Mathematical Background

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju.edu. cn/zlj

Outline

\square Norms
\square Analysis
\square Functions
\square Derivatives
\square Linear Algebra

Outline

\square Norms
\square Analysis
\square Functions
\square Derivatives
\square Linear Algebra

Inner product

\square Inner product on \mathbf{R}^{n}

$$
\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}, x, y \in \mathbf{R}^{n}
$$

\square Euclidean norm, or l_{2}-norm

$$
\|x\|_{2}=\left(x^{\top} x\right)^{1 / 2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}, x \in \mathbf{R}^{n}
$$

\square Cauchy-Schwarz inequality

$$
\left|x^{\top} y\right| \leq\|x\|_{2}\|y\|_{2}, x, y \in \mathbf{R}^{n}
$$

\square Angle between nonzero vectors $x, y \in \mathbf{R}^{n}$

$$
\angle(x, y)=\cos ^{-1}\left(\frac{x^{\top} y}{\|x\|_{2}\|y\|_{2}}\right), x, y \in \mathbf{R}^{n}
$$

Inner product

\square Inner product on $\mathbf{R}^{m \times n}, X, Y \in \mathbf{R}^{m \times n}$

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}
$$

Here $\operatorname{tr}($) denotes trace of a matrix
\square Frobenius norm of a matrix $X \in \mathbf{R}^{m \times n}$

$$
\|X\|_{F}=\left(\operatorname{tr}\left(X^{\top} X\right)\right)^{1 / 2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}\right)^{1 / 2}
$$

\square Inner product on \mathbf{S}^{n}

$$
\langle X, Y\rangle=\operatorname{tr}(X Y)=\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i j} Y_{i j}=\sum_{i=1}^{n} X_{i i} Y_{i i}+2 \sum_{i<j} X_{i j} Y_{i j}
$$

Norms

\square A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with $\operatorname{dom} f=\mathbf{R}^{n}$ is called a norm if
■ f is nonnegative: $f(x) \geq 0$ for all $x \in \mathbf{R}^{n}$
■ f is definite: $f(x)=0$ only if $x=0$
■ f is homogeneous: $f(t x)=|t| f(x)$, for all $x \in$ \mathbf{R}^{n} and $t \in \mathbf{R}$

- f satisfies the triangle inequality:

$$
f(x+y) \leq f(x)+f(y), \text { for all } x, y \in \mathbf{R}^{n}
$$

\square Distance

- Between vectors x and y as the length of their difference, i.e.,

$$
\operatorname{dist}(x, y)=\|x-y\|
$$

Norms

\square Unit ball

- The set of all vectors with norm less than or equal to one,

$$
\mathcal{B}=\left\{x \in \mathbf{R}^{n} \mid\|x\| \leq 1\right\}
$$

is called the unit ball of the norm $\|\cdot\|$.
■ The unit ball satisfies the following properties:
$\checkmark \mathcal{B}$ is symmetric about the origin, i.e., $x \in \mathcal{B}$ if and only if $-x \in \mathcal{B}$
$\checkmark \mathcal{B}$ is convex
$\checkmark \mathcal{B}$ is closed, bounded, and has nonempty interior

- Conversely, if $C \subseteq \mathbf{R}^{n}$ is any set satisfying these three conditions, the it is the unit ball of a norm:

$$
\|x\|=(\sup \{t \geq 0 \mid t x \in C\})^{-1}
$$

Norms

\square Some common norms on \mathbf{R}^{n}
■ Sum-absolute-value, or l_{1}-norm

$$
\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|, x \in \mathbf{R}^{n}
$$

■ Chebyshev or l_{∞}-norm

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

- l_{p}-norm, $p \geq 1$

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

- For $P \in \mathbf{S}_{++}^{n}, P$-quadratic norm is

$$
\|x\|_{P}=\left(x^{\top} P x\right)^{1 / 2}=\left\|P^{1 / 2} x\right\|_{2}
$$

Norms

\square Some common norms on $\mathbf{R}^{m \times n}$
■ Sum-absolute-value norm

$$
\|X\|_{\mathrm{sav}}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|X_{i j}\right|
$$

■ Maximum-absolute-value norm

$$
\|X\|_{\text {mav }}=\max \left\{\left|X_{i j}\right| \mid i=1, \ldots, m, j=1, \ldots, n\right\}
$$

Norms

\square Equivalence of norms
■ Suppose that $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are norms on \mathbf{R}^{n}, there exist positive constants α and β, for all $x \in \mathbf{R}^{n}$

$$
\alpha\|x\|_{a} \leq\|x\|_{b} \leq \beta\|x\|_{a}
$$

■ If $\|\cdot\|$ is any norm on \mathbf{R}^{n}, then there exists a quadratic norm $\|\cdot\|_{P}$ for which

$$
\|x\|_{P} \leq\|x\| \leq \sqrt{n}\|x\|_{P}
$$

holds for all x

Norms

\square Operator norms
■ Suppose $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are norms on \mathbf{R}^{m} and \mathbf{R}^{n}, respectively. Operator norm of $X \in \mathbf{R}^{m \times n}$ induced by $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ is

$$
\|X\|_{a, b}=\sup \left\{\|X u\|_{a} \mid\|u\|_{b} \leq 1\right\}
$$

■ When $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are Euclidean norms, the operator norm of X is its maximum singular value, and is denoted $\|X\|_{2}$

$$
\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{\top} X\right)\right)^{1 / 2}
$$

\checkmark Spectral norm or ℓ_{2}-norm

Norms

\square Operator norms

- The norm induced by the ℓ_{∞}-norm on \mathbf{R}^{m} and \mathbf{R}^{n}, denoted $\|X\|_{\infty}$, is the max-row-sum norm,

$$
\|X\|_{\infty}=\sup \left\{\|X u\|_{\infty} \mid\|u\|_{\infty} \leq 1\right\}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|X_{i j}\right|
$$

■ The norm induced by the ℓ_{1}-norm on \mathbf{R}^{m} and \mathbf{R}^{n}, denoted $\|X\|_{1}$, is the max-column-sum norm,

$$
\|X\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|X_{i j}\right|
$$

Norms

\square Dual norm
■ Let $\|\cdot\|$ be a norm on \mathbf{R}^{n}
■ The associated dual norm, denoted $\|\cdot\|_{*}$, is defined as

$$
\|z\|_{*}=\sup \left\{z^{\top} x \mid\|x\| \leq 1\right\}
$$

■ We have the inequality

$$
\begin{aligned}
& z^{\top} x \leq\|x\|\|z\|_{*} \\
& z^{\top} x=z^{\top} \frac{x}{\|x\|} \cdot\|x\| \leq\|z\|_{*}\|x\| \\
& z^{\top} \frac{x}{\|x\|} \leq \sup \left\{z^{\top} x \mid\|x\| \leq 1\right\}=\|z\|_{*}
\end{aligned}
$$

Norms

\square Dual norm
■ Let $\|\cdot\|$ be a norm on \mathbf{R}^{n}
■ The associated dual norm, denoted $\|\cdot\|_{*}$, is defined as

$$
\|z\|_{*}=\sup \left\{z^{\top} x \mid\|x\| \leq 1\right\}
$$

■ We have the inequality

$$
z^{\top} x \leq\|x\|\|z\|_{*}
$$

■ The dual of Euclidean norm

$$
\sup \left\{z^{\top} x \mid\|x\|_{2} \leq 1\right\}=\|z\|_{2}
$$

- The dual of the ℓ_{∞}-norm

$$
\sup \left\{z^{\top} x \mid\|x\|_{\infty} \leq 1\right\}=\|z\|_{1}
$$

Norms

\square Dual norm
■ Let $\|\cdot\|$ be a norm on \mathbf{R}^{n}
■ The associated dual norm, denoted $\|\cdot\|_{*}$, is defined as

$$
\|z\|_{*}=\sup \left\{z^{\top} x \mid\|x\| \leq 1\right\}
$$

■ We have the inequality

$$
z^{\top} x \leq\|x\|\|z\|_{*}
$$

- The dual of the dual norm

$$
\|\cdot\|_{* *}=\|\cdot\|
$$

Norms

\square Dual Norm

- The dual of ℓ_{p}-norm is the ℓ_{q}-norm such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

■ The dual of the ℓ_{2}-norm on $\mathbf{R}^{m \times n}$ is the nuclear norm

$$
\begin{aligned}
\|Z\|_{2 *} & =\sup \left\{\operatorname{tr}\left(Z^{\top} X\right) \mid\|X\|_{2} \leq 1\right\} \\
& =\sigma_{1}(Z)+\cdots+\sigma_{r}(Z)=\operatorname{tr}\left[\left(Z^{\top} Z\right)^{1 / 2}\right]
\end{aligned}
$$

Outline

\square Norms
\square Analysis
\square Functions
\square Derivatives
\square Linear Algebra

Analysis

\square Interior and Open Set

- An element $x \in C \subseteq \mathbf{R}^{n}$ is called an interior point of C if there exists an $\epsilon>0$ for which

$$
\left\{y \mid\|y-x\|_{2} \leq \epsilon\right\} \subseteq C
$$

i.e., there exists a ball centered at x that lies entirely in C

- The set of all points interior to C is called the interior of C and is denoted int C
- A set C is open if $\operatorname{int} C=C$

Analysis

\square Closed Set and Boundary

- A set $C \subseteq \mathbf{R}^{n}$ is closed if its complement is open

$$
\mathbf{R}^{n} \backslash C=\left\{x \in \mathbf{R}^{n} \mid x \notin C\right\}
$$

- The closure of a set C is defined as

$$
\operatorname{cl} C=\mathbf{R}^{n} \backslash \operatorname{int}\left(\mathbf{R}^{\mathbf{n}} \backslash C\right)
$$

- The boundary of the set C is defined as

$$
\mathrm{bd} C=\mathrm{cl} C \backslash \operatorname{int} C
$$

$\checkmark C$ is closed if it contains its boundary. It is open if it contains no boundary points

Analysis

\square Supremum and infimum

■ The least upper bound or supremum of the set C is denoted $\sup C$

- The greatest lower bound or infimum of the set C is denoted $\inf C$

$$
\inf C=-(\sup -C)
$$

Outline

\square Norms
\square Analysis
\square Functions
\square Derivatives
\square Linear Algebra

Functions

\square Notation

$$
f: A \rightarrow B
$$

■ $\operatorname{dom} f \subseteq A$
\square An example $f: \mathbf{S}^{n} \rightarrow \mathbf{R}$

$$
f(X)=\log \operatorname{det} X
$$

- $\operatorname{dom} f=\mathbf{S}_{++}^{n}$

Functions

\square Continuity

- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is continuous at $x \in \operatorname{dom} f$ if for all $\epsilon>0$ there exists a δ such that
$y \in \operatorname{dom} f,\|y-x\|_{2} \leq \delta \Rightarrow\|f(y)-f(x)\|_{2} \leq \epsilon$
■ f is continuous if it is continuous at every point
\square Closed functions
- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is closed if, for each $\alpha \in \mathbf{R}$, the sublevel set

$$
\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

is closed. This is equivalent to
epi $f=\left\{(x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}$ is closed

Outline

\square Norms
\square Analysis
\square Functions
\square Derivatives
\square Linear Algebra

Derivatives

\square Definition

- Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $x \in \operatorname{int} \operatorname{dom} f$. The function f is differentiable at x if there exists a matrix $D f(x) \in \mathbf{R}^{m \times n}$ that satisfies
$\lim _{z \in \operatorname{dom} f, z \neq x, z \rightarrow x} \frac{\|f(z)-f(x)-D f(x)(z-x)\|_{2}}{\|z-x\|_{2}}=0$
in which case we refer to $D f(x)$ as the derivative (or Jacobian) of f at x
■ f is differentiable if $\operatorname{dom} f$ is open, and it is differentiable at every point

Derivatives

\square Definition

- The affine function of z given by

$$
f(x)+D f(x)(z-x)
$$

is called the first-order approximation of f at (or near) x

$$
D f(x)_{i j}=\frac{\partial f_{i}(x)}{\partial x_{j}}, i=1, \cdots, m, j=1, \cdots, n
$$

Derivatives

\square Gradient
■ When f is real-valued (i.e., $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$) the derivative $D f(x)$ is a $1 \times n$ matrix (it is a row vector). Its transpose is called the gradient of the function:

$$
\nabla f(x)=D f(x)^{\top}
$$

which is a column vector (in \mathbf{R}^{n}). Its components are the partial derivatives of f :

$$
\nabla f(x)_{i}=\frac{\partial f(x)}{\partial x_{i}}, i=1, \cdots, n
$$

■ The first-order approximation of f at a point $x \in$ int $\operatorname{dom} f$ can be expressed as (the affine function of z)

$$
f(x)+\nabla f(x)^{\top}(z-x)
$$

Derivatives

\square Examples

$$
\begin{aligned}
& f(x)=\frac{1}{2} x^{\top} P x+q^{\top} x+r, \quad P \in \mathbf{S}^{n} \\
& \nabla f(x)=P x+q
\end{aligned}
$$

$$
f(X)=\log \operatorname{det} X, \operatorname{dom} f=\mathbf{S}_{++}^{n}
$$

$$
\nabla f(X)=X^{-1}
$$

Derivatives

\square Chain rule

- Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable at $x \in$ int $\operatorname{dom} f$ and $g: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ is differentiable at $f(x) \in$ int dom g.
Define the composition $h: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ by $h(z)=$ $g(f(z))$. Then h is differentiable at x, with derivate

$$
D h(x)=\operatorname{Dg}(f(x)) D f(x)
$$

■ Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, g: \mathbf{R} \rightarrow \mathbf{R}$, and $h(x)=g(f(x))$

$$
\nabla h(x)=g^{\prime}(f(x)) \nabla f(x)
$$

Derivatives

\square Composition of Affine Function

$$
\begin{gathered}
g(x)=f(A x+b) \\
\nabla g(x)=A^{\top} \nabla f(A x+b) \\
f: \mathbf{R}^{n} \rightarrow \mathbf{R}, \quad g: \mathbf{R} \rightarrow \mathbf{R} \\
g(t)=f(x+t v), \quad x, v \in \mathbf{R}^{n} \\
g^{\prime}(t)=v^{\top} \nabla f(x+t v)
\end{gathered}
$$

Example 1

\square Consider the function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
f(x)=\log \sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right)
$$

■ where $a_{1}, \ldots, a_{m} \in \mathbf{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbf{R}$
$\square f(x)=g(A x+b)$

$$
\begin{aligned}
& g(y)=\log \sum_{i=1}^{m} \exp \left(y_{i}\right) \\
& \nabla g(y)=\frac{1}{\sum_{i=1}^{m} \exp y_{i}}\left[\begin{array}{c}
\exp y_{1} \\
\vdots \\
\exp y_{m}
\end{array}\right]
\end{aligned}
$$

Example 1

\square Consider the function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
f(x)=\log \sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right)
$$

■ where $a_{1}, \ldots, a_{m} \in \mathbf{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbf{R}$
$\square f(x)=g(A x+b)$

$$
\begin{aligned}
& \nabla f(x)=A^{\top} \nabla g(A x+b) \\
& \nabla g(y)=\frac{1}{\sum_{i=1}^{m} \exp y_{i}}\left[\begin{array}{c}
\exp y_{1} \\
\vdots \\
\exp y_{m}
\end{array}\right]
\end{aligned}
$$

Example 1

\square Consider the function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
f(x)=\log \sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right)
$$

■ where $a_{1}, \ldots, a_{m} \in \mathbf{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbf{R}$
$\square f(x)=g(A x+b)$

$$
\begin{aligned}
\nabla f(x) & =A^{\top} \nabla g(A x+b)=\frac{1}{1^{\top} z} A^{\top} z \\
z & =\left[\begin{array}{c}
\exp a_{1}^{\top} x+b_{1} \\
\vdots \\
\exp a_{m}^{\top} x+b_{m}
\end{array}\right]
\end{aligned}
$$

Example 2

\square Consider the function

$$
f(x)=\log \operatorname{det}\left(F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n}\right)
$$

■ where $F_{0}, \ldots, F_{n} \in \mathbf{S}^{p}$
$\square f(x)=g\left(F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n}\right)$

$$
\begin{gathered}
g(X)=\log \operatorname{det} X \\
\frac{\partial f(x)}{\partial x_{i}}=\operatorname{tr}\left(F_{i} \nabla \log \operatorname{det}(F)\right)=\operatorname{tr}\left(F^{-1} F_{i}\right)
\end{gathered}
$$

Example 2

\square Consider the function

$$
f(x)=\log \operatorname{det}\left(F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n}\right)
$$

■ where $F_{0}, \ldots, F_{n} \in \mathbf{S}^{p}$
$\square f(x)=g\left(F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n}\right)$

$$
\begin{gathered}
g(X)=\log \operatorname{det} X \\
\frac{\partial f(x)}{\partial x_{i}}=\operatorname{tr}\left(F_{i} \nabla \log \operatorname{det}(F)\right)=\operatorname{tr}\left(F^{-1} F_{i}\right) \\
\nabla f(x)=\left[\begin{array}{c}
\operatorname{tr}\left(F^{-1} F_{1}\right) \\
\vdots \\
\operatorname{tr}\left(F^{-1} F_{n}\right)
\end{array}\right]
\end{gathered}
$$

Second Derivative

\square Definition

- Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. The second derivative or Hessian matrix of f at $x \in \operatorname{int} \operatorname{dom} f$, denoted $\nabla^{2} f(x)$, is given by

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, i=1, \cdots, n, j=1, \cdots, n .
$$

\square Second-order Approximation

$$
f(x)+\nabla f(x)^{\top}(z-x)+\frac{1}{2}(z-x)^{\top} \nabla^{2} f(x)(z-x)
$$

Derivatives

\square Examples

$$
\begin{gathered}
f(x)=\frac{1}{2} x^{\top} P x+q^{\top} x+r, \quad P \in \mathbf{S}^{n} \\
\nabla f(x)=P x+q \\
\nabla^{2} f(x)=P \\
f(X)=\log \operatorname{det} X, \operatorname{dom} f=\mathbf{S}_{++}^{n} \\
\nabla f(X)=X^{-1} \\
f(X)+\operatorname{tr}\left(X^{-1}(Z-X)\right)-\frac{1}{2} \operatorname{tr}\left(X^{-1}(Z-X) X^{-1}(Z-X)\right)
\end{gathered}
$$

Second Derivative

\square Chain rule
■ Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, g: \mathbf{R} \rightarrow \mathbf{R}$, and $h(x)=$ $g(f(x))$

$$
\begin{gathered}
\nabla h(x)=g^{\prime}(f(x)) \nabla f(x) \\
\nabla^{2} h(x)=g^{\prime}(f(x)) \nabla^{2} f(x)+g^{\prime \prime}(f(x)) \nabla f(x) \nabla f(x)^{\top}
\end{gathered}
$$

- Composition with affine function

$$
\begin{aligned}
g(x) & =f(A x+b) \\
\nabla g(x) & =A^{\top} \nabla f(A x+b) \\
\nabla^{2} g(x) & =A^{\top} \nabla^{2} f(A x+b) A
\end{aligned}
$$

Second Derivative

\square Chain rule
■ Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, g: \mathbf{R} \rightarrow \mathbf{R}$, and $h(x)=$ $g(f(x))$

$$
\begin{gathered}
\nabla h(x)=g^{\prime}(f(x)) \nabla f(x) \\
\nabla^{2} h(x)=g^{\prime}(f(x)) \nabla^{2} f(x)+g^{\prime \prime}(f(x)) \nabla f(x) \nabla f(x)^{\top}
\end{gathered}
$$

- Composition with affine function

$$
\begin{aligned}
g(t) & =f(x+t v), \quad x, v \in \mathbf{R}^{n} \\
g^{\prime}(t) & =v^{\top} \nabla f(x+t v) \\
g^{\prime \prime}(t) & =v^{\top} \nabla^{2} f(x+t v) v
\end{aligned}
$$

Example 1

\square Consider the function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
f(x)=\log \sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right)
$$

■ where $a_{1}, \ldots, a_{m} \in \mathbf{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbf{R}$
$\square f(x)=g(A x+b)$

$$
\begin{gathered}
A x+b) \\
g(y)=\log \sum_{i=1}^{m} \exp \left(y_{i}\right) \\
\nabla g(y)=\frac{1}{\sum_{i=1}^{m} \exp y_{i}}\left[\begin{array}{c}
\exp y_{1} \\
\vdots \\
\exp y_{m}
\end{array}\right] \\
\nabla^{2} f(x)=A^{\top} \nabla g^{2}(A x+b) A
\end{gathered}
$$

Example 1

\square Consider the function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
f(x)=\log \sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right)
$$

■ where $a_{1}, \ldots, a_{m} \in \mathbf{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbf{R}$
$\square f(x)=g(A x+b)$

$$
\begin{gathered}
(A x+b) \\
g(y)=\log \sum_{i=1}^{m} \exp \left(y_{i}\right) \\
\nabla g(y)=\frac{1}{\sum_{i=1}^{m} \exp y_{i}}\left[\begin{array}{c}
\exp y_{1} \\
\vdots \\
\exp y_{m}
\end{array}\right] \\
\nabla^{2} g(y)=\operatorname{diag}(\nabla g(y))-\nabla g(y) \nabla g(y)^{\top}
\end{gathered}
$$

Example 1

\square Consider the function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
f(x)=\log \sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right)
$$

■ where $a_{1}, \ldots, a_{m} \in \mathbf{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbf{R}$
$\square f(x)=g(A x+b)$

$$
\begin{aligned}
& \begin{aligned}
\nabla^{2} f(x) & =A^{\top} \nabla g^{2}(A x+b) A \\
& =A^{\top}\left(\frac{1}{1^{\top} z} \operatorname{diag}(z)-\frac{1}{\left(1^{\top} z\right)^{2}} z z^{\top}\right) A
\end{aligned} \\
& z_{i}=\exp \left(a_{i}^{\top} x+b_{i}\right), i=1, \ldots, m
\end{aligned}
$$

Outline

\square Norms
\square Analysis
\square Functions
\square Derivatives
\square Linear Algebra

Linear algebra

\square Range and nullspace
■ Let $A \in \mathbf{R}^{m \times n}$, the range of A, denoted $\mathcal{R}(A)$, is the set of all vectors in \mathbf{R}^{m} that can be written as linear combinations of the columns of A :

$$
\mathcal{R}(A)=\left\{A x \mid x \in \mathbf{R}^{n}\right\} \subseteq \mathbf{R}^{m}
$$

- The nullspace (or kernel) of A, denoted $\mathcal{N}(A)$, is the set of all vectors x mapped into zero by A :

$$
\mathcal{N}(A)=\{x \mid A x=0\} \subseteq \mathbf{R}^{n}
$$

- If \mathcal{V} is a subspace of \mathbf{R}^{n}, its orthogonal complement, denoted \mathcal{V}^{\perp}, is defined as:

$$
\mathcal{V}^{\perp}=\left\{x \mid z^{\top} x=0 \text { for all } z \in \mathcal{V}\right\}
$$

Linear algebra

\square Range and nullspace
■ Let $A \in \mathbf{R}^{m \times n}$, the range of A, denoted $\mathcal{R}(A)$, is the set of all vectors in \mathbf{R}^{m} that can be written as linear combinations of the columns of A :

$$
\mathcal{R}(A)=\{\wedge \quad \rightarrow m
$$

- The nullsp: $\mathcal{N}(A)$, is th

$$
\mathcal{N}(A)=\mathcal{R}\left(A^{\top}\right)^{\perp} \quad \text { enoted }
$$ zero by A :

$$
\mathcal{N}(A)=\{x \mid A x=0\} \subseteq \mathbf{R}^{n}
$$

- If \mathcal{V} is a subspace of \mathbf{R}^{n}, its orthogonal complement, denoted \mathcal{V}^{\perp}, is defined as:

$$
\mathcal{V}^{\perp}=\left\{x \mid z^{\top} x=0 \text { for all } z \in \mathcal{V}\right\}
$$

Linear algebra

\square Symmetric eigenvalue decomposition
■ Suppose $A \in \mathbf{S}^{n}$, i.e., A is a real symmetric $n \times n$ matrix. Then A can be factored as

$$
A=Q \Lambda Q^{\top}
$$

where $Q \in \mathbf{R}^{n \times n}$ is orthogonal, i.e.,
satisfies $Q^{\top} Q=I$, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$
■ The determinant and trace can be expressed in terms of the eigenvalue

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}, \operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}
$$

Linear algebra

\square Norms

$$
\begin{aligned}
& \|A\|_{2}=\max _{i=1, \ldots n}\left|\lambda_{i}\right|=\max \left(\lambda_{1},-\lambda_{n}\right) \\
& \|A\|_{F}=\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)^{1 / 2}
\end{aligned}
$$

Linear algebra

\square Positive Definite Matrix

- A matrix $A \in \mathbf{S}^{n}$ is called positive definite, if for all $x \neq 0, x^{\top} A x>0$, denoted as $A>0$.
\checkmark If and only all eigenvalues are positive
- If $-A$ is positive definite, we say A is negative definite, denoted as $A<0$.
- We use \mathbf{S}_{++}^{n} to denote the set of positive definite matrices in \mathbf{S}^{n}.

Linear algebra

\square Positive Semidefinite Matrix

- A matrix $A \in \mathbf{S}^{n}$ is called positive semidefinite, if for all $x \neq 0, x^{\top} A x \geq 0$, denoted as $A \succcurlyeq 0$.
\checkmark If and only all eigenvalues are nonnegative
- If $-A$ is positive semidefinite, we say A is negative semidefinite, denoted as $A \preccurlyeq 0$.
- We use \mathbf{S}_{+}^{n} to denote the set of positive semidefinite matrices in \mathbf{S}^{n}.

Linear algebra

\square Singular value decomposition (SVD)
■ Suppose $A \in \mathbf{R}^{m \times n}$ with $\operatorname{rank} A=r$. Then A can be factored as

$$
A=U \Sigma V^{\top}
$$

where $U \in \mathbf{R}^{m \times r}$ satisfies $U^{\top} U=I, V \in \mathbf{R}^{n \times r}$ satisfies $V^{\top} V=I$, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right)$ with

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0
$$

■ The singular value decomposition can be written

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

Linear algebra

\square Norms

$$
\begin{aligned}
& \|A\|_{2}=\sigma_{1} \\
& \|A\|_{F}=\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{1 / 2}
\end{aligned}
$$

Discussions

\square Symmetric eigenvalue decomposition

- Suppose $A \in \mathbf{S}^{n}$

$$
A=Q \Lambda Q^{\top}
$$

\square Singular value decomposition (SVD)

- Suppose $A \in \mathbf{S}^{n}$

$$
A=\text { ? }
$$

Linear algebra

\square Pseudo-inverse

- Let $A=U \Sigma V^{\top}$ be the singular value decomposition of $A \in \mathbf{R}^{m \times n}$, with $\operatorname{rank} A=r$. The pseudo-inverse or Moore-Penrose inverse of A is

$$
\begin{gathered}
A^{\dagger}=V \Sigma^{-1} U^{\top} \in \mathbf{R}^{n \times m} \\
A A^{\dagger} A=A
\end{gathered}
$$

\square Schur complement
■ $A \in \mathbf{S}^{k}$, and a matrix $X \in \mathbf{S}^{n}$ partitioned as

$$
X=\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]
$$

■ If $\operatorname{det} A \neq 0$, the matrix

$$
S=C-B^{\top} A^{-1} B
$$

is called the Schur complement of A in X

Application of Schur complement

\square Determinant

$$
\operatorname{det} X=\operatorname{det} A \operatorname{det} S
$$

\square PD Matrices

- $X>0$ if and only if $A \succ 0$ and $S>0$
- If $A \succ 0$, then $X \succcurlyeq 0$ if and only if $S \succcurlyeq 0$
\square PSD Matrices

$$
X \succcurlyeq 0 \Leftrightarrow A \succcurlyeq 0,\left(I-A A^{\dagger}\right) B=0, C-B^{\top} A^{\dagger} B \succcurlyeq 0
$$

Summary

\square Norms of vectors
■ l_{1}-norm, l_{2}-norm, l_{∞}-norm, P-quadratic norm
\square Norms of Matrices

- Frobenius norm, spectral norm, nuclear norm
\square Gradients of Common Functions
- The Matrix Cookbook
\square Eigendecompostion vs SVD
\square PSD matrices

