification problem, i.e., WKG
Game-Hub dataset. There are 13,570 articles in collection,
with image and text modalities to promote classification.
Specifically, each article contains variable number of images
and text paragraphs. Thus, each article can be divided into
both image bag and text bag. Comparison results (inde-
pendent modalities and overall) against compared meth-
ods are listed in Tab. 2, where notation “N/A” means
the method cannot give a result in 60 hours. We use the
same 6 measurement criteria as in previous subsection, i.e.,
Coverage, Ranking Loss, Average Precision, Macro AUC,
example AUC and Micro AUC. It is notable that multi-
label methods concatenate all of the modal features, which
have no independent modal classification performance. The
results show that on both of the independent modalities and
overall prediction, our M3DN and M3DNS approaches can
get the best results over all criteria. The statistics validates
the effectiveness of our method when solving the complex
article classification problem.

4.5 Label Correlations Exploration

Since M3DN can learn label correlation explicitly, in this
subsection, we examine effectiveness of M3DN in label cor-
relations exploration. Due to page limitation, the exploration
is conducted on the real-world dataset WKG Game-Hug. We

randomly sampled 27 labels, with the learned ground metric
shown in Figure 5, and scaled the original value in cost
matrix into [−1, 1]. Red color indicates a positive correlation,
and blue indicates a negative correlation. We can see that
the learned pairwise cost accords with intuitions. Taking a
few examples, the cost between Overwatcha and Tencent
indicates a very small correlation, and this is reasonable as
the game Overwatch has no correlation with Tencent. While
the cost between (Zhuge Liang, Wizard) indicates a very
strong correlation, since Zhuge Liang belongs to the wizard
role in the game.

4.6 Empirical Investigation on Convergence
To investigate the convergence of M3DN iterations empiri-
cally, we record the objective function value, i.e., the value of
Eq. 5 and the different criteria of classification performance
of M3DN/M3DNS in each epoch. Due to page limits, results
on WKG Game-Hug dataset are plotted in Fig. 6. It clearly
reveals that the objective function value decreases as the it-
erations increase, and all of the classification performance is
stable after several iterations in Fig. 6. Moreover, these addi-
tional experiment results indicate that our M3DN/M3DNS
can converge fast, i.e., M3DN converges after 10 epoches.

4.7 Empirical Illustrative Examples
Figure 7 shows 6 illustrative examples of the classification
results on WKG Game-Hub dataset. Qualitatively, illustra-
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TABLE 3
Semi-supervised comparison results (mean ± std.) of M3DNS with compared methods on 4 benchmark datasets. 6 commonly used criteria are

evaluated. The best performance for each criterion is bolded. ↑ / ↓ indicates the larger/smaller the better of the criterion.

Methods Coverage ↓ Macro AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

CS3G 10.346±.227 7.545±.056 6.968±.060 9.819±.931 .844±.006 .798±.002 .699±.006 .662±.077

Tram 6.857±.645 5.793±.359 55.059±1.888 9.359±.223 .827±.001 .805±.001 .891±.001 .890±.045
COINS 22.940±5.082 20.598±4.513 25.839±10.629 20.126±4.072 .891±.004 .863±.006 .814±.014 .873±.017
iMLU 23.411±1.160 23.401±8.939 26.462±5.548 21.030±4.844 .880±.009 .835±.003 .812±.004 .835±.048

M3DNS 3.947±.307 4.214±.202 6.119±.262 2.764±.071 .892±.004 .876±.003 .838±.003 .898±.008

Methods Ranking Loss ↓ Example AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

CS3G .109±.003 .120±.001 .168±.001 .196±.070 .890±.003 .879±.001 .831±.001 .803±.070

Tram .108±.002 .119±.001 .183±.001 .183±.076 .893±.002 .880±.001 .816±.001 .816±.076
COINS .150±.009 .171±.002 .305±.008 .297±.028 .849±.009 .828±.002 .694±.008 .702±.028
iMLU .167±.007 .242±.014 .344±.013 .346±.015 .832±.007 .757±.014 .655±.013 .653±.015

M3DNS .108±.001 .142±.002 .112±.003 .119±.003 .899±.004 .858±.005 .898±.008 .881±.006

Methods Average Precision ↑ Micro AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

CS3G .671±.003 .678±.001 .661±.003 .586±.083 .860±.007 .820±.002 .769±.003 .724±.084

Tram .670±.006 .507±.004 .348±.003 .318±.091 .910±.001 .859±.001 .874±.001 .868±.057
COINS .570±.007 .419±.007 .258±.033 .216±.016 .884±.007 .852±.003 .788±.018 .856±.025
iMLU .538±.015 .325±.016 .220±.043 .187±.015 .860±.015 .793±.007 .760±.013 .798±.078

M3DNS .698±.002 .637±.007 .691±.004 .634±.003 .858±.003 .863±.004 .877±.006 .878±.005

TABLE 4
Semi-supervised comparison results (mean ± std.) of M3DNS with compared methods on WKG Game-Hub dataset. 6 commonly used criteria are

evaluated. The best performance for each criterion is bolded. ↑ / ↓ indicates the larger/smaller, the better of the criterion.

Methods Coverage ↓ (×103) Macro AUC ↑ Ranking Loss ↓ Example AUC ↑ Average Precision ↑ Micro AUC ↑

CS3G .326±.002 .683±.021 .187±.014 .812±.014 .404±.057 .728±.026

Tram 1.731±.083 .854±.031 .190±.024 .809±.024 .245±.046 .852±.024
COINS .186±.021 .782±.087 .252±.029 .747±.029 .195±.037 .783±.072
iMLU .225±.027 .786±.070 .288±.033 .711±.030 .169±.026 .763±.010

M3DNS .149±.002 .933±.001 .180±.009 .828±.003 .409±.001 .880±.001

tion of the predictions clearly discovers the modal-instance-
label relation on the test set. E.g., the first example shows
that the article has separated three images and four content
paragraphs. We can predict the Zhuge liang, battlefront
labels from both the images and contents, and acquire the
master, cooperation labels form the context.

5 CONCLUSION

This paper focuses on the issues of complex objects clas-
sification with semi-supervised M3 information, and ex-
tends our preliminary research [44]. Complex objects, i.e.,
the articles, the videos, etc, can always be represented by
multi-modal multi-instance information, with multiple la-
bels. However, we usually only have bag-level consistency
among different modalities. Therefore, Multi-modal Multi-
instance Multi-label (M3) learning provides a framework
for handling such task. Meanwhile, previous M3 methods
rarely consider label correlation and unlabeled data. In

this paper, we propose a novel Multi-modal Multi-instance
Multi-label Deep Network (M3DN) framework, and exploit
label correlation based on the Optimal Transport (OT) theo-
ry. Moreover, considering unlabel information, M3DNS uti-
lizes the instance-label and bag-level unlabel information for
more excellent performance. Experiments on the real world
benchmark datasets and special complex article dataset
WKG Game-Hub validate effectiveness of the proposed
methods. Meanwhile, how to extend to multiple modalities
is an interesting future work.

APPENDIX A
SEMI-SUPERVISED CLASSIFICATION

M3DNS takes unlabeled instances into consideration, i.e.,
using auto-encoder for single modal network, and consis-
tency among different modalities for joint predictions. Thus,
in this section, we provide empirical investigations and
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TABLE 5
Ablation study results (mean ± std.) of M3DNS on 4 benchmark datasets. 6 commonly used criteria are evaluated. The best performance for each

criterion is bolded. ↑ / ↓ indicates the larger/smaller the better of the criterion.

Methods Coverage ↓ Macro AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

M3DNS-F 8.678±.002 6.875±.010 9.280±.003 11.042±.009 .896±.000 .868±.000 .829±.002 .858±.001
M3DNS-M 8.889±.010 6.964±.003 9.764±.001 11.043±.005 .885±.001 .862±.000 .757±.001 .843±.000
M3DNS-MP 4.039±.021 5.047±.038 .8.708±.028 3.230±.003 .874±.000 .860±.000 .779±.001 .837±.001
M3DNS 3.947±.307 4.214±.202 6.119±.262 2.764±.071 .892±.004 .876±.003 .838±.003 .898±.008

Methods Ranking Loss ↓ Example AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

M3DNS-F .074±.000 .146±.000 .134±.001 .184±.000 .825±.000 .804±.000 .866±.001 .816±.000
M3DNS-M .109±.001 .149±.000 .150±.000 .132±.000 .783±.001 .696±.000 .686±.000 .540±.001
M3DNS-MP .106±.000 .145±.001 .150±.001 .190±.001 .818±.000 .790±.001 .848±.000 .810±.001
M3DNS .108±.001 .142±.002 .112±.003 .119±.003 .899±.004 .858±.005 .898±.008 .881±.006

Methods Average Precision ↑ Micro AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

M3DNS-F .693±.000 .592±.000 .693±.000 .624±.000 .917±.000 .863±.002 .868±.003 .877±.000
M3DNS-M .614±.002 .588±.000 .639±.001 .610±.000 .819±.001 .790±.000 .850±.003 .814±.001
M3DNS-MP .681±.000 .582±.001 .684±.001 .616±.001 .809±.000 .791±.000 .846±.001 .807±.002
M3DNS .698±.002 .637±.007 .691±.004 .634±.003 .858±.003 .863±.004 .877±.006 .878±.005

TABLE 6
Ablation study results (mean ± std.) of M3DNS on WKG Game-Hub dataset. 6 commonly used criteria are evaluated. The best performance for

each criterion is bolded. ↑ / ↓ indicates the larger/smaller, the better of the criterion.

Methods Coverage ↓ (×103) Macro AUC ↑ Ranking Loss ↓ Example AUC ↑ Average Precision ↑ Micro AUC ↑

M3DNS-F .279±.003 .821±.000 .183±.001 .822±.000 .345±.000 .872±.000
M3DNS-M .287±.041 .840±.000 .182±.001 .823±.000 .379±.001 .870±.002
M3DNS-MP .286±.008 .818±.000 .190±.001 .817±.001 .333±.000 .869±.002
M3DNS .149±.002 .933±.001 .180±.009 .828±.003 .409±.001 .880±.001

performance comparisons of M3DNS with several state-of-
the-art semi-supervised methods. The introduction to data
configuration and comparison methods are in Section 4.1,
4.2. The results are recorded in Table 3 and Table 4. The
results indicate that M3DNS approach can achieve the best
or second performance on most datasets with different
performance measures, thus M3DNS can make better use
of unlabeled data.

APPENDIX B
ABLATION STUDY

In order to explore the impact of different operators in
the network structure, we conduct more experiments. In
detail, 1) in order to verify different pooling methods to
get bag-level prediction, we compare max pooling with
mean pooling, denoted as M3DNS-M with mean pooling;
2) based on the better bag-level pooling method, we com-
pare average prediction with max prediction to evaluate
different ensemble methods for final predictions, denoted
as M3DNS-MP with max operator; 3) based on the better
pooling method and prediction operator, we fix the ground
metric as the initial value without any change to explore the
advantage of learning ground metric, denoted as M3DNS-F.
The results are recorded in Table 5 and Table 6. It is notable
that M3DNS is with max pooling, mean prediction operator.

The results reveal that max pooling are always better than
the mean pooling in getting bag-level prediction. This is
because there are often only a few positive examples in
the bag that can represent the prediction of this bag, yet
mean pooling will bring a lot of noise on the contrast.
This phenomenon is also consistent with the assumption
of multi-instance learning. Furthermore, the results reveal
that mean prediction operator is always better than the max
operator, which is also according with the ensemble learning
methods. An interesting thing is that, though M3DNS is
better than M3DNS-F on most datasets, it is worse on one
dataset, i.e., FLICKR25K. This result shows that learning
ground metric is not definitely effective. Considering the
noise data, it may affect the learning of ground metric. Thus,
how to modify the learning process or design a suitable
initialization method could be an interesting future work.

APPENDIX C
COMPARISON WITH MISSING MODALITY

Specifically, in order to explore the impact of modal missing
scenario, we conduct more experiments. Following [45], in
each split, we randomly select 10% to 90% of examples, with
20% as interval, for homogeneous examples with complete
modality. And the remaining are incomplete instances. The
results are recorded in Table 7 and Table 8. It shows that
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TABLE 7
Missing modal comparison results (mean ± std.) of M3DNS on 4 benchmark datasets. 6 commonly used criteria are evaluated. The best

performance for each criterion is bolded. ↑ / ↓ indicates the larger/smaller the better of the criterion.

Methods Coverage ↓ Macro AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

0% 3.947±.307 4.214±.202 6.119±.262 2.764±.071 .892±.004 .876±.003 .838±.003 .898±.008
10% 4.012±.013 5.017±.015 6.443±.002 2.815±.018 .891±.000 .858±.001 .822±.000 .865±.001
30% 4.033±.009 5.604±.013 6.324±.007 2.834±.010 .888±.001 .870±.001 .817±.001 .866±.000
50% 4.080±.003 5.862±.000 6.496±.004 3.381±.002 .887±.000 .862±.004 .812±.000 .834±.001
70% 4.180±.021 5.840±.002 6.378±.005 3.213±.001 .880±.000 .861±.000 .806±.001 .846±.000
90% 4.485±.004 5.897±.001 6.816±.017 3.615±.004 .869±.000 .856±.000 .781±.000 .820±.001

Methods Ranking Loss ↓ Example AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

0% .108±.001 .142±.002 .112±.003 .119±.003 .899±.004 .858±.005 .898±.008 .881±.006
10% .178±.000 .159±.000 .140±.000 .178±.000 .892±.000 .840±.000 .859±.000 .871±.000
30% .180±.000 .150±.001 .138±.000 .178±.000 .879±.000 .849±.000 .861±.001 .871±.000
50% .181±.000 .157±.000 .143±.000 .192±.000 .878±.001 .842±.000 .856±.000 .857±.000
70% .185±.001 .155±.000 .139±.000 .187±.001 .874±.001 .844±.000 .854±.000 .862±.004
90% .190±.002 .159±.001 .156±.000 .199±.000 .869±.000 .839±.001 .843±.000 .850±.000

Methods Average Precision ↑ Micro AUC ↑
FLICKR25K IAPR TC-12 MS-CoCo NUS-WIDE FLICKR25K IAPRTC-12 MS-CoCo NUS-WIDE

0% .698±.002 .637±.007 .691±.004 .634±.003 .858±.003 .863±.004 .877±.006 .878±.005
10% .689±.000 .631±.000 .684±.000 .631±.000 .817±.000 .845±.000 .860±.000 .870±.000
30% .678±.000 .635±.000 .686±.002 .631±.000 .812±.000 .855±.002 .862±.001 .869±.000
50% .678±.000 .628±.000 .679±.001 .598±.000 .815±.000 .849±.000 .857±.000 .853±.000
70% .666±.001 .629±.000 .680±.000 .593±.000 .808±.001 .848±.000 .862±.000 .858±.000
90% .659±.000 .610±.000 .663±.001 .590±.000 .802±.000 .846±.000 .842±.000 .846±.000

TABLE 8
Missing modal comparison results (mean ± std.) of M3DNS on WKG Game-Hub dataset. 6 commonly used criteria are evaluated. The best

performance for each criterion is bolded. ↑ / ↓ indicates the larger/smaller, the better of the criterion.

Methods Coverage ↓ (×103) Macro AUC ↑ Ranking Loss ↓ Example AUC ↑ Average Precision ↑ Micro AUC ↑

0% .149±.002 .933±.001 .180±.009 .828±.003 .409±.001 .880±.001
10% .264±.007 .844±.000 .183±.000 .776±.000 .379±.000 .877±.000
30% .273±.003 .830±.000 .191±.000 .768±.001 .363±.000 .868±.000
50% .276±.013 .825±.000 .193±.000 .766±.000 .350±.000 .866±.000
70% .284±.002 .812±.000 .201±.000 .758±.000 .336±.000 .859±.000
90% .299±.008 .802±.000 .207±.000 .752±.000 .329±.001 .848±.000

M3DNS achieves competitive results when comparing the
results in Table 1, 2, 5 and 6 with missing modalities, and
the performance of M3DNS increases faster than compared
methods as incomplete ratio decreases.

REFERENCES
[1] Y. Huang, W. Wang, and L. Wang, “Unconstrained multimodal

multi-label learning,” IEEE Transactions Multimedia, vol. 17, no. 11,
pp. 1923–1935, 2015.

[2] P. Yang, H. Yang, H. Fu, D. Zhou, J. Ye, T. Lappas, and J. He,
“Jointly modeling label and feature heterogeneity in medical in-
formatics,” TKDD, vol. 10, no. 4, pp. 39:1–39:25, 2016.

[3] C. Nguyen, D. Zhan, and Z. Zhou, “Multi-modal image annotation
with multi-instance multi-label LDA,” in IJCAI, Beijing, China,
2013, pp. 1558–1564.

[4] C. Nguyen, X. Wang, J. Liu, and Z. Zhou, “Labeling complicated
objects: Multi-view multi-instance multi-label learning,” in AAAI,
Quebec, Canada, 2014, pp. 2013–2019.

[5] P. Yang and J. He, “Model multiple heterogeneity via hierarchical
multi-latent space learning,” in SIGKDD, NSW, Australia, 2015,
pp. 1375–1384.

[6] S. Huang and Z. Zhou, “Multi-label learning by exploiting label
correlations locally,” in AAAI, Ontario, Canada, 2012.

[7] C. Frogner, C. Zhang, H. Mobahi, M. Araya-Polo, and T. A. Poggio,
“Learning with a wasserstein loss,” in NIPS, Quebec, Canada,
2015, pp. 2053–2061.

[8] A. Rolet, M. Cuturi, and G. Peyre, “Fast dictionary learning with
a smoothed wasserstein loss,” in AISTATS, Cadiz, Spain, 2016, pp.
630–638.

[9] A. Blum and T. M. Mitchell, “Combining labeled and unlabeled
data with co-training,” in COLT, Madison, Wisconsin, 1998, pp.
92–100.

[10] U. Brefeld, T. Gartner, T. Scheffer, and S. Wrobel, “Efficient co-
regularised least squares regression,” in ICML, Pittsburgh, Penn-
sylvania, 2006, pp. 137–144.

[11] C. Villani, Optimal transport: old and new. Springer Science &
Business Media, 2008, vol. 338.

[12] Z. Fang and Z. M. Zhang, “Simultaneously combining multi-
view multi-label learning with maximum margin classification,”
in ICDM, Brussels, Belgium, 2012, pp. 864–869.

[13] P. Yang, J. He, H. Yang, and H. Fu, “Learning from label and
feature heterogeneity,” in ICDM, Shenzhen, China, 2014, pp. 1079–
1084.

[14] J. Feng and Z. Zhou, “Deep MIML network,” in AAAI, San
Francisco, California, 2017, pp. 1884–1890.

[15] W. Bi and J. T. Kwok, “Multilabel classification with label corre-
lations and missing labels,” in AAAI, Quebec, Canada, 2014, pp.



1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2932666, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXX XXX 14

1680–1686.
[16] M. Zhang and Z. Zhou, “A review on multi-label learning algo-

rithms,” TKDE, vol. 26, no. 8, pp. 1819–1837, 2014.
[17] W. Zhan and M. Zhang, “Inductive semi-supervised multi-label

learning with co-training,” in SIGKDD, NS, Canada, 2017, pp.
1305–1314.

[18] W. Qian, B. Hong, D. Cai, X. He, and X. Li, “Non-negative matrix
factorization with sinkhorn distance,” in IJCAI, New York, NY,
2016, pp. 1960–1966.

[19] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal
transport for domain adaptation,” TPAMI, vol. 39, no. 9, pp. 1853–
1865, 2017.

[20] M. Cuturi and D. Avis, “Ground metric learning,” JMLR, vol. 15,
no. 1, pp. 533–564, 2014.

[21] P. Zhao and Z.-H. Zhou, “Label distribution learning by optimal
transport,” in AAAI, New Orleans, Louisiana, 2018.

[22] R. Yossi, L. Guibas, and C. Tomasi, “The earth mover’s distance
multi-dimensional scaling and color-based image retrieval,” in
ARPA, 1997.

[23] D. Kedem, S. Tyree, K. Q. Weinberger, F. Sha, and G. R. G.
Lanckriet, “Non-linear metric learning,” in NIPS, Lake Tahoe,
Nevada, 2012, pp. 2582–2590.

[24] J. Hoffman, E. Rodner, J. Donahue, B. Kulis, and K. Saenko,
“Asymmetric and category invariant feature transformations for
domain adaptation,” IJCV, vol. 109, no. 1-2, pp. 28–41, 2014.

[25] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization.
Athena Scientific Belmont, MA, 1997, vol. 6.

[26] M. Cuturi, “Sinkhorn distances: Lightspeed computation of opti-
mal transport,” in NIPS, Lake Tahoe, Nevada, 2013, pp. 2292–2300.

[27] M. J. Huiskes and M. S. Lew, “The MIR flickr retrieval evaluation,”
in SIGMM, British Columbia, Canada, 2008, pp. 39–43.

[28] H. J. Escalante, C. A. Hernandez, J. A. Gonzalez, A. Lopez-Lopez,
M. Montes-y-Gomez, E. F. Morales, L. E. Sucar, L. V. Pineda,
and M. Grubinger, “The segmented and annotated IAPR TC-12
benchmark,” CVIU, vol. 114, no. 4, pp. 419–428, 2010.

[29] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in ECCV, Zurich, Switzerland, 2014, pp. 740–755.

[30] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-
WIDE: a real-world web image database from national university
of singapore,” in CIVR, Santorini Island, Greece, 2009.

[31] M. Zhang, Y. Li, X. Liu, and X. Geng, “Binary relevance for multi-
label learning: an overview,” FCS, vol. 12, no. 2, pp. 191–202, 2018.

[32] R. B. Girshick, “Fast R-CNN,” in ICCV, Santiago, Chile, 2015, pp.
1440–1448.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” arXiv preprint arXiv:1512.03385, 2015.

[34] H. Ye, D. Zhan, X. Li, Z. Huang, and Y. Jiang, “College student
scholarships and subsidies granting: A multi-modal multi-label
approach,” in ICDM, Barcelona, Spain, 2016, pp. 559–568.

[35] M. Zhang and Z. Zhou, “M3MIML: A maximum margin method
for multi-instance multi-label learning,” in ICDM, Pisa, Italy, 2008,
pp. 688–697.

[36] S. Huang, W. Gao, and Z. Zhou, “Fast multi-instance multi-label
learning,” in AAAI, Quebec, Canada, 2014, pp. 1868–1874.

[37] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain, “Sparse local em-
beddings for extreme multi-label classification,” in NIPS, Quebec,
Canada, 2015, pp. 730–738.

[38] X. Kong, M. K. Ng, and Z. Zhou, “Transductive multilabel learning
via label set propagation,” TKDE, vol. 25, no. 3, pp. 704–719, 2013.

[39] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” ML, vol. 85, no. 3, pp. 333–359, 2011.

[40] M. Zhang and Z. Zhou, “ML-KNN: A lazy learning approach to
multi-label learning,” PR, vol. 40, no. 7, pp. 2038–2048, 2007.

[41] T. Joachims, “Optimizing search engines using click through da-
ta,” in SIGKDD, Alberta, Canada, 2002, pp. 133–142.

[42] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” PR, vol. 37, no. 9, pp. 1757–1771, 2004.

[43] L. Wu and M. Zhang, “Multi-label classification with unlabeled
data: An inductive approach,” in ACML, Canberra, Australia,
2013, pp. 197–212.

[44] Y. Yang, Y. Wu, D. Zhan, Z. Liu, and Y. Jiang, “Complex object
classification: A multi-modal multi-instance multi-label deep net-
work with optimal transport,” in SIGKDD, London, UK, 2018, pp.
2594–2603.

[45] S. Li, Y. Jiang, and Z. Zhou, “Partial multi-view clustering,” in
AAAI, Quebec, Canada, 2014, pp. 1968–1974.

Yang Yang is working towards the PhD degree
with the National Key Lab for Novel Software
Technology, the Department of Computer Sci-
ence & Technology in Nanjing University, China.
His research interests lie primarily in machine
learning and data mining, including heteroge-
neous learning, model reuse, and incremental
mining.

Zhao-Yang Fu is working towards the M.Sc. de-
gree with the National Key Lab for Novel Soft-
ware Technology, the Department of Comput-
er Science & Technology in Nanjing University,
China. His research interests lie primarily in ma-
chine learning and data mining, including multi-
modal learning.

De-Chuan Zhan received the Ph.D. degree in
computer science, Nanjing University, China in
2010. At the same year, he became a fac-
ulty member in the Department of Computer
Science and Technology at Nanjing University,
China. He is currently an Associate Professor
with the Department of Computer Science and
Technology at Nanjing University. His research
interests are mainly in machine learning, da-
ta mining and mobile intelligence. He has pub-
lished over 20 papers in leading international

journal/conferences. He serves as an editorial board member of IDA and
IJAPR, and serves as SPC/PC in leading conferences such as IJCAI,
AAAI, ICML, NIPS, etc.

Zhi-Bin Liu received the Ph.D. degree and M.S.
degree in control science and engineering from
Tsinghua Universtiy, Beijing, China, in 2010, and
the B.S. degree in automatic control engineering
from Central South University, Changsha, China,
in 2004. His research interests are in big data
minning, machine learning, AI, NLP, computer
vision, information fusion and etc.

Yuan Jiang received the PhD degree in com-
puter science from Nanjing University, China, in
2004. At the same year, she became a faculty
member in the Department of Computer Science
& Technology at Nanjing University, China and
currently is a Professor. She was selected in
the Program for New Century Excellent talents
in University, Ministry of Education in 2009. Her
research interests are mainly in artificial intelli-
gence, machine learning, and data mining. She
has published over 50 papers in leading interna-

tional/national journals and conferences.


