

Age Estimation Using Expectation of Label Distribution Learning

Bin-Bin Gao¹, Hong-Yu Zhou¹, Jianxin Wu¹, Xin Geng² ¹National Key Laboratory for Novel Software Technology, Nanjing University ²Southeast University

. Background

Face information

Identity, Emotion, Ethnicity, Gender, Attractiveness and Age etc.

- Facial age estimation has many applications Law enforcement, Security control and Recommendations.
- Challenges 1000000 Insufficiency, Imbalance and Fine-grained Recognition

2. Motivation

- Regression and classification may lead to an **unstable** training procedure.
- There is an **inconsistency** between the training objectives and evaluation metric in DLDL and Ranking.
- Almost all state-of-the-arts have huge computational and storage cost.

3. Proposed Method: DLDL-v2

- Loss: l_1

 $L_{er} = |\hat{y} - y|$

✓ LD represents more meaningful information. ✓ LD learning is more efficient.

Experiments

- Three benchmark age datasets. ChaLearn15, ChaLearn16 and Morph.
- Comparisons with State-of-the-Arts.

Table 1: Compariso	ns on apparent and	real age estimation.
		0

Methods	External	ChaLearn15		ChaLearn16		Morph
wieulous	Data	MAE	ϵ -error	MAE	ϵ -error	MAE
Human [Han <i>et al.</i> , 2015]	×	-	0.34	-	-	6.30
OR-CNN [Niu et al., 2016]	×	-	-	-	-	3.34
DEX [Rothe et al., 2018]	×	5.369	0.456	-	-	3.25
DEX [Rothe et al., 2018]		3.252	0.282	-	-	2.68
DLDL [Gao et al., 2017]	×	3.51	0.31	-	-	2.42^{1}
Ranking [Chen et al., 2017]	×	-	-	-	-	2.96
LDAE [Antipov et al., 2017]		-	-	-	0.241^2	2.35
DLDL-v2 (TinyAgeNet)	×	3.427	0.301	3.765	0.291	2.291
DLDL-v2 (ThinAgeNet)	×	3.135	0.272	3.452	0.267	1.969

and forward times. (32 images on M40)

Methods	#Param(M)	#Time(ms)	Interpretability
DEX [Rothe et al., 2018]	134.6	133.30	
DLDL [Gao et al., 2017]	134.6	133.30	
LDAE [Antipov <i>et al.</i> , 2017]	1480.6	1446.30	

	Factors		ChaLearn15		ChaLearn16		Morph
Methods	Aug	Pool	MAE	ϵ -error	MAE	ϵ -error	MAE
	X	HP	3.399	0.303	3.717	0.290	2.346
DLDL-v2		GAP	3.210	0.282	3.539	0.274	2.039
		HP	3.135	0.272	3.452	0.267	1.969
$MR (\ell_2)$		HP	3.665	0.337	3.696	0.294	2.282
MR (ℓ_1)		HP	3.655	0.334	3.722	0.301	2.347
DEX		HP	3.558	0.306	4.163	0.332	2.311
Ranking		HP	3.365	0.298	3.645	0.290	2.164
ER (ℓ_1)		HP	3.287	0.291	3.641	0.282	2.214
DLDL		HP	3.228	0.285	3.509	0.272	2.132

Sensitivity to Hyper-parameters

80.38

Project

- Add DL and ER modules.

Hyp	per-param	ChaLearn15		Chal	Morph	
λ	riangle l(K)	MAE	ϵ -error	MAE	<i>ϵ</i> -error	MAE
0.01	1 (101)	3.223	0.282	3.493	0.270	1.960
0.10	1 (101)	3.188	0.278	3.455	0.268	1.972
1.00	1 (101)	3.135	0.272	3.452	0.267	1.969
10.00	1 (101)	3.144	0.273	3.487	0.270	1.977
1.00	4 (26)	3.182	0.276	3.473	0.270	1.963
1.00	2 (51)	3.184	0.274	3.484	0.271	1.963
1.00	0.50 (201)	3.184	0.278	3.484	0.269	1.992
1.00	0.25 (401)	3.167	0.274	3.459	0.265	2.028

Understanding

Infants

Adults

5. Conclusion

We provide the first analysis and show that the ranking method is in fact learning label distribution implicitly. This result thus unifies existing state-of-the-art facial age estimation methods into the DLDL framework. ✓ We propose an end-to-end learning framework which jointly learns age distribution and regresses singlevalue age in both feature learning and classifier learning.

Low Error

✓ We create new state-of-the-art results on facial age estimation tasks using single and small model without external age labeled data or multi-model ensemble.