

Deep Spatial Pyramid Ensemble for Cultural Event Recognition

Xiu-Shen Wei, Bin-Bin Gao and Jianxin Wu* National Key Laboratory for Novel Software Technology, Nanjing University

Dec. 12, 2015 Santiago, Chile

M Background

M Deep Spatial Pyramid (DSP) and its ensemble

- **Implementation details**
- **M** Experimental results

Cultural Event Recognition

ChaLearn LAP Challenge @ ICCV 2015

CNN:

CNN:

CNN:

CNN:

CNN:

 l_2 matrix normalization in DSP:

d-dimentional deep desctrptors

$$oldsymbol{x}_t \leftarrow oldsymbol{x}_t / \|X\|_2$$

matrix spectral norm

 l_2 matrix normalization in DSP:

d-dimentional deep desctrptors

$$oldsymbol{x}_t \leftarrow oldsymbol{x}_t / \|X\|_2$$

matrix spectral norm

Results of the different normalization methods:

	Caltech101	Stanford40	Scene15	Indoor67
No	90.63	74.84	90.75	71.20
ℓ_2 vector	92.02	73.41	90.92	74.03
ℓ_2 matrix	92.56	78.43	90.99	74.55
PCA+ ℓ_2 matrix	91.95	75.69	90.22	71.79

•

Encoding deep descriptors by FV:

$$\begin{aligned} \boldsymbol{f}_{\boldsymbol{\mu}_{k}}(X) = & \frac{1}{\sqrt{\omega_{k}}} \sum_{t=1}^{T} \gamma_{t}(k) \left(\frac{\boldsymbol{x}_{t} - \boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}_{k}} \right) \,, \\ \boldsymbol{f}_{\boldsymbol{\sigma}_{k}}(X) = & \frac{1}{\sqrt{2\omega_{k}}} \sum_{t=1}^{T} \gamma_{t}(k) \left[\frac{(\boldsymbol{x}_{t} - \boldsymbol{\mu}_{k})^{2}}{\boldsymbol{\sigma}_{k}^{2}} - 1 \right] \end{aligned}$$

Encoding deep descriptors by FV:

$$\boldsymbol{f}_{\boldsymbol{\mu}_{k}}(X) = \frac{1}{\sqrt{\omega_{k}}} \sum_{t=1}^{T} \gamma_{t}(k) \left(\frac{\boldsymbol{x}_{t} - \boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}_{k}}\right),$$
$$\boldsymbol{f}_{\boldsymbol{\sigma}_{k}}(X) = \frac{1}{\sqrt{2\omega_{k}}} \sum_{t=1}^{T} \gamma_{t}(k) \left[\frac{(\boldsymbol{x}_{t} - \boldsymbol{\mu}_{k})^{2}}{\boldsymbol{\sigma}_{k}^{2}} - 1\right].$$

Multi-scale DSP:

$$\boldsymbol{f}_{m} = \frac{1}{S} \sum_{s=1}^{S} \boldsymbol{f}_{s}$$
 $S = \{1.4, 1.2, 1.0, 0.8\}$

Classification performance with different K:

DSP (con't)

Plot of *w* values in DSP:

Classification accuracy/MAP comparisons:

Table 3. Recognition accuracy (or mAP) comparisons on seven datasets. The highest accuracy (mAP) of each column is marked in bold. [17]'s results were achieved using VGG Net-D and VGG Net-E, evaluation was measured by mean class recall on *Caltech-101*, *Caltech-256* instead of accuracy.

Methods	Description	Caltech-101	Caltech-256	VOC 2007	Scene15	SUN397	MIT Indoor67	Stanford40
SoA	[9]	93.42±0.50	-	82.44	-	-	-	-
	[7]	-	-	-	-	51.98	68.88	-
	[27]	-	-	82.13	-	-	77.56	-
	[30]	84.79±0.66	$65.06 {\pm} 0.25$	-	$91.59 {\pm} 0.48$	$53.86 {\pm} 0.21$	70.80	55.28±0.64
	[1]	$88.35 {\pm} 0.56$	$77.61 {\pm} 0.12$	82.4	-	-	-	-
	[17]	92.7±0.5 (*)	86.2±0.3 (*)	89.7	-	-	-	-
Baseline	Fc ₈	90.55±0.31	82.02±0.12	84.61	89.88±0.76	53.90±0.45	69.78	71.53±0.34
	Pool ₅ +FV	90.03±0.75	79.48±0.53	88.12	89.00±0.42	51.39±0.51	71.57	73.96±0.52
	DSP	94.66±0.26	84.22 ± 0.11	88.60	91.13±0.77	$57.27 {\pm} 0.34$	76.34	79.75 ± 0.34
Our	Ms-DSP	95.11±0.26	85.47±0.14	89.31	91.78±0.22	59.78±0.47	78.28	80.81±0.29

Our framework

Our framework

DSP Ensemble (con't)

Different feature maps from different networks:

(a) The original image

(d) Fine-tuned VGG Net-E

(b) Fine-tuned VGG Net-D

(e) VGG Net-E

(c) VGG Net-D

(f) Place-CNN

Implementation details

Distributions of the number of training images in Dev. and Final Evaluation:

Implementation details

Distributions of the number of training images in Dev. and Final Evaluation:

.ii 800

600

400

40 50 60

of classes

(c)

The

Original images

Crop1

Crop3

Late fusion

Crop2

Implementation details

Distributions of the number of training images in Dev. and Final Evaluation:

180

The distribution of the training set in Development after crops

40 50 60

of classes

(c)

800 of

600

The 400

100

Crop2

Original images

Crop1

Crop3

Late fusion

(c) VGG Net-D

Recognition mAP comparisons of the Development phase. Note that, "FT" stands for the fine-tuned deep networks; "SS" is for single scale, and "MS" is for multiple scales.

	VGG Net-D	VGG Net-E	FT VGG Net-D	FT VGG Net-E	Place-CNN	
SS	0.761	0.762	_	_	—	
MS	0.770	0.773	0.779	0.769	0.640	
Late fusion	0.782	0.784	0.802	0.791	0.649	
Ensemble	0.841					

) The original image

(b) Fine-tuned VGG Net-D

Recognition mAP comparisons of the Development phase. Note that, "FT" stands for the fine-tuned deep networks; "SS" is for single scale, and "MS" is for multiple scales.

	VGG Net-D	VGG Net-E	FT VGG Net-D	FT VGG Net-E	Place-CNN	
SS	0.761	0.762	_	_	_	
MS	0.770	0.773	0.779	0.769	0.640	
Late fusion	0.782	0.784	0.802	0.791	0.649	
Ensemble	0.841					

) The original image

(b) Fine-tuned VGG Net-D

Thank you!