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General Descent Method

The Algorithm

Given a starting point x € dom f
Repeat
1. Determine a descent direction Ax.
2. Line search: Choose a step size t > 0.
3. Update: x = x + tAx.

until stopping criterion is satisfied.

Descent Direction
vf(x®) Ax® < 0




Gradient Descent Method

The Algorithm

Given a starting point x € dom f
Repeat
1. Ax = -Vf(x).
2. Line search: Choose step size t via exact or
backtracking line search.

3. Update: x := x + tAx.
until stopping criterion is satisfied.

Stopping Criterion
IVl <7
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Preliminary

x(BFD) = () L tFAx(E) = ¥+ = x + tAx
Ax = =Vf(x)
f () Is both strongly convex and
SMOOth )/ < v2F(x) < MI, Vx€S
Define f:R - R as

f@) = f(x —tVf(x))

B A quadratic upper bound on f

3 Mt?
f@) < fx) —tlvfolls +T||Vf(x)||§




Analysis for Exact Line Search &

1. Minimize Both Sides of
5 , Mt? ,
(@) < flx)—tl|lVF(x)ll5 +T||Vf(x)||z

B Left side: f(texact), Where teeac is the step
length that minimizes f

B Right side: t = 1/M is the solution
i 1
f(x+) = f(texact) < f(x) — M ”Vf(x)”%
2. Subtracting p* from Both Sides

1
fx)—p" < f(x)—p’ —mllVf(x)II%



Analysis for Exact Line Search &

3. f(-) I1s strongly convex on §
V2f(x) = ml, Vx €S
= |[Vf)lI3= 2m(f (x) — p”)
4. Combining
f&) —p* <A —m/M)(f(x) —p7)
5. Applying it Recursively
f(x®) —p* < c*(f(x'V) - p’)
Bc=1-m/M<1
B f(x%)) coverges to p*as k — oo



Discussions

Iteration Complexity
B f(x®)) —p* < e after at most

log((f (x) — p*)/€)
log(1/c)
B log((f(x?) — p*)/e) indicates that
Initialization is important

B log(1/c) is a function of the condition
number M /m

B When M/m is large
log(1/c) = —log(1 —m/M) = m/M

Iiterations
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Discussions

Iteration Complexity
B f(x®)) —p* < e after at most

log((f (x(9) — p*)/€)
log(1/c)
B log((f(x?) — p*)/e) indicates that
Initialization is important
B log(1/c) is a function of the condition
number M /m

B Linear Convergence

v Error lies below a line on a log-linear plot of
error versus iteration number

Iiterations



Analysis for Backtracking Line (g
Search

Backtracking Line Search
given a descent direction Ax for fat x e dom f,a €
(0,0.5),8 € (0,1)

t=1

while f(x + tAx) > f(x) + atVf(x)"Ax, t := Bt

1 f(O) < f) —at||lVFfx)|3 forall 0 <t <1/M
1 Mt? t —

0<t—> —t+—< ——
M 2 2 :

3 Mt?
f@) < flx) —tlvFColls + - VOl ——



Analysis for Backtracking Line (g
Search

Backtracking Line Search

given a descent direction Ax for fat x e dom f,a €
(0,0.5),8 € (0,1)

t=1

while f(x + tAx) > f(x) + atVf(x)"Ax, t := Bt

1 f(O) < f) —at||lVFfx)|3 forall 0 <t <1/M
f@) <) = t/2IVF I3

< f(x) — at||VF()II5
ma<1/2



Analysis for Backtracking Line (g
Search

2. Backtracking Line Search Terminates

B Eitherwitht =1

f(x™) < fx) —allvfoll3
B Orwithavaluet>pg/M
fx) < fx) = Ba/MVFIZ
E So,
f(x™) < f(x) — min{a, Ba/M}||Vf (X)]I5

3. Subtracting p* from Both Sides

f(x™) —p* < f(x) —p* — min{a, fa/M} IV (0)II2



Analysis for Backtracking Line |’
Search

4. Combining with Strong Convexity

20am

fxT)—p* < (1 — min {Zma, T }) (f(x) —p)

5. Applying it Recursively
f(x®) —p* < c*(f(x'¥) - p’)

23}3’"} <1

B c=1-—min {Zma,

B f(x(™) converges to p* with an exponent
that depends on the condition number M/m

B Linear Convergence
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A Quadratic Problem in R?

A Quadratic Objective Function

1
f@) =5t +yxz),  v>0

B The optimal point x* =0
The optimal value is 0

B The Hessian of f is constant and has
eigenvalues 1 and y

B m = min{l,y},M = max{1,y)}
B Condition number

max{1l,y} 1
min{1,y} ax y’y




A Quadratic Problem in R?

A Quadratic Objective Function

1
f@) =5t +yxz),  v>0

Gradient Descent Method
B Exact line search starting at x(® = (y,1)

1\° —1\"
x(k) — Y — x(k) — _)/ Convergence is
1 % +1 ’r2 % +1 [ exactly linear

B Reduced by the factor |(y — 1)/(y + D|?



A Quadratic Problem in R?

Comparisons
B m=min{l,y}, M = max{1,y}

B From our general analysis, the error is
reduced by m

1 — —
M

B From the closed-form solution, the error
IS reduced by

y—1 2_ 1—-—m/M ?
(y+1) _(1+m/M)




A Quadratic Problem in R?

Comparisons
B m=min{l,y}, M = max{1,y}

B From our general analysis, the error is
reduced by m

1 — —
M

B From the closed-form solution, the error
IS reduced by

y—12_ 1—m/M2_ , 2m/M 2
y+1) \1+m/M) 1+m/M
® When M/m is large, the iteration
complexity differs by a factor of 4




A Quadratic Problem in R?

Experiments
B For y not far from one, convergence is rapid
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Figure 9.2 Some contour lines of the function f(x) = (1/2)(z7 + 10z3). The
condition number of the sublevel sets, which are ellipsoids, is exactly 10.
The figure shows the iterates of the gradient method with exact line search,

started at z'?) = (10, 1).



A Non-Quadratic Problem in R%'

The Objective Function
f(xl; xz) — ex1+3x2—0.1 + ex1—3x2—0.1 + e—xl—O.l

B Gradient descent method with
backtracking line search

~




A Non-Quadratic Problem in R%'

The Objective Function
f(xl; xz) — ex1+3x2—0.1 + ex1—3x2—0.1 + e—xl—O.l

B Gradient descent method with exact line
search




A Non-Quadratic Problem in R%'

Comparisons
B Both are linear, and exact |.s. I1s faster
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A Problem in R19Y

A Larger Problem
fx) =c"x— ) log(b; — a/ x)
2

B m=500andn=100

B Gradient descent method with
backtracking line search

v a=01,8=0.5

B Gradient descent method with exact line
search



A Problem in R190

Comparisons
B Both are linear, and exact |.s. Is only a
bit faster 104
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Gradient Method and Condition’
Number

A Larger Problem

f(x) =c"x — 2 log(b; — a;' x)
i=1

B Replace x by Tx
T = diag(1,yY/",y?/™, ...,y(m-D/n)

A Family of Optimization Problems

m
f(x) =c"Tx — ) log(b; — a; Tx)
l
i=1

B Indexed by y



Gradient Method and Conditio
Number

Number of iterations required to
obtain f(x*)—p* < 107°

rR

Backtracking line search -
with ¢ = 0.3 and g = 0.7 . \

103}

iterations
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Gradient Method and Conditio
Number

Thg condition number of the Hessian
V2f(x*)at the optimum

104
The larger the condition _\ Z ]
number, the larger the - /
number of iterations ; |
= 1P // ;
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Conclusions

1.

2.

The gradient method often exhibits
approximately linear convergence.

The convergence rate depends greatly on
the condition number of the Hessian, or the
sublevel sets.

. An exact line search sometimes improves

the convergence of the gradient method,
but the effect is not large.

. The choice of backtracking parameters

a, [ has a noticeable but not dramatic effect
on the convergence.
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General Convex Functions

f () Is convex
f(+) 1s Lipschitz continuous

IVFllz <G

Gradient Descent Method
Given a starting point x(Y) € dom f

For k=1,2,..,K do

Update: x®+D = x®) _ ¢y f (500
End for
Return x = %Zgzlx(k)
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Analysis

Define D = ||x() — x*

Let t() =nk=1,.. K
f(x®) = f(x™)
< VF(x®) (x® — x*)

2

=100 )T (00 _
—( ) () —x7)

2 — D — 2 + || ® — x(k+1)||§)

1
=5 (||x<k> oyt



Analysis

Define D = ||x() — x*

Let t®) =n,k=1,..,K
f(x®) = FGe)
< 7f(x®)" (x® - x7)

= L (x0 — x0erD)T (0 _ x)
n
1
= Z(Hx(") —x
< %(Hx(") e

||x(k+1)

II3) + 5 17 )]

)+ZG2

||x(k+1)




Analysis

SO0,
F0) = £ < o
Summing over k =1,. K

z FE) = Kf () < _—02 "502
O D|V|d|ng both sides by K

||x(k+1)




Analysis

By Jensen’s Inequality

1 K
F@ - f(x) = f (Ezkﬂx“‘)) - @)

T
< %;f(x(")) )

D? 7
< ——+—(G2
_ZUK-I_Z
_GD
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Discussions

How to Ensure |[Vf(x)]|l, < G?

Add a Domain Constraint
min f(x)

s.t. xeX
B Can model any constrained convex
optimization problem

Gradient Descent with Projection
gk+1) — (k) _ t(k)Vf(x(")), x kD = p (g k+1)

B Property of Euclidean Projection

||x(k+1) < ||5C\(k+1) ot

2



Gradient Descent with
Projection

The Problem . £(x)
s.t. xeX
The Algorithm

Given a starting point x(Y) € dom f
For k=1,2,..,K do
Update: 2*+1 = x(®) — ¢RIy f(00)
Projection: x&+1 = p, (x(k+1)
End for
Return x = %Zgzlx(k)

Assumptions IVf(®)ll, <G vxeX




Analysis

Define D = ||x() — x*

Let t¥) =n,k=1,..,K
f(x®) = f(x)
< 7f(x®)" (x® - x*)

X e X

1 Property of Euclidean
— (x(k) _ ,g(k+1))T(x(k) —x*) |Projection

—2 (”x(‘c) ||x(k+1) ) |_ ] 2/
_(”x(k) ||x(k+1) ) L ” Gz
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