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Abstract—Convolutional Neural Networks (ConvNets) have
achieved excellent recognition performance in various visual
recognition tasks. A large labeled training set is one of the
most important factors for its success. However, it is difficult
to collect sufficient training images with precise labels in some
domains such as apparent age estimation, head pose estimation,
multi-label classification and semantic segmentation. Fortunately,
there is ambiguous information among labels, which makes
these tasks different from traditional classification. Based on this
observation, we convert the label of each image into a discrete
label distribution, and learn the label distribution by minimizing
a Kullback-Leibler divergence between the predicted and ground-
truth label distributions using deep ConvNets. The proposed
DLDL (Deep Label Distribution Learning) method effectively
utilizes the label ambiguity in both feature learning and classifier
learning, which help prevent the network from over-fitting even
when the training set is small. Experimental results show that
the proposed approach produces significantly better results than
state-of-the-art methods for age estimation and head pose estima-
tion. At the same time, it also improves recognition performance
for multi-label classification and semantic segmentation tasks.

Index Terms—Label distribution, deep learning, age estima-
tion, head pose estimation, semantic segmentation.

I. INTRODUCTION

CONVOLUTIONAL Neural Networks (ConvNets) have
achieved state-of-the-art performance on various visual

recognition tasks such as image classification [1], object de-
tection [2] and semantic segmentation [3]. The availability of a
huge set of training images is one of the most important factors
for their success. However, it is difficult to collect sufficient
training images with unambiguous labels in domains such
as age estimation [4], head pose estimation [5], multi-label
classification and semantic segmentation. Therefore, exploiting
deep learning methods with limited samples and ambiguous
labels has become an attractive yet challenging topic.

Why is it difficult to collect a large and accurately labeled
training set? Firstly, it is difficult (even for domain experts)
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to provide exact labels to some tasks. For example, the
pixels close to object boundaries are very difficult to label
for annotators in semantic segmentation. In addition, pixel
labeling is a time-consuming task that may limit the amount
of training samples. Another example is that people’s apparent
age and head pose is difficult to describe with an accurate
number. Secondly, it is very hard to gather complete and
sufficient data. For example, it is difficult to build an age
dataset covering people from 1 to 85 years old, and ensure
that every age in this range has enough associated images.
Similar difficulties arise in head pose estimation, where head
poses are usually collected at a small set of angles with a 10◦

or 15◦ increment. Thus, the publicly available age, head pose
and semantic segmentation datasets are small scale compared
to those in image classification tasks.

These aforementioned small datasets have a common char-
acteristic, i.e., label ambiguity, which refers to the uncertainty
among the ground-truth labels. On one hand, label ambiguity is
unavoidable in some applications. We usually predict another
person’s age in a way like “around 25”, which indicates using
not only 25, but also neighboring ages to describe the face.
And, different people may have different guesses towards the
same face. Similar situations also hold for other types of
tasks. The labels of pixels at object boundaries are difficult
to annotate because of the inherent ambiguity of these pixels
in semantic segmentation. On the other hand, label ambiguity
can also happen if we are not confident in the labels we
provide for an image. In the multi-label classification task,
some objects are clearly visible but difficult to recognize. This
type of objects are annotated as Difficult in the PASCAL
Visual Object Classes (VOC) classification challenge [6], e.g.,
the chair in the third image of the first row in Fig. 1.

There are two main types of labeling methods: single-label
recognition (SLR) and multi-label recognition (MLR). SLR
assumes one image or pixel has one label and MLR assumes
that one image or pixel may be assigned multiple labels.
Both SLR and MLR aim to answer the question of which
labels can be used to describe an image or pixel, but they
can not describe the label ambiguity associated with it. Label
ambiguity will help improve recognition performance if it
can be reasonably exploited. In order to utilize label corre-
lation (which may be considered as a consequence of label
ambiguity in some applications), Geng et al. proposed a label
distribution learning (LDL) approach for age estimation [4]
and head pose estimation [7]. Recently, some improvements of
LDL have been proposed. Xing et al. proposed two algorithms
named LDLogitBoost and AOSO-LDLogitBoost to learn gen-
eral models to relax the maximum entropy model in traditional
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(b) Head pose estimation
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(c) Multi-label classification

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Semantic segmentation

Figure 1. Different label distributions for different recognition tasks. The first row shows four images, with the first two images coming from ChaLearn
2015 and Pointing’04 and the last two images coming from the PASCAL VOC2007 classification task and the PASCAL VOC2011 segmentation challenge.
The second row shows their corresponding label distributions (best viewed in color).

LDL methods [8]. Furthermore, He et al. generated age label
distributions through weighted linear combination of the input
image’s label and its context-neighboring samples [9]. How-
ever, these methods are suboptimal because they only utilize
the correlation of neighboring labels in classifier learning, but
not in learning the visual representations.

Deep ConvNets have natural advantages in feature learning.
Existing ConvNet frameworks can be viewed as classifica-
tion and regression models based on different optimization
objective functions. In many cases, the softmax loss and `2
loss are used in deep ConvNet models for classification [10]
and regression problems [11], respectively. The softmax loss
maximizes the estimated probability of the ground-truth class
without considering other classes, and the `2 loss minimizes
the squared difference between the estimated values of the
network and the ground-truth. These methods have achieved
satisfactory performance in some domains such as image
classification, human pose estimation and object detection.
However, existing deep learning methods cannot utilize the
label ambiguity information. Moreover, a well-known fact is
that learning a good ConvNet requires a lot of images.

In order to solve the issues mentioned above, we convert
both traditional SLR and MLR problems to label distribu-
tion learning problems. Every instance is assigned a discrete
label distribution y according to its ground-truth. The label
distribution can naturally describe the ambiguous information
among all possible labels. Through deep label distribution
learning, the training instances associated with each class label
is significantly increased without actually increase the number
of the total training examples. Fig. 1 intuitively shows four
examples of label distribution for different recognition tasks.
Then, we utilize a deep ConvNet to learn the label distribution
in both feature learning and classifier learning. Since we learn
label distribution with deep ConvNets, we call our method
DLDL: Deep Label Distribution Learning. The benefits of
DLDL are summarized as follows:

• DLDL is an end-to-end learning framework which utilizes
the label ambiguity in both feature learning and classifier

learning;
• DLDL not only achieves more robust performance than

existing classification and regression methods, but also
effectively relaxes the requirement for large amount of
training images, e.g., a training face image with ground-
truth label 25 is also useful for predicting faces at age 24
or 26;

• DLDL (only single model without ensemble) achieves
better performance than the state-of-the-art methods on
age and head pose estimation tasks. DLDL also improves
the performance for multi-label classification and seman-
tic segmentation.

The rest of this paper is organized as follows. We first
review the related work in Section II. Then, Section III
proposes the DLDL framework, including the DLDL problem
definition, DLDL theory, label distribution construction and
training details. After that, the experiments are reported in
Section IV. Finally, Section V presents discussions and the
conclusion is given in Section VI.

II. RELATED WORK

In the past two decades, many efforts have been devoted to
visual recognition, including at least image classification, ob-
ject detection, semantic segmentation, and facial attribute (ap-
parent age and head pose) estimation. These works can be
divided into two streams. Earlier research was mainly based
on hand-crafted features, while more recent ones are usually
deep learning methods. In this section, we briefly review these
related approaches.

Methods based on hand-crafted features usually include
two stages. The first stage is feature extraction. The second
stage learns models for recognition, detection or estimation
using these features. SVM, random forest [12] and neural
networks have commonly been used during the learning stage.
In addition, Geng et al. proposed the label distribution learning
approach to utilize the correlation among adjacent labels,
which further improved performance on age estimation [4]
and head pose estimation [7].
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Although important progresses have been made with these
features, the hand-crafted features render them suboptimal
for particular tasks such as age or head pose estimation.
More recently, learning feature representation has shown great
advantages. For example, Lu et al. [13] tried to learn cost-
sensitive local binary features for age estimation.

Deep learning has substantially improved upon the state-
of-the-art in image classification [10], object detection [2],
semantic segmentation [3] and many other vision tasks. In
many cases, the softmax loss is used in deep models for
classification [10]. Besides classification, deep ConvNets have
also been trained for regression tasks such as head pose
estimation [14] and facial landmark detection [15]. In re-
gression problems, the training procedure usually optimizes
a squared `2 loss function. Satisfactory performance has also
been obtained by using Tukey’s biweight function in human
pose estimation [11]. In terms of model architecture, deep
ConvNet models which use deeper architecture and smaller
convolution filters (e.g., VGG-Nets [16] and VGG-Face [17])
are very powerful. Nevertheless, these deep learning methods
do not make use of the presence of label ambiguity in the
training set, and usually require a large amount of training
data.

A latest approach, in Inception-v3 [18], is based on label
smoothing (LS). Instead of only using the ground-truth label,
they utilize a mixture of the ground-truth label and a uniform
distribution to regularize the classifier. However, LS is limited
to the uniform distribution among labels rather than mining
labels’ ambiguous information. We believe that label ambigu-
ity is too important to ignore. If we make good use of the
ambiguity, we expect the required number of training images
for some tasks could be effectively reduced.

In this paper, we focus on how to exploit the label ambiguity
in deep ConvNets. Age and head pose estimation from still
face images are suitable applications of the proposed research.
In addition, we also extend our works to multi-label classifi-
cation and semantic segmentation.

III. THE PROPOSED DLDL APPROACH

In this section, we firstly give the definition of the DLDL
problem. Then, we present the DLDL theory. Next, we propose
the construction methods of label distribution for different
recognition tasks. Finally, we briefly introduce the DLDL
architecture and training details.

A. The deep label distribution learning problem

Given an input image, we are interested in estimating a
category output y (e.g., age or head pose angles). For two input
images X1 and X2 with ground-truth labels y1 and y2, X1 and
X2 are supposed to be similar to each other if the correlation
of y1 and y2 is strong, and vice versa. For example, the
correlation between faces aged 32 and 33 should be stronger
than that between faces aged 32 and 64, in terms of facial
details that reflect the age (e.g., skin smoothness). In other
words, we expect high correlation among input images with
similar outputs. The label distribution learning approach [4],
[7] exploited such correlations in the machine learning phase,

but used features that are extracted ignoring these correlations.
The proposed DLDL approach, however, is an end-to-end deep
learning method which utilizes such correlation information
in both feature learning and classifier learning. We will also
extend DLDL to handle other types of label ambiguity beyond
correlation.

To fulfill this goal, instead of outputting a single value
y for an input X , DLDL quantizes the range of possible y
values into several labels. For example, in age estimation, it
is reasonable to assume that 0 < y ≤ 85, and it is a common
practice to estimate integer values for ages. Thus, we can
define the set L = {1, 2, . . . , 85} as the ordered label set for
age estimation. The task of DLDL is then to predict a label
distribution y ∈ R85, where yi is the estimated probability
that X should be predicted to be i years old. By estimating an
entire label distribution, the deep learning machine is forced
to take care of the ambiguity among labels.

Specifically, the input space of our framework is X =
Rh×w×d, where h, w and d are the height, width, and
number of channels of the input image, respectively. DLDL
predicts a label distribution vector y ∈ R|Y |, where Y =
{l1, l2, . . . , lC} is the label set defined for a specific task
(e.g., the L above). We assume Y is complete, i.e., any
possible y value has a corresponding member in Y . A
training data set with N instances is then denoted as D =
{(X1,y1), · · · , (XN ,yN )}. We use boldface lowercase let-
ters like y to denote vectors, and the i-th element of y
is denoted as yi. The goal of DLDL is to directly learn a
conditional probability mass function ŷ = p(y|X;θ) from D,
where θ is the parameters in the framework.

B. Deep label distribution learning

Given an instance X with label distribution y, we assume
that x = φ(X;θ) is the activation of the last fully connected
layer in a deep ConvNet. We use a softmax function to turn
these activations into a probability distribution, that is,

ŷj =
exp(xj)∑
t exp(xt)

. (1)

Given a training data set D, the goal of DLDL is to find θ to
generate a distribution ŷ that is similar to y.

There are different criteria to measure the similarity or dis-
tance between two distributions. For example, if the Kullback-
Leibler (KL) divergence is used as the measurement of the
similarity between the ground-truth and predicted label distri-
bution, then the best parameter θ∗ is determined by

θ∗ = argmin
θ

∑
k

yk ln
yk
ŷk

= argmin
θ
−
∑
k

yk ln ŷk . (2)

Thus, we can define the loss function as:

T = −
∑
k

yk ln ŷk . (3)

Stochastic gradient descent is used to minimize the objective
function Eq. 3. For any k and j,

∂T

∂ŷk
= −yk

ŷk
, (4)
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and the derivative of softmax (Eq. 1) is well known, as

∂ŷk
∂xj

= ŷk
(
δ{k=j} − ŷj

)
, (5)

where δ{k=j} is 1 if k = j, and 0 otherwise. According to the
chain rule, for any fixed j, we have

∂T

∂xj
=
∑
k

∂T

∂ŷk

∂ŷk
∂xj

= −yj + ŷj
∑
k

yk = −yj + ŷj . (6)

Thus, the derivative of T with respect to θ is

∂T

∂θ
= (ŷ − y)

∂x

∂θ
. (7)

Once θ is learned, the label distribution ŷ of any new
instance X can be generated by a forward run of the network.
If the expected class label is a single one, DLDL outputs
li∗ ∈ Y , where

i∗ = argmax
i

ŷi . (8)

Prediction with multiple labels is also allowed, which could
be a set {li|ŷi > ξ} where ξ ∈ [0, 1] is a predefined threshold.
If the expected output is a real number, DLDL predicts the
expectation of ŷi, as ∑

i

ŷili , (9)

where li ∈ Y . This indicates that DLDL is suitable for both
classification and regression tasks.

C. Label distribution construction

The ground-truth label distribution y is not available in most
existing datasets, which must be generated under proper as-
sumptions. A desirable label distribution y = (y1, y2, . . . , yC)
must satisfy some basic principles: (1) y should be a probabil-
ity distribution. Thus, we have yi ∈ [0, 1] and

∑C
i=1 yi = 1.

(2) The probability values yi should have difference among
all possible labels associated with an image. In other words,
a less ambiguous category must be assigned high probability
and those more ambiguous labels must have low probabilities.
In this section, we propose the way to construct label distri-
butions for age estimation, head pose estimation, multi-label
classification and semantic segmentation.

For age estimation, we assume that the probabilities should
concentrate around the ground-truth age y. Thus, we quantize
y to get y using a normal distribution. For example, the
apparent age of a face is labeled by hundreds of users. The
ground-truth (including a mean µ and a standard deviation σ)
is calculated from all the votes. For this problem, we find the
range of the target y (e.g., 0 < y ≤ 85), quantize it into a
complete and ordered label set L = {l1, l2, . . . , lC}, where C
is the label set size and li ∈ R are all possible predictions
for y. A label distribution y is then (y1, y2, . . . , yC), where
yi is the probability that y = li (i.e., yi = Pr(y = li) for
1 ≤ i ≤ C). Since we use equal step size in quantizing y, the
normal p.d.f. (probability density function) is a natural choice
to generate the ground-truth y from µ and σ:

yj =
p(lj |µ, σ)∑
k p(lk|µ, σ)

, (10)

where p(lj |µ, σ) = 1√
2πσ

exp
(
− (lj−µ)2

2σ2

)
. Fig. 1a shows a

face and its corresponding label distribution. For problems
where σ is unknown, we will show that a reasonably chosen
σ also works well in DLDL.

For head pose estimation, we need to jointly estimate
pitch and yaw angles. Thus, learning joint distribution is also
necessary in DLDL. Suppose the label set is L = {ljk|j =
1, · · · , n1, k = 1, · · · , n2}, where ljk is a pair of values. That
is, we want to learn the joint distribution of two variables.
Then, the label distribution y can be represented by an n1×n2

matrix, whose (j, k)-th element is yjk. For example, when we
use two angles (pitch and yaw) to describe a head pose, ljk
is a pair of pitch and yaw angles. Given an instance X with
ground-truth mean µ and covariance matrix Σ, we calculate
its label distribution as

yjk =
p(ljk)∑

j

∑
k p(ljk)

, (11)

where p(ljk) = 1

2π|Σ|
1
2

exp
(
− 1

2 (ljk − µ)TΣ−1(ljk − µ)
)
.

In the above, we assume Σ =

(
σ2 0
0 σ2

)
, that is, the

covariance matrix is diagonal. Fig. 1b shows a joint label
distribution with head pose pitch = 0◦ and yaw = 60◦.

For multi-label classification, a multi-label image always
contains at least one object of the class of interest. There are
usually multiple labels for an image. These labels are grouped
into three different levels, including Positive, Negative
and Difficult in the PASCAL VOC dataset [6]. A label
is Positive means an image contains objects from that
category, and Negative otherwise. Difficult indicates
that an object is clearly visible but difficult to recognize.
Existing multi-label methods often view Difficult as
Negative, which leads to the loss of useful information.
It is not reasonable either if we simply treat Difficult
as Positive. Therefore, a nature choice is to use label
ambiguity. We define different probabilities for different types
of labels, as

pP > pD > pN , (12)

for Positive, Difficult and Negative labels, respec-
tively. Furthermore, an `1 normalization is applied to ensure∑C
i=1 yi = 1:

yj =
p(lj)∑
k p(lk)

, (13)

where p(lk) equals pP , pD or pN if the label lk is Positive,
Difficult or Negative, respectively. The label distribu-
tion is shown for a multi-label image in Fig. 1c.

For semantic segmentation, we need to label a pixel as
belonging to one class if it is a pixel inside an object of that
class, or as the background otherwise. Let y′ijk denote the
annotation of the (i, j)-th pixel, where k = {0, 1, . . . , C} (as-
suming there are C categories and 0 for background). Fully
Convolutional Networks (FCN) have been an effective solution
to this task. In FCN [3], a ground-truth label l means that
y′ijl = 1 and y′ijk = 0 for all k 6= l. However, it is very
difficult to specify ground-truth labels for pixels close to
object boundaries, because labels of these pixels are inherently
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ambiguous. We propose a mechanism to describe the label
ambiguity in the boundaries. Considering a Gaussian kernel
matrix fK×K , we replace the original label distribution y′ with
y′′, as

y′′ijk =

K∑
i′=1

K∑
j′=1

fi′j′ × y′i′+(i−1)S−P,j′+(j−1)S−P,k . (14)

where fi′j′ ≥ 0,
∑K
i′=1

∑K
j′=1 fi′j′ = 1, K is the kernel size,

P and S are padding and stride sizes. In our experiment, we set
K = 5, P = 2 and S = 1, and the generated label distribution
is

yijk =
y′′ijk∑
k y
′′
ijk

. (15)

Fig. 1d gives the semantic label distribution for a bird image
which shows that the ambiguity is encoded in the label
distributions.

D. The DLDL architecture and training details

We use a deep ConvNet and a training set D to learn a ŷ as
the estimation of y. The structure of our network is based on
popular deep models such as ZF-Net [19] and VGG-Nets [16].
The ZF-Net consists five convolution layers, followed by three
fully connected layers. The VGG-Nets architecture includes 16
or 19 layers. We modify the last fully connected layer’s output
based on the task and replace the original softmax loss function
with the KL loss function. In addition, we use the parameter
ReLU [20] for ZF-Net. In our network, the input is an order
three tensor Xh×w×d and the output ŷ may be a vector (age
estimation and multi-label classification), a matrix (head pose
estimation) or a tensor (semantic segmentation).

In this paper, we train the deep models in two ways:
Training from scratch. For ZF-Net, the initialization is

performed randomly, based on a Gaussian distribution with
zero mean and 0.01 standard deviation, and biases are ini-
tialized to zero. The coefficient of the parameter ReLU is
initialized to 0.25. The dropout is applied to the last two fully
connected layers with rate 0.5. The coefficient of weight decay
is set to 0.0005. Optimization is done by Stochastic Gradient
Descent (SGD) using mini-batches of 128 and the momentum
coefficient is 0.9. The initial learning rate is set to 0.01. The
total number of epochs is about 20.

Fine-tuning. Three pre-trained models including VGG-
Nets (16-layers and 19-layers) and VGG-Face (16-layers) are
used to fine-tune for different tasks. We remove these pre-
trained models’ classification layer and loss layer, and put in
our label distribution layer which is initialized by the Gaussian
distribution N(0, 0.01) and the KL loss layer. The learning
rates of the convolutional layers, the first two fully-connected
layers and the label distribution layer are initialized as 0.001,
0.001 and 0.01, respectively. We fine-tune all layers by back
propagation through the whole net using mini-batches of 32.
The total number of epochs is about 10 for age estimation and
20 for multi-label classification.

IV. EXPERIMENTS

We evaluate DLDL on four tasks, i.e., age estimation, head
pose estimation, multi-label classification and semantic seg-
mentation. Our implementation is based on MatConvNet [21].1

All our experiments are carried out on a NVIDIA K40 GPU
with 12GB of onboard memory.

A. Age estimation

Datasets. Two age estimation datasets are used in our
experiments. The first is Morph [22], which is one of the
largest publicly available age datasets. There are 55,134 face
images from more than 13,000 subjects. Ages range from 16
to 77. Since no TRAIN/TEST split is provided, 10-fold cross-
validation is used for Morph.

The second dataset is from the apparent age estima-
tion competition, the first competition track of the ICCV
ChaLearn LAP 2015 workshop [23]. Compared with Morph,
this dataset (ChaLearn) consists of images collected in the
wild, without any position, illumination or quality restriction.
The only condition is that each image contains only one face.
The dataset has 4,699 images, and is split into 2,476 train-
ing (TRAIN), 1,136 validation (VAL) and 1,087 testing (TEST)
images. The apparent age (i.e., how old does this person look
like) of each image is labeled by multiple individuals. The age
of face images range from 3 to 85. For each image, its mean
age and the corresponding standard deviation are given. Since
the ground-truth for TEST images are not published, we train
on the TRAIN split and evaluate on the VAL split of ChaLearn
images.

Baselines. To demonstrate the effectiveness of DLDL,
we firstly consider two related methods as baselines: Conv-
Net+LS (KL) and ConvNet+LD (α-div). The former uses label
smoothing (LS) [18] as ground-truth and KL divergence as loss
function. The latter uses label distribution (LD) as ground-truth
and α divergence [24] as loss function, which is

T = −2
∑
k

(
√
yk −

√
ŷk)2 . (16)

In addition, we also compare DLDL with the following
baseline methods:
• BFGS-LDL Geng et al. proposed the label distribution

learning approach (IIS-LLD) for age and head pose esti-
mation. They used traditional image features. To further
improve IIS-LLD, Geng et al. [25] proposed a BFGS-
LDL algorithm by using the effective quasi-Newton op-
timization method BFGS.

• C-ConvNet Classification ConvNets have obtained very
competitive performance in various computer vision
tasks. ZF-Net [19] and VGG-Net are popular models
which use the softmax loss. We replace the ImageNet-
specific 1000-way classification in these modes with the
label set Y .

• R-ConvNet ConvNets are also successively trained for
regression tasks. In R-ConvNet, the ground-truth label y
(age and pose angle) is projected into the range [−1, 1]

1http://www.vlfeat.org/matconvnet/

http://www.vlfeat.org/matconvnet/
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(a) Input (b) Detection (c) Facial points (d) Alignment

Figure 2. The face image pre-processing pipeline.

by the mapping 2(y−min)
max−min − 1, where max and min are

the maximum and minimum values in the training label
set. During prediction, the R-ConvNet regression result
is reverse mapped to get ŷ. To speed up convergence,
the last fully connected layer is followed a hyperbolic
tangent activation function f(x) = tanh(x), which maps
[−∞,+∞] to [−1,+1] [14]. The squared `2, `1 and ε-ins
loss functions are used in R-ConvNet.

Implementation details. We use the same preprocessing
pipeline for all compared methods, including face detection,
facial key points detection and face alignment, as shown in
Fig 2. We employ the DPM model [26] to detect the main
facial region. Then, the detected face is fed into cascaded
convolution networks [15] to get the five facial key points,
including the left/right eye centers, nose tip and left/right
mouth corners. Finally, based on these facial points, we align
the face to the upright pose. Data augmentation are only
applied to the training images for ChaLearn. For one color
input training image, we generate its gray-scale version, and
left-right flip both color and gray-scale versions. Thus, every
training image turns into 4 images.

We define Y = {1, 2, . . . , 85} for both datasets. The label
distribution of each image is generated using Eq. 10. The mean
µ is provided in both Morph and ChaLearn. The standard
deviation σ, however, is provided in ChaLearn but not in
Morph. We simply set σ = 2 in Morph. Experiments for
different methods are conducted under the same data splits.

Evaluation criteria. Mean Absolute Error (MAE) and
Cumulative Score (CS) are used to evaluate the performance
of age estimation. MAE is the average difference between the
predicted and the real age:

MAE =
1

N

N∑
n=1

|l̂n − ln|, (17)

where l̂n and ln are the estimated and ground-truth age of the
n-th testing image, respectively. CS is defined as the accuracy
rate of correct estimation:

CSg =
Cg
N
× 100%, (18)

where Cg is the number of correct estimation, i.e., testing
images that satisfy |l̂n − ln| ≤ g. In our experiment, g ∈
{1, 2, . . . , 30}. In addition, a special measurement (named ε-
error) is defined by the ChaLearn competition, computed as

ε =
1

N

N∑
n=1

(
1− exp

(
− (l̂n − ln)2

2σ2
n

))
. (19)

Table I
COMPARISONS OF DIFFERENT METHODS FOR AGE ESTIMATION.

Description Morph ChaLearn
MAE MAE ε-error

IIS-LDL [4] 5.67±0.15 - -
CPNN [4] 4.87±0.31 - -
ST+CSHOR [27]1 3.82 - -
M-S ConvNets [28] 3.63 - -
ConvNets [29]1 3.31 - -
VGG (softmax, Exp) [30]3 - 6.08 0.51
VGG (softmax, Exp) [30]2,3 - 3.22 0.28
VGG (softmax, Exp) [31]2,3 2.68 3.25 0.28
BFGS-LDL (KL, Max) 3.94±0.05 7.81 0.57
BFGS-LDL (KL, Exp) 3.85±0.05 6.79 0.53
C-ConvNet (softmax, Max) 3.02±0.05 9.48 0.63
C-ConvNet (softmax, Exp) 2.86±0.05 7.95 0.58
R-ConvNet (`2) 3.17±0.04 5.94 0.50
R-ConvNet (`1) 2.88±0.03 5.62 0.47
R-ConvNet (ε-ins) 2.89±0.04 5.71 0.48
ConvNet+LS (KL, Max) 2.96±0.13 8.64 0.59
ConvNet+LS (KL, Exp) 5.02±0.13 11.58 0.77
ConvNet+LD (α-div, Max) 2.57±0.04 5.95 0.47
ConvNet+LD (α-div, Exp) 2.57±0.04 5.69 0.46
DLDL (KL, Max) 2.51±0.03 5.49 0.44
DLDL (KL, Exp) 2.52±0.03 5.34 0.44
DLDL+VGG-Face (KL, Max)3 2.42±0.01 3.62 0.32
DLDL+VGG-Face (KL, Exp)3 2.43±0.01 3.51 0.31

1Used 80% of Morph images for training and 20% for evaluation;
2Used additional external face images (i.e., IMDB-WIKI);
3Used pre-trained model (i.e., VGG-Nets or VGG-Face).

Results. Table I lists results on both datasets. The upper
part shows results in the literature. The middle part shows
the baseline results. The lower part shows the results of the
proposed approach. The first term in the parenthesis behind
each method is the loss function corresponding to the method.
Max or Exp represent predicting according to Eq. 8 or 9,
respectively. Since cross-validation is used in Morph, we also
provide its standard deviations.

From Table I, we can see that DLDL consistently out-
performs baselines and other published methods. The dif-
ference between DLDL (KL, Max) and its competitor C-
ConvNet (softmax, Max) is 0.51 on Morph. This gap is more
than 6 times the sum of their standard deviations (0.03+0.05),
showing statistically significant differences. The advantage
of DLDL over R-ConvNet, C-ConvNet and ConvNet+LS
suggests that learning label distribution is advantageous in
deep end-to-end models. DLDL has much better results than
BFGS-LDL, which shows that the learned deep features are
more powerful than manually designed ones. Compared to
ConvNet+LD (α-div), DLDL (KL) achieves lower MAE on
both datasets. It indicates that KL-divergence is better than
α-divergence for measuring the similarity of two distributions
in this context.

We find that C-ConvNet and R-ConvNet are not stable.
The R-ConvNet (`1) method, although being the second best
method for ChaLearn, is inferior to C-ConvNet (softmax, Exp)
for Morph. In addition, we also find that Eq. 9 is better than
Eq. 8 in many cases, which suggests that Eq. 9 is more suitable
than Eq. 8 for age estimation.
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Figure 3. Comparisons of CS curves on the ChaLearn, Morph and AFLW validation sets. Note that the CS cures are plotted using better estimation based
on Table I for those methods involving Max (Eq. 8) and Exp (Eq. 9) (higher is better, best viewed in color).
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Figure 4. Examples of face images and DLDL results. The first row shows ten cropped and aligned faces from the apparent age estimation challenge and
their corresponding ground-truth apparent ages. The second row shows their predicted label distributions and predicted ages. The left seven columns show
good age estimations and the right three columns are failure cases.

Fine-tuning DLDL. Instead of training DLDL from scratch,
we also fine-tune the network of VGG-Face [17]. On the small
scale ChaLearn dataset, the MAE of DLDL is reduced from
5.34 to 3.51, yielding a significant improvement. The ε-error
of DLDL is reduced from 0.44 to 0.31, which is close to the
best competition result 0.28 [30] on the validation set. In [31],
external training images (260,282 additional external training
images with real age annotation) were used. DLDL only uses
the ChaLearn dataset’s 2,476 training images and is the best
among ChaLearn teams that do not use external data [23].
In the competition, the best external-data-free ε-error is 0.48,
which is worse than DLDL’s. However, the idea in [31] to use
external data is useful for further reducing DLDL’s estimation
error.

Fig. 3a and Fig. 3b show the CS curves on ChaLearn
and Morph datasets. At every error level, our DLDL fine-
tuned VGG-Face always achieves the best accuracy among all
methods. It is noteworthy that the CS curves of DLDL (KL,
Max) and ConvNet (α-div, Max) are very close to that of the
DLDL+VGG-Face (KL, Max) on Morph even without lots of
external data and very deep model. This observation supports
the idea that using DLDL can achieve competitive performance
even with limited training samples.

In Fig. 4, we show some examples of face images from
the ChaLearn validation set and predicted label distributions
by DLDL (KL, Exp). In many cases, our solution is able to
accurately predict the apparent age of faces. Failures may

come from two causes. The first is the failure to detect or
align the face. The second is some extreme conditions of face
images such as occlusion, low resolution, heavy makeup and
old photos.

B. Head pose estimation

Datasets. We use three datasets in head pose estima-
tion: Pointing’04 [32], BJUT-3D [33] and Annotated Facial
Landmarks in the Wild (AFLW) [34]. In them, head pose
is determined by two angles: pitch and yaw. Pointing’04
discretizes the pitch into 9 angles {0◦,±15◦,±30◦,±60◦,
±90◦} and the yaw into 13 angles {0◦,±15◦,±30◦,±45◦,
±60◦,±75◦,±90◦}. When the pitch angel is +90◦ or −90◦,
the yaw angle is always set to 0◦. Thus, there are 93 poses
in total. The head images are taken from 15 different human
subjects in two different time periods, resulting in 15×2×93 =
2, 790 images.

BJUT-3D contains 500 3D faces (250 male and 250
female people), acquired by a CyberWare Laser Scanner
in an engineered environment. 9 pitch angles {0◦,±10◦,
±20◦,±30◦,±40◦} and 13 yaw angles {0◦,±10◦,±20◦,
±30◦,±40◦,±50◦,±60◦} are used. There are in total 93
poses in this dataset, similar to that in Pointing’04. Therefore,
500× 93 = 46, 500 face images are obtained.

Unlike Pointing’04 and BJUT-3D, the AFLW is a real-world
face database. Head pose is coarsely obtained by fitting a mean
3D face with the POSIT algorithm [35]. The dataset contains
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Table II
COMPARISONS OF DIFFERENT METHODS FOR HEAD POSE ESTIMATION ON THE Pointing’04 DATASET.

Methods Description MAE (lower is better) Acc (higher is better)
Pitch Yaw Pitch+Yaw Pitch Yaw Pitch+Yaw

LDL-wJ [7] 2.69±0.15 4.24±0.17 6.45±0.29 86.24±0.97 73.30±1.36 64.27±1.82

Baselines

BFGS-LDL (KL) 1.99±0.19 4.00±0.20 5.68±0.13 88.78±0.11 74.37±0.13 66.42±0.11
C-ConvNet (softmax) 5.28±0.65 6.02±0.44 10.56±0.74 73.15±2.74 62.90±1.81 42.97±1.67
R-ConvNet (`2) 6.11±0.33 6.61±0.17 10.13±0.26 - - -
R-ConvNet (`1) 5.94±0.71 5.90±0.39 9.43±0.79 - - -
R-ConvNet (ε-ins) 5.77±0.45 6.66±0.19 9.04±0.40 - - -
ConvNet+LS (KL) 5.23±0.39 5.87±0.53 10.42±0.66 72.62±1.01 62.90±2.76 41.83±2.20
ConvNet+LD (α-div) 1.94±0.20 3.68±0.16 5.34±0.17 90.00±0.77 76.27±0.82 69.00±0.89

Ours DLDL (KL) 1.69±0.32 3.16±0.07 4.64±0.24 91.65±1.13 79.57±0.57 73.15±0.72

Table III
COMPARISONS OF DIFFERENT METHODS FOR HEAD POSE ESTIMATION ON THE BJUT-3D DATASET.

Methods Description MAE (lower is better) Acc (higher is better)
Pitch Yaw Pitch+Yaw Pitch Yaw Pitch+Yaw

Baselines

BFGS-LDL (KL) 0.19±0.02 0.33±0.04 0.51±0.05 98.15±0.19 96.69±0.38 94.95±0.54
C-ConvNet (Softmax) 0.06±0.01 0.09±0.02 0.14±0.03 99.45±0.09 99.16±0.16 98.64±0.23
R-ConvNet (`2) 1.83±0.01 2.17±0.03 3.15±0.03 - - -
R-ConvNet (`1) 1.25±0.06 1.37±0.09 2.11±0.09 - - -
R-ConvNet (ε-ins) 1.21±0.07 1.42±0.07 2.09±0.10 - - -
ConvNet+LS (KL) 0.05±0.01 0.08±0.01 0.12±0.01 99.55±0.06 99.28±0.08 98.86±0.10
ConvNet+LD (α-div) 0.07±0.01 0.12±0.02 0.19±0.02 99.31±0.04 98.82±0.20 98.15±0.21

Ours DLDL (KL) 0.02±0.01 0.07±0.01 0.09±0.01 99.81±0.04 99.27±0.08 99.09±0.09

about 24k faces in real-world images. We select 23,409 faces
to ensure pitch and yaw angles within [−90◦, 90◦].

Implementation details. The head region is provided by
bounding box annotations in Pointing’04 and AFLW. The
BJUT-3D does not contain background regions. Therefore, we
will not perform any preprocessing.

In DLDL, we set σ = 15◦ in Pointing’04 and σ = 5◦

in BJUT-3D for constructing label distributions. For AFLW,
ground-truth of head pose angles are given as real numbers.
Ground-truth (pitch and yaw) angles are divided from −90◦

to +90◦ in steps of 3◦, so we get 61 × 61 = 3, 721 (pitch,
yaw) pair category labels. We set σ = 3◦ for AFLW. Since the
discrete Jeffrey’s divergence is used in LDL [7], we imple-
ment BFGS-LDL with the Kullback-Leibler divergence. All
experiments are performed under the same setting, including
data splits, input size and network architecture.

To validate the effectiveness of DLDL for head pose es-
timation, we use the same baselines as age estimation. Our
experiments show that Eq. 9 has lower accuracy than Eq. 8.
Hence, we use Eq. 8 in this section.

Evaluation criteria. Three types of prediction values are
evaluated: pitch, yaw, and pitch+yaw, where pitch+yaw jointly
estimates the pitch and yaw angles. Two different measure-
ments are used, which is MAE (Eq. 17) and classification
accuracy (Acc). When we treat different poses as different
classes, Acc measures the pose class classification accuracy.
In particular, the MAE of pitch+yaw is calculated as the
Euclidean distance between the predicted (pitch, yaw) pair and
the ground-truth pair; the Acc of pitch+yaw is calculated by
regarding each (pitch, yaw) pair as a class. For R-ConvNet,
we only report its MAE but not Acc, because its predicted
value are continuous real numbers. All methods are tested
with 5-fold cross validation for Pointing’04 and BJUT-3D

Table IV
MAE AND ACC (% OF IMAGES WITH ±15◦ ERROR) FOR DIFFERENT

METHODS ON THE AFLW DATASET.

Description MAE (lower is better) Acc (higher is better)
Pitch Yaw Pitch+Yaw Pitch Yaw Pitch+Yaw

AVM [36] - 16.75 - - 60.75 -
BFGS-LDL (KL) 7.21 8.72 12.69 90.62 86.81 79.80
C-ConvNet (softmax) 7.87 9.34 13.65 87.75 83.79 75.04
R-ConvNet (`2) 6.57 8.44 11.88 92.84 84.76 79.56
R-ConvNet (`1) 6.01 7.07 10.34 94.60 89.62 85.45
R-ConvNet (ε-ins) 5.96 7.13 10.35 94.94 90.00 86.21
ConvNet+LS (KL) 7.69 9.10 13.33 88.34 85.00 76.47
ConvNet+LD (α-div) 6.55 7.02 10.77 92.80 91.88 86.14
DLDL (KL) 5.75 6.60 9.78 95.41 92.89 89.27

following [7]. For AFLW, 15,561 face images are randomly
chosen for training, and the remaining 7,848 for evaluation.
The setup is similar to the recent literature [36] (14,000 images
for training and the rest 7,041 images for testing).

Results. Tables II, III and IV show results on Point-
ing’04, BJUT-3D and AFLW, respectively. Pointing’04 is small
scale with only 2,790 images. We observe that BFGS-LDL
(with hand-crafted features) has much lower MAE and much
higher accuracy than deep learning methods C-ConvNet, R-
ConvNet and ConvNet+LS. One reasonable conjecture is that
C-ConvNet, R-ConvNet and ConvNet+LS are not well-learned
with only small number of training images. DLDL, however,
successfully learns the head pose. For example, its accuracy for
pitch+yaw is 73.15% (and C-ConvNet is only 42.97%). That
is, DLDL is able to perform deep learning with few training
images, while C-ConvNet R-ConvNet and ConvNet+LS have
failed for this task.

On BJUT-3D and AFLW which have enough training data,
we observe that many deep learning methods show higher
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Figure 5. Examples of face images and DLDL results. The first row shows ten cropped faces from the AFLW dataset and their corresponding ground-truth
labels (yaw angle, pitch angle). The second row shows their predicted label distributions and predicted head poses. The left seven columns are the good
examples and the right three columns are the failure cases.

performance than BFGS-LDL. DLDL achieves the best per-
formance: it has much lower MAE and higher accuracy than
other methods. Another observation is also worth mentioning.
Although R-ConvNet is better than C-ConvNet when label is
dense such as age estimation and head pose estimation on
AFLW, it is obviously worse than C-ConvNet on BJUT-3D
and pointing’04 for head pose estimation which have sparse
labels. In other words, the performance of C-ConvNet and
R-ConvNet are not very robust, while the proposed method
consistently achieves excellent performance.

Fig. 3c shows the pitch+yaw CS curves on the AFLW
dataset. There is an obvious gap between DLDL and baseline
methods at every error level. Fig. 5 shows the predicted
label distributions for different head poses on the AFLW
testing set using the DLDL model. Our approach can estimate
head pose with low errors but may fail under some extreme
conditions. It is noteworthy that DLDL may produce more
incorrect estimations when both yaw and pitch are large (e.g.,
±90◦). The reason might be that there are much fewer training
examples for large angles than for other angles.

C. Multi-label classification

Datasets. We evaluate our approach for multi-label classifi-
cation on the PASCAL VOC dataset [6]: PASCAL VOC2007
and VOC2012. There are 9,963 and 22,531 images in them,
respectively. Each image is annotated with one or several
labels, corresponding to 20 object categories. These images
are divided into three subsets including TRAIN, VAL and
TEST sets. We train on the TRAINVAL set and evaluate on the
TEST set. The evaluation metric is average precision (AP) and
mean average precision (mAP), complying with the PASCAL
challenge protocols.

We denote our methods as Images-Fine-tuning-DLDL (IF-
DLDL) and Proposals-Fine-tuning-DLDL (PF-DLDL) when
ConvNets are fine-tuned by images and proposals of images,
respectively. Details of these two variants are explained later
in this section. We compare the proposed approaches with the
following methods:
• VGG+SVM [16]. This method densely extracted 4,096

dimensional ConvNet features at the penultimate layer
of VGG-Nets pre-trained on ImageNet. These features
from different scales (smallest image side Q ∈ {256,

Table V
SINGLE MODEL CLASSIFICATION MAP (IN %) ON VOC2007

(TRAINVAL/TEST). THE * SIGN INDICATES GROUND-TRUTH BOUNDING
BOX INFORMATION WAS USED DURING TRAINING.

Methods Description Net-D Net-D Net-E Net-E
Max Avg Max Avg

Fev+Lv-20-VD* [40] 90.6 - - -
HCP-VGG [42] 90.9 - - -

Baselines
VGG+SVM [16] 89.3 - 89.3 -
IF-VGG-`2 89.8 89.5 89.7 89.8
IF-VGG-KL 90.0 90.3 90.3 90.2

Ours IF-DLDL 90.1 90.5 90.6 90.7
PF-DLDL 92.3 92.1 92.5 92.2

384, 512, 640, 768}) were aggregated by average pooling.
Then, these averaged features from two networks (“Net-
D” containing 16 layers and “Net-E” containing 19
layers) were further fused by stacking. Finally, [16] `2
normalized the resulting image features and used these
features to train a linear SVM classifier for multi-label
classification.

• HCP [37]. HCP proposed to solve the multi-label object
recognition task by extracting object proposals from the
images. The method used image label and square loss
to fine-tune a pre-trained ConvNet. Then, BING [38] or
EdgeBoxes [39] was used to extract object proposals,
which were used to fine-tune the ConvNet again. Finally,
scores of these proposals were max-pooled to obtain the
prediction.

• Fev+Lv [40]. This approach transformed the multi-
label object recognition problem into a multi-class multi-
instance learning problem. Two views (label view and
feature view) were extracted for each proposal of images.
Then, these two views were encoded by a Fisher vector
for each image.

• IF-VGG-`2 and IF-VGG-KL. We fine-tune the VGG-
Nets with square loss and multi-label cross-entropy
loss [41] and use them as our IF-DLDL’s baselines. They
are trained using the same setting.

Implementation details. According to the ground-truth
labels, we set different probabilities for all possible labels
on PASCAL VOC dataset. In our experiments, pP = 1,
pD = 0.3, pN = 0. Finally, similar to label smoothing, a
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Table VI
COMPARISONS OF THE CLASSIFICATION RESULTS (IN %) OF STATE-OF-THE-ART APPROACHES ON VOC2007 (TRAINVAL/TEST). * INDICATES METHODS

USING GROUND-TRUTH BOUNDING BOX INFORMATION FOR TRAINING.

Methods Description aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
AGS* [46] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
AMM* [47] 84.5 81.5 65.0 71.4 52.2 76.2 87.2 68.5 63.8 55.8 65.8 55.6 84.8 77.0 91.1 55.2 60.0 69.7 83.6 77.0 71.3
HCP-2000C [37] 96.0 92.1 93.7 93.4 58.7 84.0 93.4 92.0 62.8 89.1 76.3 91.4 95.0 87.8 93.1 69.9 90.3 68.0 96.8 80.6 85.2
Fev+Lv-20-VD* [40] 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6
HCP-VGG [42] 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

Baselines
VGG+SVM [16] 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7
IF-VGG-`2 98.9 95.7 97.3 95.5 65.0 92.8 93.7 97.1 74.2 90.8 87.0 97.1 97.1 93.8 97.0 70.8 94.3 77.8 98.0 86.4 90.0
IF-VGG-KL 99.1 95.5 97.4 94.9 68.1 92.7 94.3 97.0 75.7 90.3 89.0 97.0 97.6 94.6 97.2 76.3 93.8 80.1 98.2 87.9 90.8

Ours IF-DLDL 99.1 95.8 97.4 95.3 69.2 93.3 94.5 96.6 76.1 90.4 89.0 97.1 97.7 94.5 97.7 76.1 93.6 81.9 98.2 89.1 91.1
PF-DLDL 99.3 97.6 98.3 97.0 79.0 95.7 97.0 97.9 81.8 93.3 88.2 98.1 96.9 96.5 98.4 84.8 94.9 82.7 98.5 92.8 93.4

Table VII
COMPARISONS OF THE CLASSIFICATION RESULTS (IN %) OF STATE-OF-THE-ART APPROACHES ON VOC2012 (TRAINVAL/TEST). * INDICATES METHODS

USING GROUND-TRUTH BOUNDING BOX INFORMATION FOR TRAINING.

Methods Description aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
NUS-PSL*[46] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2
PRE-1512*[48] 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8
HCP-2000C [37] 97.5 84.3 93.0 89.4 62.5 90.2 84.6 94.8 69.7 90.2 74.1 93.4 93.7 88.8 93.3 59.7 90.3 61.8 94.4 78.0 84.2
Fev+Lv-20-VD* [40] 98.4 92.8 93.4 90.7 74.9 93.2 90.2 96.1 78.2 89.8 80.6 95.7 96.1 95.3 97.5 73.1 91.2 75.4 97.0 88.2 89.4
HCP-VGG [42] 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5

Baselines
VGG+SVM [16] 99.0 89.1 96.0 94.1 74.1 92.2 85.3 97.9 79.9 92.0 83.7 97.5 96.5 94.7 97.1 63.7 93.6 75.2 97.4 87.8 89.3
IF-VGG-`2 98.9 88.4 96.7 93.4 70.7 92.3 85.8 97.7 77.3 94.2 81.2 97.4 96.8 93.7 96.7 62.2 94.1 70.7 96.9 85.8 88.6
IF-VGG-KL 99.0 89.9 96.6 93.7 74.0 93.2 87.3 97.5 78.5 94.7 83.1 97.1 96.9 94.0 96.6 66.9 94.5 75.9 97.4 87.7 89.7

Ours IF-DLDL 99.0 89.7 96.6 94.1 74.8 93.1 87.8 97.6 79.3 94.3 83.4 97.2 96.9 94.0 97.3 67.8 94.2 76.5 97.4 87.8 89.9
PF-DLDL 99.5 94.1 97.9 95.9 81.0 94.8 93.1 98.2 82.4 96.1 84.0 98.0 97.8 95.7 97.7 78.9 95.5 78.0 97.8 92.2 92.4

uniform distribution ui = ε/20 is added to y, where ε = 0.01.
IF-DLDL. Following [16], each training image is individ-

ually rescaled by randomly sampling in the range [256, 512].
We randomly crop 256 × 256 patches from these resized
images. We also adjust the pooling kernel in the pool5
layer from 3 × 3 to 4 × 4. Max-pooling and Avg-pooling
are used at pool5 to train two ConvNets. We obtain four
ConvNet models thought fine-tuning “Net-D” and “Net-E”. At
the prediction stage, the smaller side of each image is scaled
to a fixed length Q ∈ {256, 320, 384, 448, 512}. Each scaled
image is fed to the fine-tuned ConvNets to obtain the 20-dim
probability outputs. These probability outputs from different
scales and different models are averaged to form the final
prediction.

PF-DLDL. Following [42], we further fine-tune IF-DLDL
models with proposals of images to boost performance. For
each training image, we employ EdgeBoxes [39] to produce
a set of proposal bounding boxes which are grouped into m
clusters by the normalized cut algorithm [43]. For each cluster,
the top k proposals with higher predictive scores generated by
EdgeBoxes are resized into square shapes (i.e., 256×256). As
a result, we can obtain mk proposals for an image. Finally,
these mk resized proposals are fed into a fine-tuned IF-DLDL
model to obtain prediction scores and these scores are fused by
max-pooling to form the prediction distribution of the image.
This process can be learned by using an end-to-end way. In our
implementation, we set m = 15, k = 1 and m = 15, k = 30 at
the training and the prediction stage, respectively. Similar to
IF-DLDL, we also average fuse prediction scores of different
models to generate the final prediction.

Results. In Table V, we compare single model results

(average AP of all classes) on VOC2007. Our PF-DLDL
defeats all the other methods. Compared with Fev+Lv [40],
1.7% improvement can be achieved by PF-DLDL even without
using the bounding box annotation. Compared with HCP-
VGG [42], our PF-DLDL can achieve 92.3% mAP, which is
significantly higher than their 90.9%. This further indicates
that it is very important to learn a label distribution.

Table VI and VII report details of all experimental results
on VOC2007 and VOC2012, respectively. It can be seen that
IF-DLDL outperforms IF-VGG-`2 by 1.1% for VOC2007 and
1.3% for VOC2012, which indicates that the KL loss function
is more suitable than `2 loss for measuring the similarity of
two label distributions. Furthermore, IF-DLDL improves IF-
VGG-KL for about 0.2–0.3 points in mAP, which suggests that
learning a label distribution is beneficial. More importantly,
PF-DLDL can achieve 93.4% for VOC2007 and 92.4% for
VOC2012 in mAP when we average fuse output scores of
four PF-DLDL models.

Our framework shows good performance especially for
scene categories such as “chair”, ‘table” and “sofa”. Although
PF-DLDL significantly outperforms IF-DLDL in mAP, PF-
DLDL has higher computational cost than IF-DLDL on both
training and testing stages. Since IF-DLDL does not need
region proposals or bounding box information, it may be
effectively and efficiently implemented for practical multi-
label application such as multi-label image retrieval [44]. It
is also possible that by adopting new techniques (such as the
region proposal method using gated unit in [45], which has
higher accuracy that ours on VOC tasks), the accuracy of our
DLDL methods can be further improved.
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Figure 6. Visualizations of hand-crafted and DLDL features using the t-SNE algorithm on Morph, ChaLearn and AFLW validation sets. The first row shows
the embeddings of hand-crafted features (BIF or HOG). The second row shows the embeddings of the DLDL features derived from the penultimate fully
connected layer of DLDL (best viewed in color).

D. Semantic segmentation

Datasets. We employ the PASCAL VOC2011 segmentation
dataset and the Semantic Boundaries Dataset (SBD) for train-
ing the proposed DLDL. There are 2,224 images (1,112 for
training and 1,112 for testing) with pixel labels for 20 semantic
categories in VOC2011. SBD contains 11,355 annotated im-
ages (8,984 for training and 2,371 for testing) from Hariharan
et al. [49]. Following FCN [3], we train DLDL using the union
set (8,825 images) of SBD and VOC2011 training images.
We evaluate the proposed approach on VOC2011 (1,112) and
VOC2012 (1,456) test images.

Evaluation criteria. The performance is measured in terms
of mean IU (intersection over union), which is the most widely
used metric in semantic segmentation.

We keep the same settings as FCN including training
images and model structure. The main change is that we
employ KL divergence as the loss function based on label
distribution (Eq. 15). Note that although we transform the
ground-truth to label distribution in the training process, our
evaluation rely only on ground-truth label.

Recently, Conditional Random Field (CRF) has been
broadly used in many state-of-the-art semantic segmentation
systems. We optionally employ a fully connected CRF [50]
to refine the predicted category score maps using the default
parameters of [51].

Results. Table VIII gives the performance of DLDL-8s
and DLDL-8s-CRF on the test images of VOC2011 and
VOC2012 and compares it to the well-known FCN-8s. DLDL-
8s improves the mean IU of FCN-8s form 62.7% to 64.9% on
VOC2011. On VOC2012, DLDL-8s leads to an improvement
of 2.3 points in mean IU. DLDL achieves better results
than FCN, which suggests it is important to improve the
segmentation performance using label ambiguity. In addition,
the CRF further improve performance of DLDL-8s, offering
a 2.6% absolute increase in mean IU both on VOC2011 and
VOC2012.

Fig. 7 shows four semantic segmentation examples from
the VOC2011 validation images using FCN-8s, DLDL-8s and
DLDL-8s-CRF. We can see that DLDL-8s can successfully

Table VIII
COMPARISONS OF DLDL AND FCN ON THE PASCAL VOC2011 AND

VOC2012 TEST SETS.

Methods mean IU mean IU
VOC2011 test VOC2012 test

FCN-8s [3] 62.7 62.2
DLDL-8s 64.9 64.5
DLDL-8s+CRF 67.6 67.1

Image FCN-8s [3] DLDL-8s DLDL-8s+CRF Ground-truth

Figure 7. Semantic segmentation examples using FCN-8s, DLDL-8s and
DLDL-8s-CRF on PASCAL VOC2011 validation set.

segment some small objects (e.g., car and bicycle) and par-
ticularly improve the segmentation of object boundaries (e.g.,
horse’s leg and plant’s leaves), but FCN-8s does not. DLDL-8s
may fail, e.g., it sees a flowerpot as a potted plant in the fourth
row in Fig. 7. Furthermore, compared to DLDL-8s, DLDL-
8s-CRF is able to refine coarse pixel-level label predictions to
produce sharp boundaries and fine-grained segmentations (e.g.,
plant’s leaves).
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Figure 8. Comparisons of training and validation MAE of DLDL and all baseline methods on the ChaLearn, Morph, BJUT-3D and AFLW datasets (lower
is better, best viewed in color).

V. DISCUSSIONS

In this section, we try to understand the generalization
performance of DLDL through feature visualization, and to
analyze why DLDL can achieve high accuracy with limited
training data. In addition, a study of the hyper-parameter is
also provided.

Feature visualization. We visualize the model features in
a low-dimensional space. Early layers learn low-level fea-
tures (e.g., edge and corner) and latter layers learn high level
features (e.g., shapes and objects) in a deep ConvNet [19].
Hence, we extract the penultimate layer features (4,096-
dimensional) on Morph, ChaLearn, Pointing’04 and AFLW
validation sets. To obtain the 2-dimensional embeddings of the
extracted high dimensional features, we employ a popular di-
mension reduction algorithm t-SNE [52]. The low-dimensional
embeddings of validation images from the above four datasets
are shown in Fig. 6. The first row shows the 2-dim embeddings
of hand-crafted features (BIF for Morph and Chalearn, HOG
for Pointing’04 and AFLW) and the second row shows that of
the DLDL features. These figures are colored by their semantic
category. It can be observed that clear semantic clusterings (old
or young for age datasets, left or right, up or down for head
pose datasets) appear in deep features but do not in hand-
crafted features.

Reduce over-fitting. DLDL can effectively reduce over-
fitting when the training set is small. This effect can be
explained by the label ambiguity. Considering an input sample
X with one single label l. In traditional deep ConvNet,
yl = 1 and yk = 0 for all k 6= l. In DLDL, the label
distribution y contains many non zeros elements. The diversity
of labels helps reduce over-fitting. Moreover, the objective
function (Eq. 3) of DLDL can be rewritten as

T = −(yl ln ŷl +
∑
k 6=l

yk ln ŷk) . (20)

In Eq. 20, the first term is the tradition ConvNet loss function.
The second term maximize the log-likelihood of the ambigu-
ous labels. Unlike existing data augmentation techniques such
as random cropping on the images, DLDL augments data on
the label side.

In Fig. 8, MAE is shown as a function of the number
of epochs on two age datasets (ChaLearn and Morph) and
two head pose datasets (BJUT-3D and AFLW). On ChaLearn
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Figure 9. The performance (MAE) of DLDL with different label distributions
(different parameter σ). The left figure is for the Morph dataset, while the
right figure is for the Pointing’04 dataset (lower is better).

and AFLW, C-ConveNet (softmax) achieves the lowest training
MAE, but produces the highest validation MAE. In particular,
the validation MAE increases after the 8th epoch on ChaLearn.
Similar phenomenon is observed on AFLW. This fact shows
that over-fitting happens in C-ConvNet when the number of
training images is small. Although there are 15,561 training
images in AFLW, each category contains on averagely 4
training images since there are 3,721 categories.

Accelerate convergence. We further analyze the conver-
gence performance of DLDL, C-ConvNet and R-ConvNet. We
can observe that the training MAE is reduced very slowly at
the beginning of training using C-ConvNet and R-ConveNet
in many cases as shown in Fig. 8. On the contrary, the MAE
of DLDL reduces quickly.

Robust performance. One notable observation is that C-
ConvNet and R-ConveNet is unstable. Fig. 8c shows the MAE
for pitch+yaw, a complicated estimation of the joint distribu-
tion. This is a very sparse label set because the interval of
adjacent class (pitch or yaw) is 10◦. R-ConvNet has difficulty
in estimating this output, yielding errors that are roughly 20
times higher than DLDL and C-ConvNet. On the other hand,
C-ConvNet easily fall into over-fitting when there are not
enough training data (e.g, Fig. 8a and Fig. 8d). The proposed
DLDL is more amenable to small datasets or sparse labels
than C-ConvNet and R-ConvNet.

Analyze the hyper-parameter. DLDL’s performance may
be affected by the label distribution. Here, we take age
estimation (Morph) and head pose estimation (Pointing’04)
for examples. σ is a common hyper-parameter in these tasks
if it is not provided in the ground-truth. We have empirically
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set σ = 2 in Morph, and σ = 15◦ in Pointing’04 in our
experiments. In order to study the impact of σ, we test DLDL
with different σ values, changing from 0 to 3σ with 0.5σ
interval. Fig. 9 shows the MAE performance on Morph and
Pointing’04 with different σ. We can see that a proper σ is
important for low MAE. But generally speaking, a σ value that
is close to the interval between neighboring labels is a good
choice. Because the shape of all curves are V-shape like, it
is also very convenient to find an optimal σ value using the
cross-validation strategy.

VI. CONCLUSION

We observe that current deep ConvNets cannot successfully
learn good models when there are not enough training data
and/or the labels are ambiguous. We propose DLDL, a deep
label distribution learning framework to solve this issue by
exploiting label ambiguity. In DLDL, each image is labeled by
a label distribution, which can utilize label ambiguity in both
feature learning and classifier learning. DLDL consistently
improves the network training process in our experiments,
by preventing it from over-fitting when the training set is
small. We empirically showed that DLDL produces robust
and competitive performances than traditional classification or
regression deep models on several popular visual recognition
tasks.

However, constructing a reasonable label distribution is still
challenging due to the diversity of label space for different
recognition tasks. It is an interesting direction to extend DLDL
to more recognition problems by constructing different label
distributions.
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