Unconstrained Minimization (I)

Lijun Zhang

zlj@nju. edu. cn

http://cs.nju. edu. cn/zlj

Outline

- Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Outline

- ☐ Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Basic Terminology

- □ Unconstrained Optimization Problem $\min f(x)$
 - $f(x): \mathbb{R}^n \to \mathbb{R}$ is convex
 - \blacksquare f(x) always have a domain dom f
 - \checkmark dom $f = \mathbf{R}^n$, dom $f \subset \mathbf{R}^n$
 - \blacksquare f(x) is twice continuously differentiable
 - ✓ dom f is open, such as $(0, \infty)$
 - The problem is solvable
 - \checkmark There exists an optimal point x^*

$$\inf_{x} f(x) = f(x^*) = p^*$$

Basic Terminology

Unconstrained Optimization Problem

min
$$f(x)$$
 x^* is optimal if and only if

 $\nabla f(x^*) = 0$

Equivalent

- Special cases: a closed-form solution
- General cases: an iterative algorithm
 - ✓ A sequence of points $x^{(0)}, x^{(1)}, ... \in \text{dom } f$ with $f(x^{(k)}) \to p^*$ as $k \to \infty$
 - ✓ A minimizing sequence for the problem
 - ✓ The algorithm is terminated when

$$f(x^{(k)}) - p^* \le \epsilon$$

Requirements of Iterative Algorithm

■ Initial Point

A suitable starting point

$$x^{(0)} \in \text{dom } f$$

■ Sublevel Set is Closed

$$S = \{ x \in \text{dom } f \mid f(x) \le f(x^{(0)}) \}$$

- Satisfied for all $x^{(0)} \in \text{dom } f$ if the function f is closed
 - ✓ Continuous functions with dom $f = \mathbf{R}^n$
 - ✓ Continuous functions with open domains and $f(x) \to \infty$ as $x \to \operatorname{bd} \operatorname{dom} f$

Outline

- ☐ Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Convex Quadratic Minimization

Problem
$$\min \ \frac{1}{2} x^{\mathsf{T}} P x + q^{\mathsf{T}} x + r$$

- $P \in \mathbf{S}^n_+, q \in \mathbf{R}^n, r \in \mathbf{R}$
- Optimality Condition

$$Px^* + q = 0$$

- 1. $P > 0 \Rightarrow x^* = -P^{-1}q$ (unique solution)
- 2. If P is singular and $q \in \mathcal{R}(P)$, any solution of $Px^* + q = 0$ is optimal
- 3. If $q \notin \mathcal{R}(P)$, no solution, unbound below

- Convex Quadratic Minimization
 - Problem $\min \ \frac{1}{2} x^{\mathsf{T}} P x + q^{\mathsf{T}} x + r$
 - $P \in \mathbf{S}^n_+, q \in \mathbf{R}^n, r \in \mathbf{R}$
 - 3. If $q \notin \mathcal{R}(P)$, no solution, unbound below
 - \checkmark q = a + b, $a \in \mathcal{R}(P)$, $b \perp \mathcal{R}(P)$, $a \perp b$

Let
$$x = tb$$

$$\frac{1}{2}x^{T}Px + q^{T}x + r$$

$$= t(a+b)^{T}b + r$$

$$= t||b||_{2}^{2} + r$$

■ Least-Squares Problem

min
$$||Ax - b||_2^2 = x^{\mathsf{T}}A^{\mathsf{T}}Ax - 2b^{\mathsf{T}}Ax + b^{\mathsf{T}}b$$

- $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ are problem data
- Optimality Condition

$$\nabla f(x^*) = 2A^{\mathsf{T}}Ax^* - 2A^{\mathsf{T}}b = 0$$

Normal Equations

$$A^{\mathsf{T}}Ax^* = A^{\mathsf{T}}b$$

☐ Unconstrained Geometric Programming

$$\min f(x) = \log \left(\sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x + b_i) \right)$$

Optimality Condition

$$\nabla f(x^*) = \frac{\sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x^* + b_i) a_i}{\sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x^* + b_i)} = 0$$

- ✓ No analytical solution
- An Iterative Algorithm
 - ✓ dom $f = \mathbb{R}^n$, any point can be chosen as $x^{(0)}$

■ Analytic Center of Linear Inequalities

$$\min f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^{\mathsf{T}} x)$$

- \blacksquare dom $f = \{x | a_i^{\mathsf{T}} x < b_i, i = 1, 2, ..., m\}$
- f is called as the logarithmic barrier for the inequalities $a_i^T x < b_i$
- The solution of this problem is called the analytic center of the inequalities
- An Iterative Algorithm
 - $\checkmark x^{(0)}$ must satisfy $a_i^T x^{(0)} < b_i$

Outline

- ☐ Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

- \square $f(\cdot)$ is strongly convex on S, if $\exists m > 0$ $\nabla^2 f(x) \ge mI$, $\forall x \in S$
- 1. A Quadratic Lower Bound
 - $\forall x, y \in S, \exists z \in [x, y]$

$$f(y) = f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{1}{2} (y - x)^{\mathsf{T}} \nabla^2 f(z) (y - x)$$
$$\geq f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{m}{2} ||y - x||_2^2$$

- \square $f(\cdot)$ is strongly convex on S, if $\exists m > 0$ $\nabla^2 f(x) \ge mI$, $\forall x \in S$
- 1. A Quadratic Lower Bound

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{m}{2} ||y - x||_2^2, \quad \forall x, y \in S$$

When m = 0, reduce to the first-order condition of convex functions

\square $f(\cdot)$ is strongly convex on S, if $\exists m > 0$

$$\nabla^2 f(x) \geqslant mI, \quad \forall x \in S$$

1. A Quadratic Lower Bound

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{m}{2} ||y - x||_2^2, \quad \forall x, y \in S$$

2. A Condition for Suboptimality

$$\begin{split} f(y) &\geq \min_{y} f(x) + \nabla f(x)^{\top} (y - x) + \frac{m}{2} \|y - x\|_{2}^{2} \\ &= f(x) + \nabla f(x)^{\top} (\tilde{y} - x) + \frac{m}{2} \|\tilde{y} - x\|_{2}^{2}, \ \ \tilde{y} = x - \frac{1}{m} \nabla f(x) \\ &= f(x) - \frac{1}{2m} \|\nabla f(x)\|_{2}^{2} \end{split}$$

\square $f(\cdot)$ is strongly convex on S, if $\exists m > 0$ $\nabla^2 f(x) \ge mI$, $\forall x \in S$

1. A Quadratic Lower Bound

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{m}{2} ||y - x||_2^2, \quad \forall x, y \in S$$

2. A Condition for Suboptimality

$$p_* \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2 \implies f(x) - p_* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

If the gradient is small at x, then it is nearly optimal $\|\nabla f(x)\|_2 \leq (2m\epsilon)^{\frac{1}{2}} \Rightarrow f(x) - p^* \leq \epsilon$

- \square $f(\cdot)$ is strongly convex on S, if $\exists m > 0$ $\nabla^2 f(x) \ge mI$, $\forall x \in S$
- 3. An Upper Bound of $||x^* x||_2$

$$p_* = f(x^*)$$

$$\geq f(x) + \nabla f(x)^{\mathsf{T}} (x^* - x) + \frac{m}{2} ||x^* - x||_2^2$$

$$\geq f(x) - ||\nabla f(x)||_2 ||x^* - x||_2 + \frac{m}{2} ||x^* - x||_2^2$$

$$\geq p_* - ||\nabla f(x)||_2 ||x^* - x||_2 + \frac{m}{2} ||x^* - x||_2^2$$

- \square $f(\cdot)$ is strongly convex on S, if $\exists m > 0$ $\nabla^2 f(x) \ge mI$, $\forall x \in S$
- 3. An Upper Bound of $||x^* x||_2$

$$\frac{m}{2} \|x^* - x\|_2^2 \le \|\nabla f(x)\|_2 \|x^* - x\|_2$$

- $||x^* x||_2 \le \frac{2}{m} ||\nabla f(x)||_2$
- $x \to x^*$, as $\nabla f(x) \to 0$
- The optimal point x^* is unique

Outline

- ☐ Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Smoothness

\square $f(\cdot)$ is smooth on S, if $\exists M > 0$

$$\nabla^2 f(x) \leq MI, \quad \forall x \in S$$

1. A Quadratic Upper Bound

 $\forall x, y \in S, \exists z \in [x, y]$

$$f(y) = f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{1}{2} (y - x)^{\mathsf{T}} \nabla^2 f(z) (y - x)$$

$$\leq f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{M}{2} ||y - x||_2^2$$

Smoothness

\square $f(\cdot)$ is smooth on S, if $\exists M > 0$

$$\nabla^2 f(x) \leq MI, \quad \forall x \in S$$

1. A Quadratic Upper Bound

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{M}{2} ||y - x||_2^2, \quad \forall x, y \in S$$

2. An Upper Bound of Gradients

$$\begin{split} \min_{y} f(y) &\leq \min_{y} f(x) + \nabla f(x)^{\top} (y - x) + \frac{M}{2} \|y - x\|_{2}^{2} \\ &= f(x) + \nabla f(x)^{\top} (\tilde{y} - x) + \frac{M}{2} \|\tilde{y} - x\|_{2}^{2}, \ \tilde{y} = x - \frac{1}{M} \nabla f(x) \\ &= f(x) - \frac{1}{2M} \|\nabla f(x)\|_{2}^{2} \end{split}$$

Smoothness

\square $f(\cdot)$ is smooth on S, if $\exists M > 0$

$$\nabla^2 f(x) \leq MI, \quad \forall x \in S$$

1. A Quadratic Upper Bound

$$f(y) \le f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{M}{2} ||y - x||_2^2, \quad \forall x, y \in S$$

2. An Upper Bound of Gradients

$$p^* \le f(x) - \frac{1}{2M} \|\nabla f(x)\|_2^2$$

$$\implies \frac{1}{2M} \|\nabla f(x)\|_2^2 \le f(x) - p_*$$

☐ Condition Number of a Matrix A

$$\operatorname{cond}(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$$

 \square $f(\cdot)$ is both strongly convex and smooth

$$mI \leq \nabla^2 f(x) \leq MI, \quad \forall x \in S$$

Condition number of f

$$\kappa = \frac{M}{m} \ge \operatorname{cond}(\nabla^2 f(x))$$

Has a strong effect on the efficiency of optimization methods

Geometric Interpretations

Width of a convex set $C \subseteq \mathbb{R}^n$, in the direction q where $||q||_2 = 1$

$$W(C,q) = \sup_{z \in C} q^{\mathsf{T}}z - \inf_{z \in C} q^{\mathsf{T}}z$$

Minimum width and maximum width of C

$$W_{\min} = \inf_{\|q\|_2=1} W(C,q), \qquad W_{\max} = \sup_{\|q\|_2=1} W(C,q)$$

Condition number of C

✓ cond(C) is small implies $cond(C) = \frac{W_{\text{max}}^2}{W^2}$. C it is nearly spherical

$$\operatorname{cond}(C) = \frac{W_{\max}^2}{W_{\min}^2}$$

□ Geometric Interpretations

 \blacksquare α -sublevel set of f

$$C_{\alpha} = \{x | f(x) \le \alpha\}, \qquad p^* \le \alpha \le f(x_0)$$

 \blacksquare $f(\cdot)$ is both strongly convex and smooth

$$p_* + \frac{M}{2} \|y - x^*\|_2^2 \ge f(y) \ge p_* + \frac{m}{2} \|y - x^*\|_2^2$$

$$B_{\text{inner}} \subseteq C_{\alpha} \subseteq B_{\text{outer}}$$

$$B_{\text{inner}} = \left\{ y \left| \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{M} \right)^{1/2} \right\} \quad B_{\text{outer}} = \left\{ y \left| \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{m} \right)^{1/2} \right\} \right\}$$

□ Geometric Interpretations

 \blacksquare α -sublevel set of f

$$C_{\alpha} = \{x | f(x) \le \alpha\}, \qquad p^* \le \alpha \le f(x_0)$$

 \blacksquare $f(\cdot)$ is both strongly convex and smooth

$$p_* + \frac{M}{2} \|y - x^*\|_2^2 \ge f(y) \ge p_* + \frac{m}{2} \|y - x^*\|_2^2$$

$$y \in C_{\alpha} \Rightarrow a \ge f(y) \Rightarrow a \ge p_* + \frac{m}{2} \|y - x^*\|_2^2$$

$$\Rightarrow \frac{m}{2} \|y - x^*\|_2^2 \le a - p_* \Rightarrow \|y - x^*\| \le \sqrt{\frac{2}{m} (a - p_*)}$$

$$\Rightarrow y \in B_{\text{outer}} = \left\{ y \, \middle| \, \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{m}\right)^{1/2} \right\} \Rightarrow C_{\alpha} \subseteq B_{\text{outer}}$$

□ Geometric Interpretations

 \blacksquare α -sublevel set of f

$$C_{\alpha} = \{x | f(x) \le \alpha\}, \qquad p^* \le \alpha \le f(x_0)$$

 \blacksquare $f(\cdot)$ is both strongly convex and smooth

$$p_* + \frac{M}{2} \|y - x^*\|_2^2 \ge f(y) \ge p_* + \frac{m}{2} \|y - x^*\|_2^2$$

$$y \in B_{\text{inner}} = \left\{ y \left\| \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{M} \right)^{1/2} \right\} \right\}$$

$$\Rightarrow f(y) \le p_* + \frac{M}{2} \|y - x^*\|_2^2 \le \alpha \Rightarrow y \in C_\alpha \Rightarrow B_{\mathrm{inner}} \subseteq C_\alpha$$

□ Geometric Interpretations

 \blacksquare α -sublevel set of f

$$C_{\alpha} = \{x | f(x) \le \alpha\}, \qquad p^* \le \alpha \le f(x_0)$$

 \blacksquare $f(\cdot)$ is both strongly convex and smooth

$$B_{\text{inner}} \subseteq C_{\alpha} \subseteq B_{\text{outer}}$$

$$B_{\text{inner}} = \left\{ y \left| \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{M} \right)^{1/2} \right\} \quad B_{\text{outer}} = \left\{ y \left| \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{m} \right)^{1/2} \right\} \right\}$$

 \blacksquare Condition number of C_{α}

$$\operatorname{cond}(C_{\alpha}) \le \kappa = \frac{M}{m}$$

Discussions

- ☐ Parameters *m* and *M*
 - Known only in rare cases
 - Unknown in general
- □ They are conceptually useful
 - They establish that the algorithm converges
 - The convergence behavior of optimization algorithms depends on them
- In Practice
 - Estimate their values
 - Design parameter-free algorithms

Outline

- Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Iterative Methods

□ A Minimizing Sequence

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \qquad k = 1, \dots$$

- k is the iteration number
- $\mathbf{x}^{(k)}$ is the output of iterative methods
- $\triangle x^{(k)}$ is the step or search direction
- $t^{(k)} \ge 0$ is the step size or step length

□ Shorthand

$$x := x + t\Delta x$$

Descent Methods

Descent Methods

$$f(x^{k+1}) < f(x^k)$$

- **Except** when $x^{(k)}$ is optimal
- $\forall k, \ x^{(k)} \in S = \{x \in \text{dom } f \mid f(x) \le f(x^{(0)})\}$
- The search direction makes an acute angle with the negative gradient

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0$$

$$\begin{cases}
f(x^{k+1}) \ge f(x^k) + \nabla f(x^{(k)})^{\mathsf{T}} (x^{k+1} - x^k) \\
\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} \ge 0 \Rightarrow \nabla f(x^{(k)})^{\mathsf{T}} (x^{k+1} - x^k) \ge 0
\end{cases} \Rightarrow f(x^{k+1}) \ge f(x^k)$$

Descent Methods

Descent Methods

$$f(x^{k+1}) < f(x^k)$$

- **Except** when $x^{(k)}$ is optimal
- $\forall k, \ x^{(k)} \in S = \{x \in \text{dom } f \mid f(x) \le f(x^{(0)})\}$
- The search direction makes an acute angle with the negative gradient

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0$$

lacksquare $\Delta x^{(k)}$ is called as descent direction

General Descent Methods

☐ The Algorithm

Given a starting point $x \in \text{dom } f$ **Repeat**

- 1. Determine a descent direction Δx .
- 2. Line search: Choose a step size $t \ge 0$.
- 3. Update: $x := x + t\Delta x$.

until stopping criterion is satisfied.

□ Line Search

Determine the next iterate along the line $\{x + t\Delta x | t \in \mathbf{R}_+\}$

General Descent Methods

☐ The Algorithm

Given a starting point $x \in \text{dom } f$ **Repeat**

- 1. Determine a descent direction Δx .
- 2. Line search: Choose a step size $t \ge 0$.
- 3. Update: $x := x + t\Delta x$.

until stopping criterion is satisfied.

□ Stopping Criterion

$$\|\nabla f(x)\|_2 \le \eta$$

Outline

- Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Exact Line Search

☐ Minimize f along the Ray

$$t = \operatorname{argmin}_{s \ge 0} f(x + s \Delta x)$$

The cost of the minimization problem with one variable is low

$$\min_{s\geq 0} f(x+s\Delta x)$$

The minimizer along the ray can be found analytically

Outline

- Unconstrained Minimization Problems
 - Basic Terminology
 - Examples
 - Strong Convexity
 - Smoothness
- □ Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

- Most line searches used in practice are inexact
 - Approximately minimize f along the ray
 - Just reduce f 'enough'

■ Backtracking Line Search

```
given a descent direction \Delta x for f at x \in \mathbf{dom}\ f, \alpha \in (0, 0.5), \beta \in (0, 1) t \coloneqq 1 while f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\mathsf{T}} \Delta x, t \coloneqq \beta t
```


- □ The line search is called backtracking
 - It starts with unit step size and then reduces it by the factor β

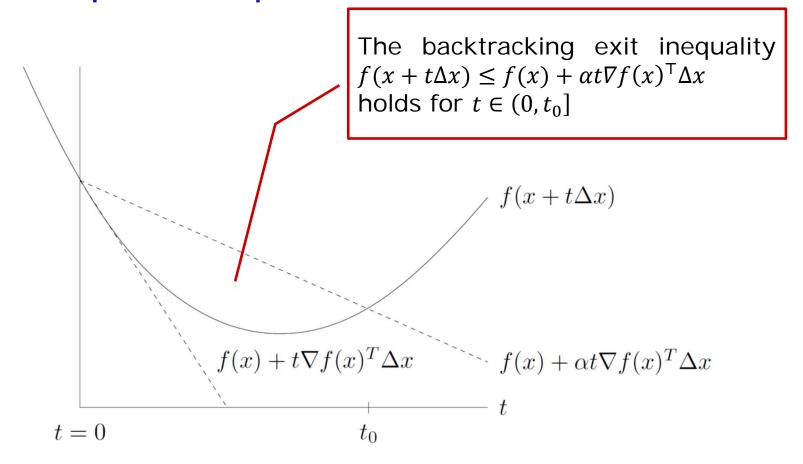
$$t \coloneqq 1$$
, $t \coloneqq \beta t$

- ☐ It eventually terminates
 - lacksquare Δx is a descent direction, i.e., $\nabla f(x)^{\mathsf{T}} \Delta x < 0$
 - For small enough t

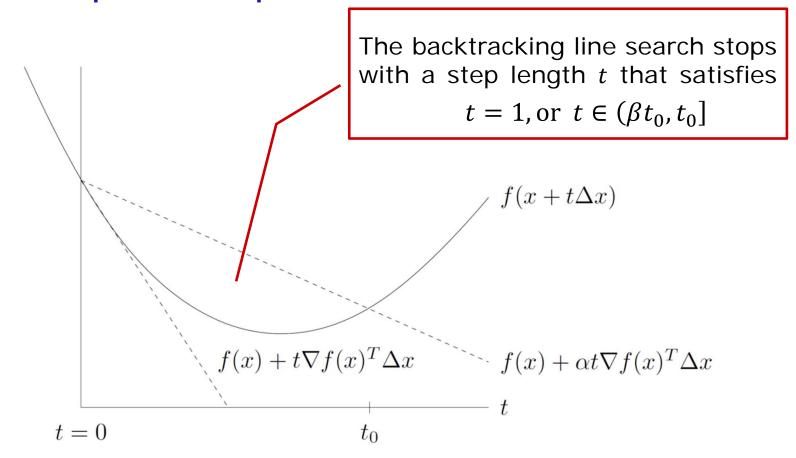
$$f(x + t\Delta x) \approx f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x < f(x) + \alpha t\nabla f(x)^{\mathsf{T}} \Delta x$$

 \checkmark α is the fraction of the decrease in f predicted by linear extrapolation that we will accept

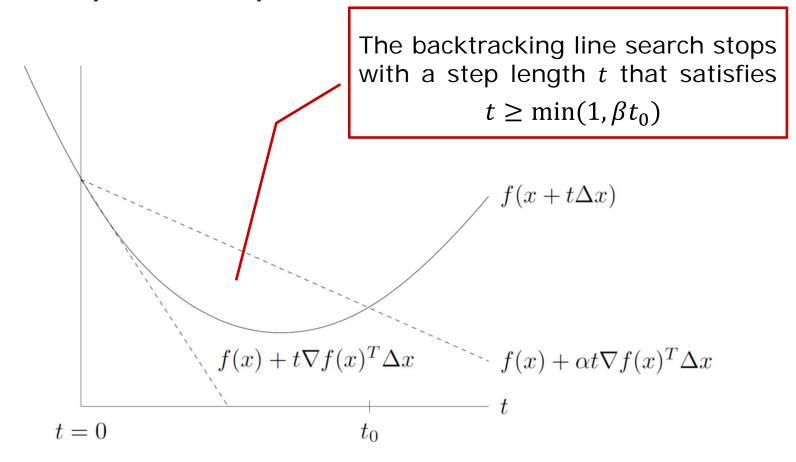
☐ Graph Interpretation



□ Graph Interpretation



☐ Graph Interpretation



 \square dom $f \neq \mathbb{R}^n$

$$f(x + t\Delta x) \le f(x) + \alpha \nabla f(x)^{\mathsf{T}} \Delta x$$

Require $x + t\Delta x \in \text{dom } f$

□ A Practical Implementation

- 1. Multiply t by β until $x + t\Delta x \in \text{dom } f$
- 2. Check whether the above inequality holds
- \blacksquare α is typically chosen between 0.01 and 0.3
- \blacksquare β is often chosen between 0.1 and 0.8

Summary

- Unconstrained Minimization Problems
 - First-order Optimality Condition
 - Strong Convexity and Implications
 - Smoothness and Implications

- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search