

Deep Label Distribution Learning for Apparent Age Estimation

Xu Yang, Bin-Bin Gao, Chao Xing, Zeng-Wei Huo, Xiu-Shen Wei, Ying Zhou,

Jianxin Wu, and Xin Geng

ChaLearn Looking at People: Workshop and Competitions @ICCV, 2015

presented by Bin-Bin Gao

Dec. 12, 2015 Santiago de Chile

Why is it difficult?

It is difficult to provide an exact answer.
 How old do these people look like?

A1: 30 or 32 years old; A2: Around 31 years old;

.

 31 ± 4.24

A1: 18 or 20 years old; A2: May be 20 years old;

 17 ± 1.93

It is difficult to collect a sufficient and complete training dataset.

• Training data always has small scale and imbalance.

Some potential applications

• Although the task is very challenging, it has many potential applications.

Cigarette vending machine

Kraft's vending machine

• Vending machines can prevent minors buying cigarettes and alcohol by estimating costumer's apparent age.

http://www.dailymail.co.uk/sciencetech/article-2079048/Kraft-unveils-adults-vending-machine-scans-faces-ensure-children-free-pudding.html

✓ Hand-crafted feature

- BIF feature [Guo et al., CVPR 2009]
- OHRank [Chang et al., CVPR 2011]
- CCA, rCCA and kCCA [Guo et al. FGR 2013]
- IIS-LLD and CPNN [Gen et al., TPAMI 2013]

•

✓ Deep learning

- Multi-scale CNN [Yi et al., ACCV 2014]
- CNN based regression [Huerta et al., PRL 2015]
- CNN for age group classification [Levi & Hassner, CVPR 2015]
- DLA based on CNN features from different layers [Wang et al., WACV 2015]
- •

30±4.17

31<u>+</u>4.24

32±4.23

33±2.01

Faces with similar ages look alike in terms of facial details such as wrinkles or skin smoothness. In other words, there is a correlation among neighboring ages at both *image* and *feature* level.

How to utilize the correlation?

Motivations

- ✓ How to utilize the correlation?
 - Label Distribution (LD) Learning. But it does not learn the visual representations.

X. Geng, C. Yin, and Z.-H. Zhou. Facial age estimation by learning from label distributions. TPAMI, 35(10):2401-2412, 2013.

Proposed methods

Deep Label Distribution Learning (DLDL)

- ✓ Formally:
 - The goal of DLDL is to directly learn a conditional probability mass function $\hat{y} = p(y|X; \theta)$ from the training set, where θ is the parameter of the framework.

Proposed methods

Learning

 $\frac{\partial T}{\partial \boldsymbol{\theta}} = \frac{\partial T}{\partial \boldsymbol{x}} \times$

 $\frac{\partial x}{\partial q}$

tes .						\bigwedge
_I Input Image	L Conv1	I Pool1	L Conv2	Pool2	 I F	t LD I
						$\underline{\partial T}$
6 Backward pr	opagation:					\boldsymbol{x}

• Objective function with K-L divergence:

$$\boldsymbol{\theta^*} = \operatorname{argmin}_{\boldsymbol{\theta}} \sum_k y_k \ln \frac{y_k}{\hat{y}_k} = \operatorname{argmin}_{\boldsymbol{\theta}} - \sum_k y_k \ln \hat{y}_k \ T$$

• The gradient of the K-L loss function is given by

$$rac{\partial T}{\partial oldsymbol{x}} = oldsymbol{\hat{y}} - oldsymbol{y}$$

Our datasets

\checkmark Internet face images collecting

- A set of age related text enquires:

eg., "20 years old", "20th birthday" and "age-20" for the age of 20 years.

- We use Google, Bing and Baidu image search.

The face image pre-processing

(a) Input

(b) Detection

(c) Facial points

Three steps of the images pre-processing

- Face detection
- Facial points detection
- Face alignment

Model architecture

LANDA Learning And Mining from Data

✓ Training

- Gaussian random initialization at different layers.

```
1^{st}stream: The last three layers \longrightarrow The last layer \longrightarrow The last layer.
2^{st}stream: All layers \longrightarrow The last layer.
```

- \checkmark Prediction
 - Different fusion strategy
 - Early fusion:
 - $1^{st}stream$: Prediction via measuring distance.
 - $2^{st}stream$: Averaging estimation distribution.

Late fusion :

Averaging the prediction age of two streams.

Comparison

Mean Error on Validation Set

The fusion of the two stream is better than single stream.

The 4nd place with 0.3057 performance.

Mean Error on Test Set

- ✓ DLDL is an end-to-end learning framework which utilizes the correlation among neighboring labels in both feature learning and classifier learning;
- \checkmark DLDL can work when the training set is small.
- Ensemble strategy: different dataset, different architecture, different initialization and different fusion.

Any questions

