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Deep Spatial Pyramid (DSP)

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Figure 1. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

Table 1. Summary of decisions in related methods
Methods DF Resolution Norm PCA K SP Ms
SPP-net C fixed - - -

p p

MOP F fixed ⇥
p

100 ⇥
p

MPP C fixed ⇥
p

256 ⇥
p

D-CNN C any ⇥ ⇥ 64 ⇥
p

DSP C any
p

⇥ 1,2,3,4
p p

a method does not involve the corresponding factor. Some
methods also use PCA to reduce the dimensionality of deep
activations.

From Table 1, it is clear that the proposed DSP is flexi-
ble (accepting any size image), efficient (fully convolutional
and very small K), and making full use of the image (spa-
tial pyramid and multiple scales). We will explain how these
decisions and choices are made in the next section.

3. Factors, choices and decisions
We study the 5 factors in this section in Sec. 3.1–3.4,

respectively. The effect of K size, however, is studied sep-
arately in Sec. 4.

3.1. Convolutional vs. fully connected layer

Convolutional neural networks consist of alternatively
stacked convolutional layers and pooling layers, followed
by one or more fully connected layers. The convolutional
layers generate feature maps by linear convolutional filters
with nonlinear activation functions such as rectified linear
units, then the feature maps max-pool the outputs within lo-
cal neighborhoods. Finally, the activations of the last convo-
lutional layer are fed into fully connected layers, followed
by a soft-max classifier.

However, the feature map of top convolutional layers are
known to contain mid- and high-level information, e.g., ob-
ject parts or complete objects [29]. As shown in Fig. 2,

(a) An image
(b) The 194th 
    feature map

(c) The 207th 
    feature map

Figure 2. Visualization of the feature maps. (2a) is an image from
the PASCAL VOC2007 dataset, (2b) and (2c) are different feature
maps of the input image.

we visualize the input image’s feature maps which are gen-
erated by the last convolutional layer. In this figure, the
strongest response of the 194th and 207th feature map are
corresponding to the person and motorcycle in the input im-
age, respectively. Thus, one major difference between con-
volutional and fully connected layer activations is that the
former is directly embedded with rich semantic information
of image patches, while the latter not necessarily be so.

Furthermore, the fully connected layers require a fixed
image size (e.g., 224⇥224). On the contrary, convolutional
layers accept input images of arbitrary resolution or aspect
ratio. The pool5 activations can be formulated as a order-3
tensor of size h⇥w⇥d, which include h⇥w cells and each
cell contains one d-dimensional deep descriptor. For exam-
ple, we will get a 7⇥ 7⇥ 512 activations if the input image
size is 224⇥224. Convolutional layer deep descriptors have
been successfully in [13, 2, 25].

These deep descriptors contain more spatial information
compared to the activation of the fully connected layers,
e.g., the top-left cell’s d-dim deep descriptor is generated
using only the top-left part of the input image, ignoring
other pixels. In addition, fully connected layers have large
computational cost, because it contains roughly 90% of all
the parameters of the whole CNN model.

Thus, in DSP we use a fully convolutional network by
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Figure 1. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.
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by a soft-max classifier.

However, the feature map of top convolutional layers are
known to contain mid- and high-level information, e.g., ob-
ject parts or complete objects [29]. As shown in Fig. 2,

(a) An image
(b) The 194th 
    feature map

(c) The 207th 
    feature map

Figure 2. Visualization of the feature maps. (2a) is an image from
the PASCAL VOC2007 dataset, (2b) and (2c) are different feature
maps of the input image.

we visualize the input image’s feature maps which are gen-
erated by the last convolutional layer. In this figure, the
strongest response of the 194th and 207th feature map are
corresponding to the person and motorcycle in the input im-
age, respectively. Thus, one major difference between con-
volutional and fully connected layer activations is that the
former is directly embedded with rich semantic information
of image patches, while the latter not necessarily be so.

Furthermore, the fully connected layers require a fixed
image size (e.g., 224⇥224). On the contrary, convolutional
layers accept input images of arbitrary resolution or aspect
ratio. The pool5 activations can be formulated as a order-3
tensor of size h⇥w⇥d, which include h⇥w cells and each
cell contains one d-dimensional deep descriptor. For exam-
ple, we will get a 7⇥ 7⇥ 512 activations if the input image
size is 224⇥224. Convolutional layer deep descriptors have
been successfully in [13, 2, 25].

These deep descriptors contain more spatial information
compared to the activation of the fully connected layers,
e.g., the top-left cell’s d-dim deep descriptor is generated
using only the top-left part of the input image, ignoring
other pixels. In addition, fully connected layers have large
computational cost, because it contains roughly 90% of all
the parameters of the whole CNN model.

Thus, in DSP we use a fully convolutional network by
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Figure 1. Images randomly sampled from 99 categories of the cultural event recognition images [3]. The cultural event recognition dataset
contains 99 important cultural events from all around the globe, which includes: Carnival of Venice (Italy), Gion matsuri (Japan), Harbin
Ice and Snow Festival (China), Oktoberfest (Germany), Mardi Gras (USA), Tapati rapa Nui (Chile) and so on.

2. The proposed framework

In this section, we will introduce the proposed Deep
Spatial Pyramid Ensemble framework, especially the main
approach used in this paper, i.e., Deep Spatial Pyramid
(DSP) [5].

Recently, thanks to the rich semantic information ex-
tracted by the convolutional layers of CNN, convolutional
layer deep descriptors have exemplified their value and been
successful in [10, 2, 20]. Moreover, these deep descriptors
contain more spatial information compared to the activa-
tion of the fully connected layers, e.g., the top-left cell’s
d-dim deep descriptor is generated using only the top-left
part of the input image, ignoring other pixels. In addition,
fully connected layers have large computational cost, be-
cause it contains roughly 90% of all the parameters of the
whole CNN model. Thus, here we use fully convolutional
networks by removing the fully connected layers as feature
extractors.

In the proposed framework, we feed an input image with
arbitrary resolution into a pre-trained CNN model to ex-
tract deep activations in the first step. Then, a visual dic-
tionary with K dictionary items is trained on the deep de-
scriptors from training images. The third step overlay a spa-
tial pyramid partition to the deep activations of an image
into m blocks in N pyramid levels. One spatial block is
represented as a vector by using the improved Fisher Vec-
tor. Thus, m blocks correspond to m FVs. In the fourth
and fifth step, we concatenate the m FVs to form a 2mdK-
dimensional feature vector as the final image-level repre-
sentation. These steps are shown as the key parts of our
framework in Fig. 2. In addition, since cultural event recog-
nition is highly related with two high-level computer vision
problems, i.e., object recognition and scene recognition,
we employ multiple pre-trained CNNs (e.g., VGGNets [14]

and Place-CNN [23]) to extract the DSP representations for
each image in this competition, and then ensemble the com-
plementary information from multiple CNNs.

In the following, we will firstly present some detailed
factors in DSP, and secondly introduce the Deep Spatial
Pyramid method, and finally describe the ensemble strat-
egy used in our framework for the cultural event recognition
competition.

2.1. The `2 matrix normalization in DSP

Let X = [x1, . . . ,xt, . . . ,xT ]T (X 2 RT⇥d) be the
matrix of d-dimensional deep descriptors extracted from an
image I via a pre-trained CNN model. X was usually pro-
cessed by dimensionality reduction methods such as PCA,
before they are pooled into a single vector using VLAD
or FV [6, 21]. PCA is usually applied to the SIFT fea-
tures or fully connected layer activations, since it is em-
pirically shown to improve the overall recognition perfor-
mance. However, as studied in [5], it shows that PCA sig-
nificantly hurts recognition when applied to the fully con-
volutional activations. Thus, it is not applied to fully con-
volutional deep descriptors in this paper.

In addition, multiple types of deep descriptors normal-
ization have been evaluated, and the `2 matrix normaliza-
tion before using FV is found to be important for better per-
formance, cf. Table 2 in [5]. Therefore, we employ the
`2 matrix normalization for the cultural event recognition
competition as follows:

xt  xt/kXk2 , (1)

where kXk2 is the matrix spectral norm, i.e., largest sin-
gular value of X . This normalization has a benefit that it
normalizes xt using the information from the entire image
X , which makes it more robust to changes such as illumi-
nation and scale.

d-dimentional deep desctrptors

matrix spectral norm
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contains 99 important cultural events from all around the globe, which includes: Carnival of Venice (Italy), Gion matsuri (Japan), Harbin
Ice and Snow Festival (China), Oktoberfest (Germany), Mardi Gras (USA), Tapati rapa Nui (Chile) and so on.

2. The proposed framework

In this section, we will introduce the proposed Deep
Spatial Pyramid Ensemble framework, especially the main
approach used in this paper, i.e., Deep Spatial Pyramid
(DSP) [5].

Recently, thanks to the rich semantic information ex-
tracted by the convolutional layers of CNN, convolutional
layer deep descriptors have exemplified their value and been
successful in [10, 2, 20]. Moreover, these deep descriptors
contain more spatial information compared to the activa-
tion of the fully connected layers, e.g., the top-left cell’s
d-dim deep descriptor is generated using only the top-left
part of the input image, ignoring other pixels. In addition,
fully connected layers have large computational cost, be-
cause it contains roughly 90% of all the parameters of the
whole CNN model. Thus, here we use fully convolutional
networks by removing the fully connected layers as feature
extractors.

In the proposed framework, we feed an input image with
arbitrary resolution into a pre-trained CNN model to ex-
tract deep activations in the first step. Then, a visual dic-
tionary with K dictionary items is trained on the deep de-
scriptors from training images. The third step overlay a spa-
tial pyramid partition to the deep activations of an image
into m blocks in N pyramid levels. One spatial block is
represented as a vector by using the improved Fisher Vec-
tor. Thus, m blocks correspond to m FVs. In the fourth
and fifth step, we concatenate the m FVs to form a 2mdK-
dimensional feature vector as the final image-level repre-
sentation. These steps are shown as the key parts of our
framework in Fig. 2. In addition, since cultural event recog-
nition is highly related with two high-level computer vision
problems, i.e., object recognition and scene recognition,
we employ multiple pre-trained CNNs (e.g., VGGNets [14]

and Place-CNN [23]) to extract the DSP representations for
each image in this competition, and then ensemble the com-
plementary information from multiple CNNs.

In the following, we will firstly present some detailed
factors in DSP, and secondly introduce the Deep Spatial
Pyramid method, and finally describe the ensemble strat-
egy used in our framework for the cultural event recognition
competition.

2.1. The `2 matrix normalization in DSP

Let X = [x1, . . . ,xt, . . . ,xT ]T (X 2 RT⇥d) be the
matrix of d-dimensional deep descriptors extracted from an
image I via a pre-trained CNN model. X was usually pro-
cessed by dimensionality reduction methods such as PCA,
before they are pooled into a single vector using VLAD
or FV [6, 21]. PCA is usually applied to the SIFT fea-
tures or fully connected layer activations, since it is em-
pirically shown to improve the overall recognition perfor-
mance. However, as studied in [5], it shows that PCA sig-
nificantly hurts recognition when applied to the fully con-
volutional activations. Thus, it is not applied to fully con-
volutional deep descriptors in this paper.

In addition, multiple types of deep descriptors normal-
ization have been evaluated, and the `2 matrix normaliza-
tion before using FV is found to be important for better per-
formance, cf. Table 2 in [5]. Therefore, we employ the
`2 matrix normalization for the cultural event recognition
competition as follows:

xt  xt/kXk2 , (1)

where kXk2 is the matrix spectral norm, i.e., largest sin-
gular value of X . This normalization has a benefit that it
normalizes xt using the information from the entire image
X , which makes it more robust to changes such as illumi-
nation and scale.
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matrix spectral norm
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Table 2. Results of the different normalization methods
Caltech101 Stanford40 Scene15 Indoor67

No 90.63 74.84 90.75 71.20
`2 vector 92.02 73.41 90.92 74.03
`2 matrix 92.56 78.43 90.99 74.55
PCA+`2 matrix 91.95 75.69 90.22 71.79

removing the fully connected layers.

3.2. Normalization and pooling of deep descriptors

Let X = [x1, . . . ,xt, . . . ,xT ]T (Xn 2 RT⇥d) be the
matrix of d-dimensional deep descriptors extracted from an
image I via a pre-trained CNN model. X was usually pro-
cessed by dimensionality reduction methods such as PCA,
before they are pooled into a single vector using VLAD
or FV [7, 27]. PCA is usually applied to the SIFT fea-
tures or fully connected layer activations, since it is em-
pirically shown to improve the overall recognition perfor-
mance. However, our experiments show that PCA signifi-
cantly hurts recognition when applied to the fully convolu-
tional activations. Thus, it is not applied to fully convolu-
tional deep descriptors in this paper.

In addition, each deep descriptors xt inside X is not nor-
malized in current processing of deep visual descriptors [2].
We first try to normalize xt with the `2 vector normalization
(i.e., xt  xt/kxtk2), which leads to better results than
null normalization on most datasets, except in Stanford40,
as shown in Table 2.

We also propose a novel `2 matrix normalization (i.e.,
xt  xt/kXk2), where kXk2 is the matrix spectral norm,
i.e., largest singular value of X . This normalization has a
benefit that it normalizes xt using the information from the
entire image X . It is a bit surprising to observe that it is
more effective than the commonly used `2 vector normal-
ization, and sometimes by a large margin. An intuitive in-
terpretation is that the `2 matrix normalization can use the
global information, making it more robust to changes such
as illumination and scale.

In order to evaluate the effect of these normalization and
PCA for classification performance, we use 4 datasets. We
use the original resolution of input images without cropping
or warping and pool activations by using FV with K = 4
(i.e., the GMM has 4 Gaussian components). The experi-
mental results are reported in Table 2. The `2 matrix nor-
malization before using FV is found to be important for bet-
ter performance.

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. We use the Fisher Vector (FV) to encode the
deep descriptors.

We denote the parameters of the GMM with K compo-

nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the kth Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [14]:

fµk
(X) =

1
p
!k

TX

t=1

�t(k)

✓
xt � µk
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◆
, (1)

f�k
(X) =

1p
2!k
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t=1

�t(k)


(xt � µk)

2

�

2
k

� 1

�
. (2)

Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [14].

We will further study how to choose a proper K size for
FV in Sec. 4.

3.3. Deep spatial pyramid

The proposed method is named as DSP (Deep Spatial
Pyramid), since adding spatial pyramid information is the
key part of DSP. Adding spatial information through a spa-
tial pyramid [12] have been shown to significantly improve
image recognition performance when dense SIFT features
are used. How can we efficiently and effectively utilize the
spatial information with fully convolutional activations?

The SPP-net method [9] adds a spatial pyramid pooling
layer to deep nets, which has improved recognition perfor-
mance. However, since we are using FV to pool activa-
tions from a fully convolutional network, a more intuitive
and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, we can easily form a natural deep spatial pyramid
by partitioning an image into sub-regions and computing
local features inside each sub-region. In practice, we just
need to spatially partition the cells of activations in the last
convolutional layer, and then pool deep descriptors in each
region separately using FV. The operation of DSP is illus-
trated in Fig. 3.
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:

fµk
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1
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.

Level 1 Level 0

Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:

fµk
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.

Level 1 Level 0

Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The

Encoding deep descriptors by FV:

Multi-scale DSP:

level 1, however, splits the cells into 5 regions according
to their spatial locations: the 4 quadrants and 1 centerpiece.
Then, 5 FVs are generated from activations inside each spa-
tial region. Note that the level 1 spatial pyramid used in DSP
is different from the classic one in [9]. It follows Wu and
Rehg [19] to use an additional spatial region in the center
of the image. A DSP using two levels will then concatenate
all 6 FVs from level 0 and level 1 to form the final image
representation.

This DSP method is summarized in Algorithm 1.

Algorithm 1 The DSP pipeline
1: Input:
2: An input image I
3: A pre-trained CNN model
4: Procedure:
5: Extract deep descriptors X from I using the

pre-defined model, X = [x1, . . . ,xt, . . . ,xT ]T

6: For each activation vector xt, perform `2 matrix
normalization xt  xt/kXk2

7: Estimate a GMM � = {!k,µk,�k} using the
training set

8: Generate a spatial pyramid {X1, . . . , Xm} for X
9: for all 1  i  m

10: f�(Xi) [fµ1
(Xi),f�1

(Xi),
. . . ,fµK

(Xi),f�K
(Xi)]

11: f�(Xi) sign(f�(Xi))
p
f�(Xi)

12: f�(Xi) f�(Xi)/kf�(Xi)k2
13: end for
14: Concatenate f�(Xi), 1  i  m, to form the final

spatial pyramid representation f(X)
15: f(X) f(X)/kf(X)k2
16: Output: f(X).

2.4. Multi-scale DSP

In order to capture variations of the activations caused
by variations of objects in an image, we generate a multiple
scale pyramid, extracted from S different rescaled versions
of the original input image. We feed images of all different
scales into a pre-trained CNN model and extract deep acti-
vations. In each scale, the corresponding rescaled image is
encoded into a 2mdK-dimensional vector by DSP. There-
fore, we have S vectors of 2mdK-dimensions and they are
merged into a single vector by average pooling, as

fm =
1

S

SX

s=1

fs , (4)

where fs is the DSP representation extracted from the scale
level s. Finally, `2 normalization is applied to fm. Note
that each vector fs is already `2 normalized, as shown in
Algorithm 1.

The multi-scale DSP is related to MPP proposed by Yoo
et al. [21]. A key different between our method and MPP is
that fs encodes spatial information while MPP does not.
During the competition of cultural event recognition, we
find that a large scale will achieve a better performance.
Thus, we employ four scales, i.e., 1.4, 1.2, 1.0 and 0.8, and
the experimental results are shown in Sec. 3.3.

2.5. Ensemble of multiple DSPs

In the past several years, many successful deep CNN ar-
chitectures have been shown to further improve CNN per-
formance, characterized by deeper and wider architectures
and smaller convolutional filters when compared to tradi-
tional CNN such as [8, 22]. Examples of deeper nets in-
clude GoogLeNet [16], VGG Net-D and VGG Net-E [14].

Specifically, in order to exploit different types informa-
tion from cultural event images, we choose the VGG Net-
D and VGG Net-E for object recognition, and utilize the
Place-CNN net [23] as pre-trained deep network for scene
recognition. VGG Net-D and VGG Net-E consist of the
similar architectures and parameters of convolutional and
pooling filters. More details of these two deep networks can
be found in [14]. In addition, to boost recognition perfor-
mance, we also fine-tune VGG Net-D and VGG Net-E on
the training and validation images/crops of the competition.
Therefore, for one image/crop, we can get five DSP rep-
resentations extracted from the aforementioned five CNN
models. Because these CNN models are trained on different
types of images (i.e., object-centric images, scene-centric
images and event-centric images), we ensemble the com-
plementary information of multiple CNN models by treat-
ing these DSP representations as multi-view data.

We denote the multi-scale DSP representation extracted
from the i-th CNN model by f

i
m. After extracting these

DSP representations, we concatenate all the features and
apply `2 normalization as follows:

ffinal  
⇥
f

1
m,f2

m,f3
m,f4

m,f5
m

⇤
, (5)

ffinal  ffinal/kffinalk2 , (6)

which is called as “early fusion” in this paper. Note that, the
dimensionality of deep descriptors in the last convolutional
layer is 512 and 256 for VGG Nets and Place-CNN, respec-
tively. Thus, followed the aforementioned experimental set-
tings, the DSP representations of VGG Nets and Place-CNN
are of 12,288- and 6,144-dimension, and the final DSP rep-
resentation of each image is a 55,296-dimensional vector.

3. Experiments
In this section, we first describe the dataset of cultural

event recognition at the ICCV ChaLearn LAP 2015 com-
petition [3]. Then we give a detailed description about the
implementation details of the proposed framework. Finally,

S = {1.4, 1.2, 1.0, 0.8}
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Figure 4. Plot of ! values in DSP. For each of the seven datasets used in our experiments, we vary the numbers of Gaussian components
K to be 64 or 256. (a) and (b) are plots for the Caltech-101 data set, with K being 64 and 256, respectively. The meaning of other plots
can be deduced from their captions similarly. Note that, the plots for Scene15 are not similar to other plots. When K is larger than 4, DSP
could achieve satisfactory classification accuracy rates in Scene 15, a trend that is consistent with the plots shown in (g) and (h).
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Figure 5. Classification performance of DSP and Ms-DSP with different numbers of Gaussians

set, which corresponds to different number of GMM com-
ponents (shown as the horizontal axis), i.e., 64 and 256. The
vertical axis shows the value of ! for each Gaussian com-
ponent.

It is obvious to find that: for most datasets, one or two
! values are much larger than the rest. For example, when
K = 64 in the SUN 397 dataset, the two tall bars indicate
that two ! values are above 0.3, and their sum is around 0.7.

In other words, only 2 Gaussian components are responsi-
ble for more than 70% of the variations of the distribution.
The rest 30% might be related to noisy or background image
patches. Thus, K = 2 might be the best choice in this par-
ticular case. In most datasets, we can observe the same phe-
nomenon: one or two Gaussian components are dominating
the entire distribution. This observation might explain why
DSP just needs a small number of Gaussian components.

6
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Figure 4. Plot of ! values in DSP. For each of the seven datasets used in our experiments, we vary the numbers of Gaussian components
K to be 64 or 256. (a) and (b) are plots for the Caltech-101 data set, with K being 64 and 256, respectively. The meaning of other plots
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could achieve satisfactory classification accuracy rates in Scene 15, a trend that is consistent with the plots shown in (g) and (h).
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set, which corresponds to different number of GMM com-
ponents (shown as the horizontal axis), i.e., 64 and 256. The
vertical axis shows the value of ! for each Gaussian com-
ponent.

It is obvious to find that: for most datasets, one or two
! values are much larger than the rest. For example, when
K = 64 in the SUN 397 dataset, the two tall bars indicate
that two ! values are above 0.3, and their sum is around 0.7.

In other words, only 2 Gaussian components are responsi-
ble for more than 70% of the variations of the distribution.
The rest 30% might be related to noisy or background image
patches. Thus, K = 2 might be the best choice in this par-
ticular case. In most datasets, we can observe the same phe-
nomenon: one or two Gaussian components are dominating
the entire distribution. This observation might explain why
DSP just needs a small number of Gaussian components.
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Figure 4. Plot of ! values in DSP. For each of the seven datasets used in our experiments, we vary the numbers of Gaussian components
K to be 64 or 256. (a) and (b) are plots for the Caltech-101 data set, with K being 64 and 256, respectively. The meaning of other plots
can be deduced from their captions similarly. Note that, the plots for Scene15 are not similar to other plots. When K is larger than 4, DSP
could achieve satisfactory classification accuracy rates in Scene 15, a trend that is consistent with the plots shown in (g) and (h).
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set, which corresponds to different number of GMM com-
ponents (shown as the horizontal axis), i.e., 64 and 256. The
vertical axis shows the value of ! for each Gaussian com-
ponent.

It is obvious to find that: for most datasets, one or two
! values are much larger than the rest. For example, when
K = 64 in the SUN 397 dataset, the two tall bars indicate
that two ! values are above 0.3, and their sum is around 0.7.

In other words, only 2 Gaussian components are responsi-
ble for more than 70% of the variations of the distribution.
The rest 30% might be related to noisy or background image
patches. Thus, K = 2 might be the best choice in this par-
ticular case. In most datasets, we can observe the same phe-
nomenon: one or two Gaussian components are dominating
the entire distribution. This observation might explain why
DSP just needs a small number of Gaussian components.
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Table 3. Recognition accuracy (or mAP) comparisons on seven datasets. The highest accuracy (mAP) of each column is marked in bold.
[17]’s results were achieved using VGG Net-D and VGG Net-E, evaluation was measured by mean class recall on Caltech-101, Caltech-256
instead of accuracy .

Methods Description Caltech-101 Caltech-256 VOC 2007 Scene15 SUN397 MIT Indoor67 Stanford40

SoA

[9] 93.42±0.50 - 82.44 - - - -
[7] - - - - 51.98 68.88 -
[27] - - 82.13 - - 77.56 -
[30] 84.79±0.66 65.06±0.25 - 91.59±0.48 53.86±0.21 70.80 55.28±0.64
[1] 88.35±0.56 77.61±0.12 82.4 - - - -
[17] 92.7±0.5 (*) 86.2±0.3(*) 89.7 - - - -

Baseline Fc8 90.55±0.31 82.02±0.12 84.61 89.88±0.76 53.90±0.45 69.78 71.53±0.34
Pool5+FV 90.03±0.75 79.48±0.53 88.12 89.00±0.42 51.39±0.51 71.57 73.96±0.52

Our
DSP 94.66±0.26 84.22±0.11 88.60 91.13±0.77 57.27±0.34 76.34 79.75±0.34
Ms-DSP 95.11±0.26 85.47±0.14 89.31 91.78±0.22 59.78±0.47 78.28 80.81±0.29

Table 4. Per-class classification performance on PASCAL VOC 2007.
Methods Description aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Baseline Fc8 96.27 90.81 93.81 92.40 58.24 86.01 90.92 91.91 69.45 78.08 79.36 90.87 91.69 88.98 95.35 61.31 88.14 71.68 96.53 80.28

Pool5+FV 97.23 94.44 96.12 93.54 70.99 88.45 93.43 95.48 71.16 81.33 82.21 93.55 95.08 90.51 97.64 69.84 88.70 77.42 96.92 88.29

Our
DSP 97.45 94.12 96.79 94.98 69.64 87.99 93.28 95.76 72.75 81.65 85.07 94.31 94.84 91.57 97.53 69.61 89.42 80.14 97.47 87.64
Ms-DSP 97.67 95.24 96.84 94.47 70.58 89.32 93.50 95.92 74.61 83.99 85.68 95.27 95.37 92.02 97.42 71.05 90.82 80.57 97.69 88.14

order to compare fairly, we use the same resolution of input
image as in our DSP.

On most datasets, fc8 already performs well. Pool5 pro-
duces quite good results even though the Pool5 activations
are computed using only 10% of the CNN parameters of the
complete CNN model, which shows that fully convolutional
features (with small K in FV and `2 matrix normalization)
are powerful, especially on VOC2007 (84.61% ! 88.12%)
and Stanford40 (71.53% ! 73.96%).

DSP and multi-scale DSP can significantly outperform
baseline and state-of-the-arts methods. Compared to the
baselines, DSP improves performance in all datasets by 1–
5%, especially on SUN397 (53.90%!59.27%) and Stan-
ford40 (73.96%!79.75%). This gain is mainly due to the
fact that DSP can capture the spatial information on top of
pool5 activations. On the other hand, the fully convolutional
network relaxes the constraint that the input images must
have the same fixed size, thus the full image can be fed into
a pre-trained CNN without changing its aspect ratio. Com-
bining multiple scale and DSP (Ms-DSP) achieves the best
recognition performance on all datasets. Since fully convo-
lutional and small K are used, Ms-DSP is still very efficient.

Our DSP and Ms-DSP can achieve mean recall 96.38 ±
0.53 and 96.88 ± 0.59 on Caltech-101, respectively, and
90.05 ± 0.07 and 90.89 ± 0.17 on Caltech-256, respec-
tively. These results are significantly higher than that of [17]
(92.7% for Caltech-101 and 86.2% for Caltech-256).

In addition, on the VOC2007 dataset, our best perfor-
mance is slightly lower (0.4%) than that in [17]. However,
[17] used fusion feature which was computed using two pre-
trained CNN (i.e., VGG Net-D and VGG Net-E). Detailed
VOC results in Table 4 show that our methods are better

than fc8 in every category.

6. Conclusion

In order to present a powerful deep feature representa-
tion, details have to be made right. In other words, deci-
sions for important factors must be carefully studied and
made. In this paper, we picked a list of 5 important factors
and provided our answers to them. The main findings of
this paper form a complete pipeline DSP (deep spatial pyra-
mid), which integrates the following components: activa-
tions from the last convolutional layer, naturally processing
input image of any size instead of fixed size, dense deep fea-
tures extracted from multiple scales, and most importantly,
a natural way to build a spatial pyramid in deep learning.
DSP, in spite of being simple and efficient, has excellent
performance in many benchmark datasets.

In particular, we emphasize the following new find-
ings.
• Normalization: `2 matrix normalization is more effec-

tive than unnormalized or `2 vector normalization.
• DSP: DSP can effectively capture the spatial informa-

tion in a natural and efficient manner.
• K size in FV: Pooling deep descriptors only need small

number of Gaussian components in the Fisher Vector,
which leads to lower computational costs.

Other factors and details can be further considered in
the DSP framework, which we will study in the future.
For example, convolutional activations from multiple lay-
ers (cross-layer [13]) might further improve classification
accuracy. And VLAD might be a better fit than FV for ag-
gregating deep convolutional activations [25].

8
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:

fµk
(X) =

1
p
!k

TX

t=1

�t(k)

✓
xt � µk

�k

◆
, (2)

f�k
(X) =

1p
2!k

TX

t=1

�t(k)


(xt � µk)

2

�

2
k

� 1

�
. (3)

Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.

Level 1 Level 0

Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Place-CNN

Table 1. Recognition mAP comparisons of the Development phase. Note that, “FT” stands for the fine-tuned deep networks; “SS” is for
single scale, and “MS” is for multiple scales.

VGG Net-D VGG Net-E FT VGG Net-D FT VGG Net-E Place-CNN
SS 0.761 0.762 – – –
MS 0.770 0.773 0.779 0.769 0.640

Late fusion 0.782 0.784 0.802 0.791 0.649
Ensemble 0.841

(a) The original image

(f) Place-CNN(e) VGG Net-E(d) Fine-tuned VGG Net-E

(c) VGG Net-D(b) Fine-tuned VGG Net-D

Figure 6. Feature maps of an image of Junkanoo. (a) is the original image. For each feature map, we summarize the responses values of all
the depths in the final pooling layer for each deep network. (b) and (d) are the feature maps of the fine-tuned VGG Net-D and fine-tuned
VGG Net-E, respectively. (c) and (e) are the ones of the pre-trained VGG nets. (f) is the feature map of Place-CNN. These figures are best
viewed in color.
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.

Level 1 Level 0

Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The

co
nv

3-
64

co
nv

3-
64

m
ax

-p
oo

lin
g

...

co
nv

3-
51

2

co
nv

3-
51

2

...

...

Po
w

er
 n

or
m

al
iz

at
io

n

D
ic

tio
na

ry
 (G

M
M

)

l2
-n

or
m

al
iz

at
io

n

Fi
sh

er
 V

ec
to

r

Pre-trained CNN Activations
Input image

(Any resolution)
Spatial pyramid The Fisher Vector encoding

l2
-m

at
rix

 n
or

m
al

iz
e

Normalization

Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �
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k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
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(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
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(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by � = {!k,µk,�k; k = 1, . . . ,K}, where !k, µk

and �k are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and �

2
k are the variance

vectors. Let �t(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and �k are presented as follows [11]:
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Note that, fµk
(X) and f�k

(X) are both d-dimensional
vectors. The final Fisher Vector f�(X) is the concatena-
tion of the gradients fµk

(X) and f�k
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector f�(X) is improved by the power-
normalization with the factor of 0.5, followed by the `2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.
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The key part of DSP is adding spatial pyramid informa-
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image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 ⇥ 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.
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Implementation details

we present and analyze the experimental results of the pro-
posed framework on the competition dataset.

3.1. Datasets and evaluation criteria

The cultural event recognition at the ICCV ChaLearn
LAP 2015 competition [3] is the second round for this
track. Compared with the previous one, the task of ICCV
ChaLearn LAP 2015 has significantly increased the number
of images and classes, adding a new “no-event” class. As
a result, for this track more than 28,000 images are labeled
to perform automatic cultural event recognition from 100
categories in still images. These images are collected from
two image search engines (Google and Bing), which belong
to 99 different cultural events and one non-class. This is the
first dataset on cultural events from all around the globe.
From these images, we see that several cues like garments,
human poses, objects and background could be exploited
for recognizing the cultural events.

The dataset is divided into three parts: the training set
(14,332 images), the validation set (5,704 images) and the
evaluation set (8,669 images). During the development
phase, we train our model on the training set and verify its
performance on the validation set. For final evaluation, we
merge the training and validation set into a single data set
and re-train our model. The principal quantitative measure
used is the average precision (AP), which is calculated by
numerical integration.

3.2. Implementation details

Before extracting the DSP representations, we get the
original distributions of the numbers of training images in
both Development and Final Evaluation, which are shown
in Fig. 4(a) and Fig. 4(c), respectively. From these figures,
we can see the “non-event” class is of large quantity and
the original dataset is apparently class-imbalanced. To fix
this problem, for each image of the other 99 cultural event
classes, we extract three 384 ⇥ 384 crops which are illus-
trated in Fig. 5. Moreover, in order to keep the original se-
mantic meaning of each image, we fix the location of each
corresponding crop. In addition, we also get the horizontal
reflection of the 99 cultural event images. Therefore, the
number of cultural event images/crops will become 5 times
as the original one, which on one hand can supply diverse
data sources, and on the other hand can solve the class-
imbalanced problem. During the testing phase, because we
do not know the classes of testing images, all the testing
images will be augmented by the aforementioned process.

After data augmentation, as aforementioned, we employ
three popular deep CNNs as pre-trained models, including
VGG Net-D, VGG Net-E [14] and Place-CNN [23]. In ad-
dition, we also fine-tune VGG Net-D and VGG Net-E on
the images/crops of the competition. In consequence, we
obtain five deep networks (i.e., VGG Net-D, VGG Net-E,

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000
The original distribution of the training set in Development

# of classes

T
h

e 
n

u
m

b
er

 o
f 

im
ag

es

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800
The distribution of the training set in Development after crops

# of classes

T
h

e 
n

u
m

b
er

 o
f 

im
ag

es

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400
The original distribution of the training set in Final Evaluation

# of classes

T
h

e 
n

u
m

b
er

 o
f 

im
ag

es

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500
The distribution of the training set in Final Evaluation after crops

# of classes

T
h

e 
n

u
m

b
er

 o
f 

im
ag

es

(a) (b)

(c) (d)

Figure 4. Distributions of the number of training images in Devel-
opment and Final Evaluation. (a) and (c) are the original distri-
butions of training images in both Development and Final Eval-
uation, respectively. (b) and (d) are the distributions of training
images after crops.

Original images Crop1 Crop2 Crop3

Figure 5. Crops of the original images. Different from the random
crops used in other deep networks (e.g., [8]), we fix the locations
of these crops, which can keep the original semantic meaning of
cultural event images. If we get the random crops, for example the
second original image of Carnevale di Viareggio, it might get one
crop only contains sky, which will hurt the cultural event recogni-
tion performance. These figures are best viewed in color.

fine-tuned VGG Net-D, fine-tuned VGG Net-E and Place-
CNN) and use them to extract the corresponding DSP rep-
resentations for each image/crop. Thus, each image of both
training (except for the “no-event” class) and testing will be
represented by five DSP features/instances. As described
in Sec. 2.5, we concatenate these DSP features and apply
`2 normalization to get the final representation for each im-
age/crop. Finally, we feed these feature vectors into logistic
regression [4] to build a classifier and use the softmax as
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Implementation details

we present and analyze the experimental results of the pro-
posed framework on the competition dataset.

3.1. Datasets and evaluation criteria

The cultural event recognition at the ICCV ChaLearn
LAP 2015 competition [3] is the second round for this
track. Compared with the previous one, the task of ICCV
ChaLearn LAP 2015 has significantly increased the number
of images and classes, adding a new “no-event” class. As
a result, for this track more than 28,000 images are labeled
to perform automatic cultural event recognition from 100
categories in still images. These images are collected from
two image search engines (Google and Bing), which belong
to 99 different cultural events and one non-class. This is the
first dataset on cultural events from all around the globe.
From these images, we see that several cues like garments,
human poses, objects and background could be exploited
for recognizing the cultural events.

The dataset is divided into three parts: the training set
(14,332 images), the validation set (5,704 images) and the
evaluation set (8,669 images). During the development
phase, we train our model on the training set and verify its
performance on the validation set. For final evaluation, we
merge the training and validation set into a single data set
and re-train our model. The principal quantitative measure
used is the average precision (AP), which is calculated by
numerical integration.

3.2. Implementation details

Before extracting the DSP representations, we get the
original distributions of the numbers of training images in
both Development and Final Evaluation, which are shown
in Fig. 4(a) and Fig. 4(c), respectively. From these figures,
we can see the “non-event” class is of large quantity and
the original dataset is apparently class-imbalanced. To fix
this problem, for each image of the other 99 cultural event
classes, we extract three 384 ⇥ 384 crops which are illus-
trated in Fig. 5. Moreover, in order to keep the original se-
mantic meaning of each image, we fix the location of each
corresponding crop. In addition, we also get the horizontal
reflection of the 99 cultural event images. Therefore, the
number of cultural event images/crops will become 5 times
as the original one, which on one hand can supply diverse
data sources, and on the other hand can solve the class-
imbalanced problem. During the testing phase, because we
do not know the classes of testing images, all the testing
images will be augmented by the aforementioned process.

After data augmentation, as aforementioned, we employ
three popular deep CNNs as pre-trained models, including
VGG Net-D, VGG Net-E [14] and Place-CNN [23]. In ad-
dition, we also fine-tune VGG Net-D and VGG Net-E on
the images/crops of the competition. In consequence, we
obtain five deep networks (i.e., VGG Net-D, VGG Net-E,
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Figure 4. Distributions of the number of training images in Devel-
opment and Final Evaluation. (a) and (c) are the original distri-
butions of training images in both Development and Final Eval-
uation, respectively. (b) and (d) are the distributions of training
images after crops.

Original images Crop1 Crop2 Crop3

Figure 5. Crops of the original images. Different from the random
crops used in other deep networks (e.g., [8]), we fix the locations
of these crops, which can keep the original semantic meaning of
cultural event images. If we get the random crops, for example the
second original image of Carnevale di Viareggio, it might get one
crop only contains sky, which will hurt the cultural event recogni-
tion performance. These figures are best viewed in color.

fine-tuned VGG Net-D, fine-tuned VGG Net-E and Place-
CNN) and use them to extract the corresponding DSP rep-
resentations for each image/crop. Thus, each image of both
training (except for the “no-event” class) and testing will be
represented by five DSP features/instances. As described
in Sec. 2.5, we concatenate these DSP features and apply
`2 normalization to get the final representation for each im-
age/crop. Finally, we feed these feature vectors into logistic
regression [4] to build a classifier and use the softmax as
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we present and analyze the experimental results of the pro-
posed framework on the competition dataset.

3.1. Datasets and evaluation criteria

The cultural event recognition at the ICCV ChaLearn
LAP 2015 competition [3] is the second round for this
track. Compared with the previous one, the task of ICCV
ChaLearn LAP 2015 has significantly increased the number
of images and classes, adding a new “no-event” class. As
a result, for this track more than 28,000 images are labeled
to perform automatic cultural event recognition from 100
categories in still images. These images are collected from
two image search engines (Google and Bing), which belong
to 99 different cultural events and one non-class. This is the
first dataset on cultural events from all around the globe.
From these images, we see that several cues like garments,
human poses, objects and background could be exploited
for recognizing the cultural events.

The dataset is divided into three parts: the training set
(14,332 images), the validation set (5,704 images) and the
evaluation set (8,669 images). During the development
phase, we train our model on the training set and verify its
performance on the validation set. For final evaluation, we
merge the training and validation set into a single data set
and re-train our model. The principal quantitative measure
used is the average precision (AP), which is calculated by
numerical integration.

3.2. Implementation details

Before extracting the DSP representations, we get the
original distributions of the numbers of training images in
both Development and Final Evaluation, which are shown
in Fig. 4(a) and Fig. 4(c), respectively. From these figures,
we can see the “non-event” class is of large quantity and
the original dataset is apparently class-imbalanced. To fix
this problem, for each image of the other 99 cultural event
classes, we extract three 384 ⇥ 384 crops which are illus-
trated in Fig. 5. Moreover, in order to keep the original se-
mantic meaning of each image, we fix the location of each
corresponding crop. In addition, we also get the horizontal
reflection of the 99 cultural event images. Therefore, the
number of cultural event images/crops will become 5 times
as the original one, which on one hand can supply diverse
data sources, and on the other hand can solve the class-
imbalanced problem. During the testing phase, because we
do not know the classes of testing images, all the testing
images will be augmented by the aforementioned process.

After data augmentation, as aforementioned, we employ
three popular deep CNNs as pre-trained models, including
VGG Net-D, VGG Net-E [14] and Place-CNN [23]. In ad-
dition, we also fine-tune VGG Net-D and VGG Net-E on
the images/crops of the competition. In consequence, we
obtain five deep networks (i.e., VGG Net-D, VGG Net-E,
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Figure 4. Distributions of the number of training images in Devel-
opment and Final Evaluation. (a) and (c) are the original distri-
butions of training images in both Development and Final Eval-
uation, respectively. (b) and (d) are the distributions of training
images after crops.

Original images Crop1 Crop2 Crop3

Figure 5. Crops of the original images. Different from the random
crops used in other deep networks (e.g., [8]), we fix the locations
of these crops, which can keep the original semantic meaning of
cultural event images. If we get the random crops, for example the
second original image of Carnevale di Viareggio, it might get one
crop only contains sky, which will hurt the cultural event recogni-
tion performance. These figures are best viewed in color.

fine-tuned VGG Net-D, fine-tuned VGG Net-E and Place-
CNN) and use them to extract the corresponding DSP rep-
resentations for each image/crop. Thus, each image of both
training (except for the “no-event” class) and testing will be
represented by five DSP features/instances. As described
in Sec. 2.5, we concatenate these DSP features and apply
`2 normalization to get the final representation for each im-
age/crop. Finally, we feed these feature vectors into logistic
regression [4] to build a classifier and use the softmax as

Late fusion



Implementation details

we present and analyze the experimental results of the pro-
posed framework on the competition dataset.

3.1. Datasets and evaluation criteria

The cultural event recognition at the ICCV ChaLearn
LAP 2015 competition [3] is the second round for this
track. Compared with the previous one, the task of ICCV
ChaLearn LAP 2015 has significantly increased the number
of images and classes, adding a new “no-event” class. As
a result, for this track more than 28,000 images are labeled
to perform automatic cultural event recognition from 100
categories in still images. These images are collected from
two image search engines (Google and Bing), which belong
to 99 different cultural events and one non-class. This is the
first dataset on cultural events from all around the globe.
From these images, we see that several cues like garments,
human poses, objects and background could be exploited
for recognizing the cultural events.

The dataset is divided into three parts: the training set
(14,332 images), the validation set (5,704 images) and the
evaluation set (8,669 images). During the development
phase, we train our model on the training set and verify its
performance on the validation set. For final evaluation, we
merge the training and validation set into a single data set
and re-train our model. The principal quantitative measure
used is the average precision (AP), which is calculated by
numerical integration.

3.2. Implementation details

Before extracting the DSP representations, we get the
original distributions of the numbers of training images in
both Development and Final Evaluation, which are shown
in Fig. 4(a) and Fig. 4(c), respectively. From these figures,
we can see the “non-event” class is of large quantity and
the original dataset is apparently class-imbalanced. To fix
this problem, for each image of the other 99 cultural event
classes, we extract three 384 ⇥ 384 crops which are illus-
trated in Fig. 5. Moreover, in order to keep the original se-
mantic meaning of each image, we fix the location of each
corresponding crop. In addition, we also get the horizontal
reflection of the 99 cultural event images. Therefore, the
number of cultural event images/crops will become 5 times
as the original one, which on one hand can supply diverse
data sources, and on the other hand can solve the class-
imbalanced problem. During the testing phase, because we
do not know the classes of testing images, all the testing
images will be augmented by the aforementioned process.

After data augmentation, as aforementioned, we employ
three popular deep CNNs as pre-trained models, including
VGG Net-D, VGG Net-E [14] and Place-CNN [23]. In ad-
dition, we also fine-tune VGG Net-D and VGG Net-E on
the images/crops of the competition. In consequence, we
obtain five deep networks (i.e., VGG Net-D, VGG Net-E,
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Figure 4. Distributions of the number of training images in Devel-
opment and Final Evaluation. (a) and (c) are the original distri-
butions of training images in both Development and Final Eval-
uation, respectively. (b) and (d) are the distributions of training
images after crops.

Original images Crop1 Crop2 Crop3

Figure 5. Crops of the original images. Different from the random
crops used in other deep networks (e.g., [8]), we fix the locations
of these crops, which can keep the original semantic meaning of
cultural event images. If we get the random crops, for example the
second original image of Carnevale di Viareggio, it might get one
crop only contains sky, which will hurt the cultural event recogni-
tion performance. These figures are best viewed in color.

fine-tuned VGG Net-D, fine-tuned VGG Net-E and Place-
CNN) and use them to extract the corresponding DSP rep-
resentations for each image/crop. Thus, each image of both
training (except for the “no-event” class) and testing will be
represented by five DSP features/instances. As described
in Sec. 2.5, we concatenate these DSP features and apply
`2 normalization to get the final representation for each im-
age/crop. Finally, we feed these feature vectors into logistic
regression [4] to build a classifier and use the softmax as
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we present and analyze the experimental results of the pro-
posed framework on the competition dataset.

3.1. Datasets and evaluation criteria

The cultural event recognition at the ICCV ChaLearn
LAP 2015 competition [3] is the second round for this
track. Compared with the previous one, the task of ICCV
ChaLearn LAP 2015 has significantly increased the number
of images and classes, adding a new “no-event” class. As
a result, for this track more than 28,000 images are labeled
to perform automatic cultural event recognition from 100
categories in still images. These images are collected from
two image search engines (Google and Bing), which belong
to 99 different cultural events and one non-class. This is the
first dataset on cultural events from all around the globe.
From these images, we see that several cues like garments,
human poses, objects and background could be exploited
for recognizing the cultural events.

The dataset is divided into three parts: the training set
(14,332 images), the validation set (5,704 images) and the
evaluation set (8,669 images). During the development
phase, we train our model on the training set and verify its
performance on the validation set. For final evaluation, we
merge the training and validation set into a single data set
and re-train our model. The principal quantitative measure
used is the average precision (AP), which is calculated by
numerical integration.

3.2. Implementation details

Before extracting the DSP representations, we get the
original distributions of the numbers of training images in
both Development and Final Evaluation, which are shown
in Fig. 4(a) and Fig. 4(c), respectively. From these figures,
we can see the “non-event” class is of large quantity and
the original dataset is apparently class-imbalanced. To fix
this problem, for each image of the other 99 cultural event
classes, we extract three 384 ⇥ 384 crops which are illus-
trated in Fig. 5. Moreover, in order to keep the original se-
mantic meaning of each image, we fix the location of each
corresponding crop. In addition, we also get the horizontal
reflection of the 99 cultural event images. Therefore, the
number of cultural event images/crops will become 5 times
as the original one, which on one hand can supply diverse
data sources, and on the other hand can solve the class-
imbalanced problem. During the testing phase, because we
do not know the classes of testing images, all the testing
images will be augmented by the aforementioned process.

After data augmentation, as aforementioned, we employ
three popular deep CNNs as pre-trained models, including
VGG Net-D, VGG Net-E [14] and Place-CNN [23]. In ad-
dition, we also fine-tune VGG Net-D and VGG Net-E on
the images/crops of the competition. In consequence, we
obtain five deep networks (i.e., VGG Net-D, VGG Net-E,
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Figure 4. Distributions of the number of training images in Devel-
opment and Final Evaluation. (a) and (c) are the original distri-
butions of training images in both Development and Final Eval-
uation, respectively. (b) and (d) are the distributions of training
images after crops.

Original images Crop1 Crop2 Crop3

Figure 5. Crops of the original images. Different from the random
crops used in other deep networks (e.g., [8]), we fix the locations
of these crops, which can keep the original semantic meaning of
cultural event images. If we get the random crops, for example the
second original image of Carnevale di Viareggio, it might get one
crop only contains sky, which will hurt the cultural event recogni-
tion performance. These figures are best viewed in color.

fine-tuned VGG Net-D, fine-tuned VGG Net-E and Place-
CNN) and use them to extract the corresponding DSP rep-
resentations for each image/crop. Thus, each image of both
training (except for the “no-event” class) and testing will be
represented by five DSP features/instances. As described
in Sec. 2.5, we concatenate these DSP features and apply
`2 normalization to get the final representation for each im-
age/crop. Finally, we feed these feature vectors into logistic
regression [4] to build a classifier and use the softmax as

we present and analyze the experimental results of the pro-
posed framework on the competition dataset.
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The cultural event recognition at the ICCV ChaLearn
LAP 2015 competition [3] is the second round for this
track. Compared with the previous one, the task of ICCV
ChaLearn LAP 2015 has significantly increased the number
of images and classes, adding a new “no-event” class. As
a result, for this track more than 28,000 images are labeled
to perform automatic cultural event recognition from 100
categories in still images. These images are collected from
two image search engines (Google and Bing), which belong
to 99 different cultural events and one non-class. This is the
first dataset on cultural events from all around the globe.
From these images, we see that several cues like garments,
human poses, objects and background could be exploited
for recognizing the cultural events.

The dataset is divided into three parts: the training set
(14,332 images), the validation set (5,704 images) and the
evaluation set (8,669 images). During the development
phase, we train our model on the training set and verify its
performance on the validation set. For final evaluation, we
merge the training and validation set into a single data set
and re-train our model. The principal quantitative measure
used is the average precision (AP), which is calculated by
numerical integration.

3.2. Implementation details

Before extracting the DSP representations, we get the
original distributions of the numbers of training images in
both Development and Final Evaluation, which are shown
in Fig. 4(a) and Fig. 4(c), respectively. From these figures,
we can see the “non-event” class is of large quantity and
the original dataset is apparently class-imbalanced. To fix
this problem, for each image of the other 99 cultural event
classes, we extract three 384 ⇥ 384 crops which are illus-
trated in Fig. 5. Moreover, in order to keep the original se-
mantic meaning of each image, we fix the location of each
corresponding crop. In addition, we also get the horizontal
reflection of the 99 cultural event images. Therefore, the
number of cultural event images/crops will become 5 times
as the original one, which on one hand can supply diverse
data sources, and on the other hand can solve the class-
imbalanced problem. During the testing phase, because we
do not know the classes of testing images, all the testing
images will be augmented by the aforementioned process.

After data augmentation, as aforementioned, we employ
three popular deep CNNs as pre-trained models, including
VGG Net-D, VGG Net-E [14] and Place-CNN [23]. In ad-
dition, we also fine-tune VGG Net-D and VGG Net-E on
the images/crops of the competition. In consequence, we
obtain five deep networks (i.e., VGG Net-D, VGG Net-E,
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Figure 4. Distributions of the number of training images in Devel-
opment and Final Evaluation. (a) and (c) are the original distri-
butions of training images in both Development and Final Eval-
uation, respectively. (b) and (d) are the distributions of training
images after crops.

Original images Crop1 Crop2 Crop3

Figure 5. Crops of the original images. Different from the random
crops used in other deep networks (e.g., [8]), we fix the locations
of these crops, which can keep the original semantic meaning of
cultural event images. If we get the random crops, for example the
second original image of Carnevale di Viareggio, it might get one
crop only contains sky, which will hurt the cultural event recogni-
tion performance. These figures are best viewed in color.

fine-tuned VGG Net-D, fine-tuned VGG Net-E and Place-
CNN) and use them to extract the corresponding DSP rep-
resentations for each image/crop. Thus, each image of both
training (except for the “no-event” class) and testing will be
represented by five DSP features/instances. As described
in Sec. 2.5, we concatenate these DSP features and apply
`2 normalization to get the final representation for each im-
age/crop. Finally, we feed these feature vectors into logistic
regression [4] to build a classifier and use the softmax as

Late fusion
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Table 1. Recognition mAP comparisons of the Development phase. Note that, “FT” stands for the fine-tuned deep networks; “SS” is for
single scale, and “MS” is for multiple scales.

VGG Net-D VGG Net-E FT VGG Net-D FT VGG Net-E Place-CNN
SS 0.761 0.762 – – –
MS 0.770 0.773 0.779 0.769 0.640

Late fusion 0.782 0.784 0.802 0.791 0.649
Ensemble 0.841

(a) The original image

(f) Place-CNN(e) VGG Net-E(d) Fine-tuned VGG Net-E

(c) VGG Net-D(b) Fine-tuned VGG Net-D

Figure 6. Feature maps of an image of Junkanoo. (a) is the original image. For each feature map, we summarize the responses values of all
the depths in the final pooling layer for each deep network. (b) and (d) are the feature maps of the fine-tuned VGG Net-D and fine-tuned
VGG Net-E, respectively. (c) and (e) are the ones of the pre-trained VGG nets. (f) is the feature map of Place-CNN. These figures are best
viewed in color.
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the prediction scores of images/crops. And then, the final
scores of testing images can be obtained by averaging the
scores across their corresponding crops and horizontal re-
flections, which is called “late fusion” corresponding to the
former one mentioned in Sec. 2.5.

3.3. Experimental results

In this section, we first present the experimental results
of the Development phase and analyze our proposed frame-
work. Finally, we show the Final Evaluation results of this
cultural event recognition competition.

3.3.1 Development

In Table 1, we present the main results in the Development
phase. As discussed in Sec. 2.4, the multiple scales (MS)
strategy could capture the variation information, which
boosts the performance by about 1% mAP on VGG Net-D
(0.761 ! 0.770) and VGG Net-E (0.762 ! 0.773). In addi-
tion, the late fusion approach is also effective. From this ta-
ble, it improves more than 1% mAP on the pre-trained VGG
nets, and improves performance by 2% when deep networks
are fine-tuned on cultural event images/crops of the compe-
tition. Because these deep networks are trained on different
image sources, i.e., ImageNet [12], Places [23] and Cultural
Event Recognition [3], they can supply complementary in-
formation for each image of this competition. Thus, we do
“early fusion” by concatenating these DSP representations
extracted from the five deep networks, and then get the fi-
nal prediction score of each testing image in Development
via “late fusion”. The ensemble performance (0.841) can
significantly outperform the previous ones.

In order to further investigate this complementarity, we
visualize the feature maps of these five deep networks in
Fig. 6. As shown in those figures, the strongest responses
in the corresponding feature maps of these deep networks
are quite different from each other, especially the one of
Place-CNN, i.e., Fig. 6 (f). Apparently, different pre-trained
deep networks trained on different data sources could ex-
tract complementary information for each image in cultural
event recognition.

3.3.2 Final evaluation

As aforementioned, in the Final Evaluation phase, we
merge the training and validation set into a single data set
and do the similar processes, i.e., data augmentation, fine-
tuning, “early fusion” and “late fusion”, etc. The final chal-
lenge results are shown in Table 2. Our final result (0.851) is
slightly lower (0.3%) than the team ranked 1st. For further
improving recognition performance of the proposed frame-
work, a very simple and straightforward way is to apply the
“bagging” approach [1] on the concatenated DSP represen-
tations of each image/crop, and then get the corresponding

Table 2. Comparison performances of our proposed framework
with that of the top five teams in the Final Evaluation phase.

Rank Team Score
1 VIPL-ICT-CAS 0.854
2 FV (Ours) 0.851
3 MMLAB 0.847
4 NU&C 0.824
5 CVL ETHZ 0.798

prediction scores for the testing images/crops. After sev-
eral times bagging processes, the final prediction scores can
be obtained by averaging the results of multiple baggings.
Moreover, advanced ensemble methods can be also simply
applied into our framework to achieve better performance.

4. Conclusion
Event recognition from still images is one of the chal-

lenging problems in computer vision. In order to exploit and
capture important cues like human poses, human garments
and other context, this paper has proposed the Deep Spa-
tial Pyramid Ensemble framework. In consequence, based
on the proposed framework, we employ five deep CNN net-
works trained on different data sources and ensemble their
complementary information. Finally, we utilize the pro-
posed framework for the track of cultural event recogni-
tion [3] at the ChaLearn LAP challenge in association with
ICCV 2015, and achieve one of the best recognition per-
formance in the Final Evaluation phase. In the future, we
will introduce more advanced ensemble methods into our
framework and incorporating more visual cues for event un-
derstanding.
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