Convex Sets

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- Affine and Convex Sets
- □ Operations That Preserve Convexity
- ☐ Generalized Inequalities
- □ Separating and Supporting Hyperplanes
- Dual Cones and Generalized Inequalities
- □ Summary

Outline

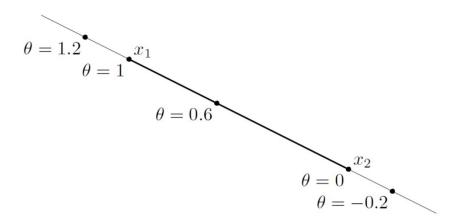
- Affine and Convex Sets
- Operations That Preserve Convexity
- ☐ Generalized Inequalities
- □ Separating and Supporting Hyperplanes
- Dual Cones and Generalized Inequalities
- □ Summary

Line

☐ Lines

$$y = \theta x_1 + (1 - \theta)x_2$$
$$y = x_2 + \theta(x_1 - x_2)$$

- $\theta \in \mathbf{R}$
- $x_1 \neq x_2$
- ☐ Line segments
 - $\theta \in [0,1]$
 - $x_1 \neq x_2$



Affine Sets (1)

Definition

 $\mathbb{C} \subseteq \mathbb{R}^n$ is affine, if

$$\theta x_1 + (1 - \theta)x_2 \in C$$

for any $x_1, x_2 \in C$ and $\theta \in \mathbf{R}$

□ Generalized form

Affine Combination

$$\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k \in C$$

 $\theta_1 + \theta_2 + \cdots + \theta_k = 1$

Affine Sets (2)

Subspace

$$V = C - x_0 = \{x - x_0 | x \in C\}$$

- $C \subseteq \mathbb{R}^n$ is an affine set, $x_0 \in C$
- Subspace is closed under sums and scalar multiplication

$$\alpha v_1 + \beta v_2 \in V$$
, $\forall v_1, v_2 \in V$

C can be expressed as a subspace plus an offset $x_0 \in C$

$$C = V + x_0$$

Dimension of C: dimension of V

Affine Sets (3)

■ Solution set of linear equations is affine

$$C = \{x | Ax = b\}$$

■ Suppose $x_1, x_2 \in C$

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2$$
$$= \theta b + (1 - \theta)b$$
$$= b$$

■ Every affine set can be expressed as the solution set of a system of linear equations.

Affine Sets (4)

☐ Affine hull of set C

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \theta_1 + \dots + \theta_k = 1\}$$

Affine hull is the smallest affine set that contains C

■ Affine dimension

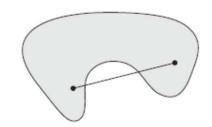
- Affine dimension of a set C as the dimension of its affine hull aff C
- Consider the unit circle $B = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 = 1\}$, aff B is \mathbb{R}^2 . So affine dimension is 2

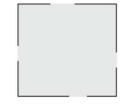
Convex Sets (1)

Convex sets

A set C is convex if for any $x_1, x_2 \in C$, any $\theta \in [0,1]$, we have

$$\theta x_1 + (1 - \theta)x_2 \in C$$





Generalized form

Convex combination

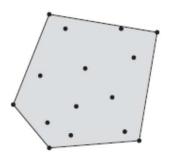
$$\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k \in C$$

$$\theta_1 + \theta_2 + \dots + \theta_k = 1, \theta_i \ge 0, i = 1, \dots, k$$

Convex Sets (2)

Convex hull

$$\operatorname{conv} C = \{\theta_1 x_1 + \dots + \theta_k x_k | \\ x_i \in C, \theta_1 + \theta_2 + \dots + \theta_k = 1, \theta_i \ge 0, i = 1, \dots, k \}$$



☐ Infinite sums, integrals

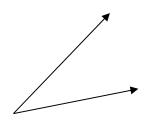
NAVALLY OF THE PARTY OF THE PAR

Cone (1)

☐ Cone

Cone is a set that

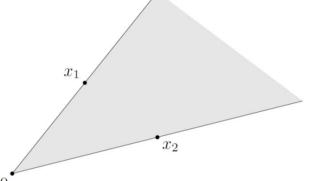
$$x \in C, \theta \ge 0 \Longrightarrow \theta x \in C$$



Convex cone

For any $x_1, x_2 \in C$, $\theta_1, \theta_2 \ge 0$

$$\theta_1 x_1 + \theta_2 x_2 \in C$$



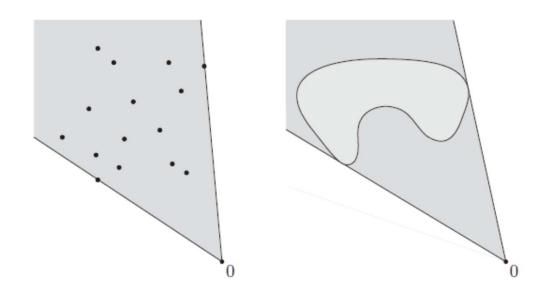
Conic combination

ALLIS UNIVERSE

Cone (2)

☐ Conic hull

$$\{\theta_1 x_1 + \dots + \theta_k x_k | x_i \in C, \ \theta_i \ge 0, i = 1, \dots, k\}$$



Some Examples

- ☐ The empty set \emptyset , any single point $\{x_0\}$, and the whole space \mathbf{R}^n are affine (hence, convex) subsets of \mathbf{R}^n
- □ Any line is affine. If it passes through zero, it is a subspace, hence also a convex cone.
- □ A line segment is convex, but not affine (unless it reduces to a point).
- □ A ray, which has the form $\{x_0 + \theta v | \theta \ge 0\}$, where $v \ne 0$, is convex, but not affine. It is a convex cone if its base x_0 is 0.
- □ Any subspace is affine, and a convex cone (hence convex).

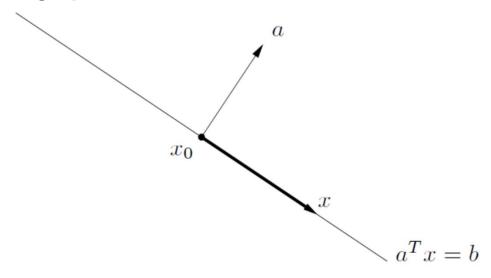
Hyperplanes

$${x|a^{\mathsf{T}}x = b}$$

- $a \in \mathbb{R}^n$, $a \neq 0$ and $b \in R$
- □ Other Forms

$$\{x | a^{\mathsf{T}}(x - x_0) = 0\}$$

 \blacksquare x_0 is any point such that $a^Tx_0 = b$



Hyperplanes

$${x|a^{\mathsf{T}}x = b}$$

- $a \in \mathbb{R}^n$, $a \neq 0$ and $b \in R$
- □ Other Forms

$$\{x | a^{\mathsf{T}}(x - x_0) = 0\}$$

 \blacksquare x_0 is any point such that $a^Tx_0 = b$

$$\{x | a^{\mathsf{T}}(x - x_0) = 0\} = x_0 + a^{\mathsf{T}}$$

Halfspaces

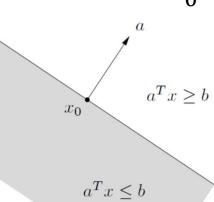
$$\{x | a^{\mathsf{T}} x \le b\}$$

- $a \in \mathbb{R}^n$, $a \neq 0$ and $b \in R$
- □ Other Forms

$$\{x | a^{\mathsf{T}}(x - x_0) \le 0\}$$

 \blacksquare x_0 is any point such that $a^Tx_0 = b$

- Convex
- Not affine



Balls

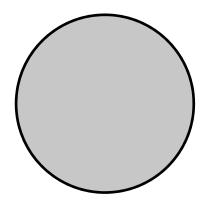
Definition

$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\}$$

$$= \{x | (x - x_c)^{\top} (x - x_c) \le r^2\}$$

$$= \{x_c + ru | \|u\|_2 \le 1\}$$

- ightharpoonup r > 0, and $\|\cdot\|_2$ denotes the Euclidean norm
- Convex



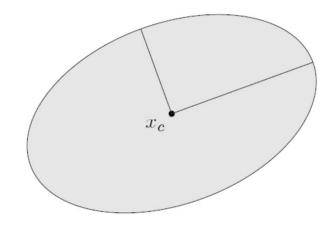
Ellipsoids

Definition

$$\mathcal{E} = \{x | (x - x_c)^{\mathsf{T}} P^{-1} (x - x_c) \le 1\}$$

= \{x_c + Au | ||u||_2 \le 1\}

- $P \in \mathbf{S}_{++}^n$ determines how far the ellipsoid extends in every direction from x_c ;
- Lengths of semi-axes are $\sqrt{\lambda_i}$
- Convex



Norm Balls and Norm Cones

■ Norm balls

$$C = \{x | ||x - x_c|| \le r\}$$

- \blacksquare $\|\cdot\|$ is any norm on \mathbb{R}^n , x_c is the center
- Norm cones

$$C = \{(x, t) \mid ||x|| \le t\} \subseteq \mathbb{R}^{n+1}$$

Second-order Cone

$$C = \{(x,t) \in \mathbf{R}^{n+1} | ||x||_2 \le t\}$$

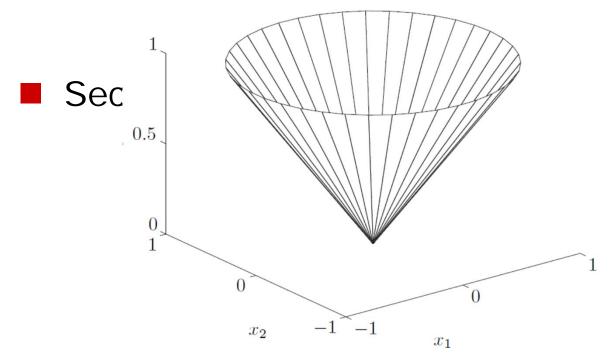
$$= \left\{ \begin{bmatrix} x \\ t \end{bmatrix} \middle| \begin{bmatrix} x \\ t \end{bmatrix}^\mathsf{T} \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le 0, t \ge 0 \right\}$$

Norm Balls and Norm Cones

■ Norm balls

$$C = \{x | ||x - x_c|| \le r\}$$

- \blacksquare $\|\cdot\|$ is any norm on \mathbb{R}^n , x_c is the center
- Norm cones



Polyhedra (1)

Polyhedron

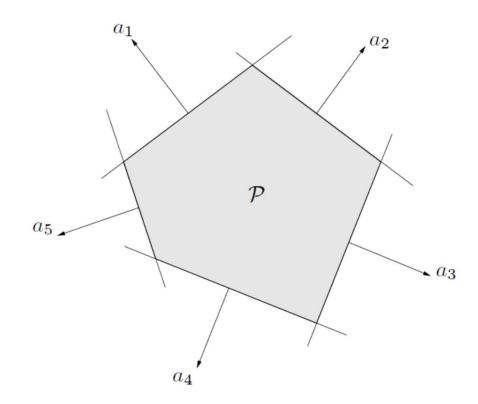
$$\mathcal{P} = \{x | a_j^{\mathsf{T}} x \le b_j, j = 1, \dots, m, c_j^{\mathsf{T}} x = d_j, j = 1, \dots, p\}$$

- Solution set of a finite number of linear equalities and inequalities
- Intersection of a finite number of halfspaces and hyperplanes
- Affine sets (e.g., subspaces, hyperplanes, lines), rays, line segments, and halfspaces are all polyhedra

Polyhedra (2)

□ Polyhedron

$$\mathcal{P} = \{x | a_j^{\mathsf{T}} x \le b_j, j = 1, \dots, m, c_j^{\mathsf{T}} x = d_j, j = 1, \dots, p\}$$



Polyhedra (2)

Polyhedron

$$\mathcal{P} = \{x | a_j^{\mathsf{T}} x \le b_j, j = 1, \dots, m, c_j^{\mathsf{T}} x = d_j, j = 1, \dots, p\}$$

Matrix Form

$$\mathcal{P} = \{x | Ax \le b, Cx = d\}$$

$$A = \begin{bmatrix} a_1^\mathsf{T} \\ \cdots \\ a_m^\mathsf{T} \end{bmatrix}, \ C = \begin{bmatrix} c_1^\mathsf{T} \\ \cdots \\ c_p^\mathsf{T} \end{bmatrix}$$

 $u \leq v$ means $u_i \leq v_i$ for all i



Simplexes

□ An important family of polyhedra

$$C = \operatorname{conv}\{v_0, \cdots, v_k\} = \{\theta_0 v_0 + \cdots + \theta_k v_k | \theta \geq 0, 1^{\mathsf{T}}\theta = 1\}$$

- k+1 points v_0, \dots, v_k are affinely independent
- \blacksquare The affine dimension of this simplex is k
- ☐ 1-dimensional simplex: line segment
- ☐ 2-dimensional simplex: triangle
- □ Unit simplex: $x \ge 0, 1^T x \le 1$
 - n-dimensional
- \square Probability simplex: $x \ge 0, 1^T x = 1$
 - \blacksquare (n-1)-dimensional

The positive semidefinite cone

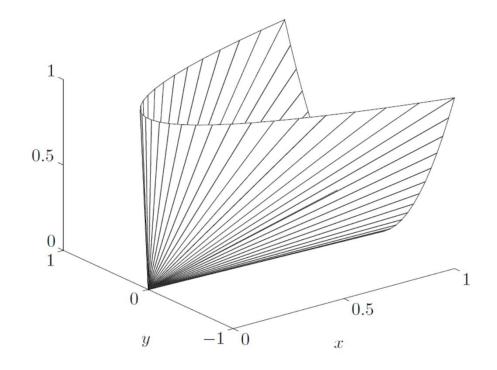
- \square $S^n = \{X \in \mathbb{R}^{n \times n} | X = X^T \}$ is the set of symmetric $n \times n$ matrices
 - Vector space with dimension n(n+1)/2
- $Arr S_+^n = \{X \in \mathbf{S}^n | X \ge 0\}$ is the set of symmetric positive semidefinite matrices
 - Convex cone
- \square $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n | X > 0\}$ is the set of symmetric positive definite

NANLING UNITHE

The positive semidefinite cone

\square PSD Cone in \mathbb{S}^2

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2} \iff x \ge 0, z \ge 0, xz \ge y^{2}$$



Outline

- Affine and Convex Sets
- ☐ Operations That Preserve Convexity
- ☐ Generalized Inequalities
- □ Separating and Supporting Hyperplanes
- Dual Cones and Generalized Inequalities
- Summary

Intersection

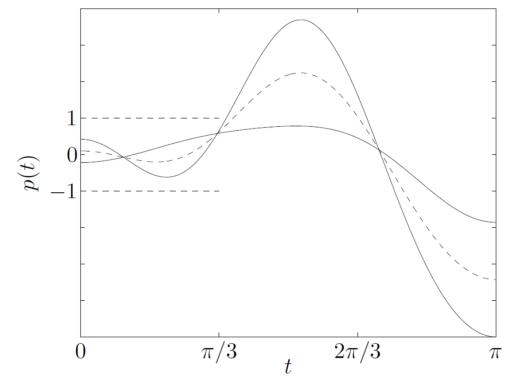
- ☐ If S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex
 - □ A polyhedron is the intersection of halfspaces and hyperplanes
- □ if S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\cap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex
 - Positive semidefinite cone

$$\mathbf{S}_{+}^{n} = \bigcap_{z \neq 0} \{ X \in \mathbf{S}^{n} | z^{\mathsf{T}} X z \ge 0 \}$$

A Complicated Example (1)

$$S = \left\{ x \in \mathbf{R}^m || p(t)| \le 1 \text{ for } |t| \le \frac{\pi}{3} \right\}$$

 $p(t) = \sum_{k=1}^{m} x_k \cos kt$



A Complicated Example (2)

$$S = \left\{ x \in \mathbf{R}^m || p(t)| \le 1 \text{ for } |t| \le \frac{\pi}{3} \right\}$$

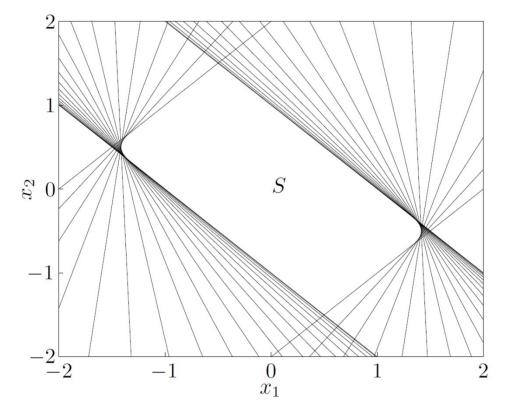
 $p(t) = \sum_{k=1}^{m} x_k \cos kt$

$$S = \bigcap_{|t| \le \pi/3} S_t$$

 $S_t = \{x | -1 \le (\cos t, ..., \cos mt)^{\mathsf{T}} x \le 1\}$

A Complicated Example (3)

$$S = \bigcap_{|t| \le \pi/3} S_t = \bigcap_{|t| \le \pi/3} \{x | -1 \le (\cos t, ..., \cos mt)^{\mathsf{T}} x \le 1\}$$



Affine Functions

 \square Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x) = Ax + b, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$$

 $\square S \subseteq \mathbb{R}^n$ is convex

 \square Then, the image of S under f

$$f(S) = \{ f(x) \mid x \in S \}$$

and the inverse image of S under f

$$f^{-1}(S) = \{x | f(x) \in S\}$$

are convex

Examples (1)

□ Scaling

$$\alpha S = \{\alpha x \mid x \in S\}$$

□ Translation

$$S + a = \{x + a \mid x \in S\}$$

Projection of a convex set onto some of its coordinates

$$T = \{x_1 \in \mathbf{R}^m | (x_1, x_2) \in S \text{ for some } x_2 \in \mathbf{R}^n \}$$

 $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ is convex

Examples (2)

■ Sum of two sets

$$S_1 + S_2 = \{x + y | x \in S_1, y \in S_2\}$$

- Cartesian product: $S_1 \times S_2 = \{(x_1, x_2) | x_1 \in S_1, x_2 \in S_2\}$
- Linear function: $f(x_1, x_2) = x_1 + x_2$
- \square Partial sum of $S_1, S_2 \in \mathbb{R}^n \times \mathbb{R}^m$

$$S = \{(x, y_1 + y_2) | (x, y_1) \in S_1, (x, y_2) \in S_2\}$$

- \blacksquare m=0, intersection of S_1 and S_2
- = n = 0, set addition

Examples (3)

□ Polyhedron

$${x|Ax \le b, Cx = d} = {x|f(x) \in \mathbf{R}_+^m \times {0}}$$

$$f(x) = (b - Ax, d - Cx)$$

□ Linear Matrix Inequality

$$A(x) = x_1 A_1 + \dots + x_n A_n \le B$$

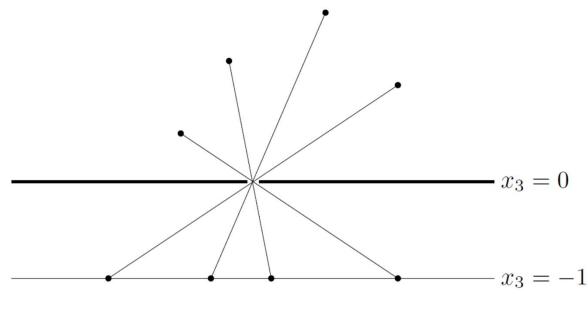
■ The solution set $\{x | A(x) \le B\}$

$$\{x|A(x) \le B\} = \{x|B - A(x) \in \mathbf{S}_{+}^{m}\}\$$

Perspective Functions (1)

 \square Perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$

$$P(z,t) = \frac{z}{t}, \text{dom } P = \mathbf{R}^n \times \mathbf{R}_{++}$$



$$(x_1, x_2, x_3) \mapsto -(x_1/x_3, x_2/x_3, 1)$$

Perspective Functions (2)

 \square Perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$

$$P(z,t) = \frac{z}{t}$$
, dom $P = \mathbf{R}^n \times \mathbf{R}_{++}$

 \square If $C \subseteq \text{dom } P$ is convex, then its image

$$P(C) = \{P(x) | x \in C\}$$

is convex

 \square If $C \subseteq \mathbb{R}^n$ is convex, the inverse image

$$P^{-1}(C) = \left\{ (x, t) \in \mathbf{R}^{n+1} \middle| \frac{x}{t} \in C, t > 0 \right\}$$

is convex

Linear-fractional Functions (1)

 \square Suppose $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is affine

$$g(x) = \begin{bmatrix} A \\ c^{\mathsf{T}} \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} Ax + b \\ c^{\mathsf{T}}x + d \end{bmatrix}$$

□ The function $f: \mathbb{R}^n \to \mathbb{R}^m$ given by $P \circ g$

$$f(x) = \frac{Ax + b}{c^{\mathsf{T}}x + d}, \text{dom } f = \{c^{\mathsf{T}}x + d > 0\}$$

Linear-fractional Functions (2)

□ If C is convex and $\{c^{\mathsf{T}}x + d > 0 \text{ for } x \in C\}$, then

$$f(C) = \left\{ \frac{Ax + b}{c^{\mathsf{T}}x + d} \middle| x \in C \right\}$$

is convex

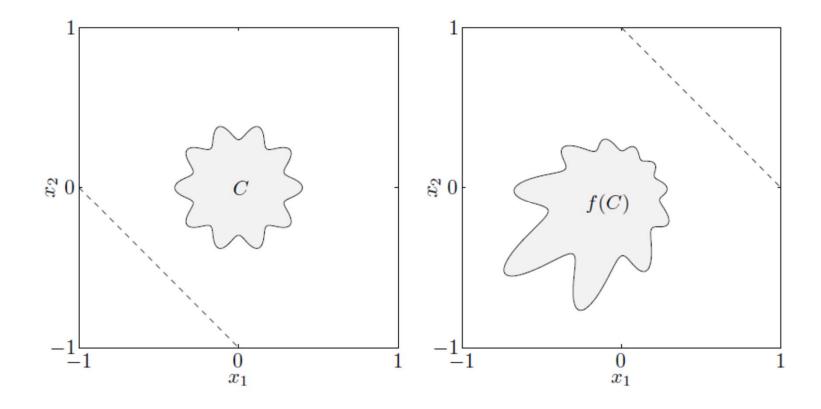
□ If $C \subseteq \mathbb{R}^m$ is convex, then the inverse image

$$f^{-1}(C) = \left\{ x \middle| \frac{Ax + b}{c^{\mathsf{T}}x + d} \in C \right\}$$

is convex

Example

$$f(x) = \frac{1}{x_1 + x_2 + 1} x, \text{dom } f = \{(x_1, x_2) | x_1 + x_2 + 1 > 0\}$$



Outline

- Affine and Convex Sets
- Operations That Preserve Convexity
- ☐ Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cones and Generalized Inequalities
- Summary

Proper Cones

- \square A cone $K \subseteq \mathbb{R}^n$ is called a proper cone if it satisfies the following
 - \blacksquare K is convex.
 - \blacksquare K is closed.
 - K is solid, which means it has nonempty interior.
 - K is pointed, which means that it contains no line $(x \in K, -x \in K \Longrightarrow x = 0)$.
- ☐ A proper cone *K* can be used to define a generalized inequality

Generalized Inequalities

 \square We associate with the proper cone K the partial ordering on \mathbb{R}^n defined by

$$x \leq_K y \iff y - x \in K$$

We define an associated strict partial ordering by

$$x \prec_K y \iff y - x \in \text{int } K$$

Examples

- Nonnegative Orthant and Componentwise Inequality
 - $\mathbf{K} = \mathbf{R}_{+}^{n}$
 - \blacksquare $x \leq_K y$ means that $x_i \leq y_i, i = 1, ..., n$.
 - \blacksquare $x \prec_K y$ means that $x_i < y_i, i = 1, ..., n$.
- Positive Semidefinite Cone and Matrix Inequality
 - $K = \mathbf{S}_{+}^{n}$
 - $X \leq_K Y$ means that Y X is PSD
 - \blacksquare $X \prec_K Y$ means that Y X is positive definite

Properties of Generalized Inequalities

- $\square \leq_K$ is preserved under addition: If $x \leq_K y$ and $u \leq_K v$, then $x + u \leq_K y + v$.
- $\square \leqslant_K$ is transitive: if $x \leqslant_K y$ and $y \leqslant_K z$, then $x \leqslant_K z$.
- $\square \leq_K$ is preserved under nonnegative scaling: if $x \leq_K y$ and $\alpha \geq 0$ then $\alpha x \leq_K \alpha y$.
- $\square \leq_K$ is reflexive: $x \leq_K x$.
- $\square \leqslant_K$ is antisymmetric: if $x \leqslant_K y$ and $y \leqslant_K x$, then x = y.
- $\square \leqslant_K$ is preserved under limits: if $x_i \leqslant_K y_i$ for $i = 1, 2, ..., x_i \to x$ and $y_i \to y$ as $i \to \infty$, then $x \leqslant_K y$.

Properties of Strict Generalized Inequalities

- \square If $x \prec_K y$ then $x \leqslant_K y$.
- \square If $x \prec_K y$ and $\alpha > 0$ then $\alpha x \prec_K \alpha y$.
- $\square x \lessdot_K x$.
- \square If $x \prec_K y$, then for u and v small enough, $x + u \prec_K y + v$.

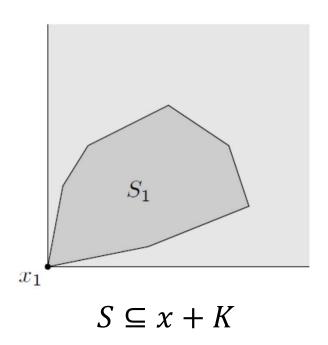
Minimum and Minimal Elements

- $\square x \in S$ is the minimum element
 - If for every $y \in S$, we have $x \leq_K y$
 - $S \subseteq x + K$
 - Minimum element is unique, if exists
- $\square x \in S$ is a minimal element
 - $\blacksquare \text{ if } y \in S, \ y \leqslant_K x \text{ only if } y = x$
 - $(x K) \cap S = \{x\}$
 - May have different minimal elements
- Maximum, Maximal

Example

\square The Cone \mathbb{R}^2_+

 $x \le y$ means y is above and to the right of x



$$(x - K) \cap S = \{x\}$$

$$S_2$$

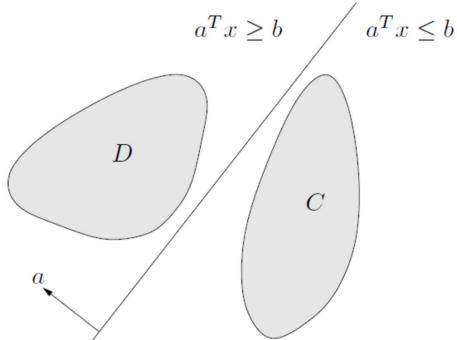
$$x_2$$

Outline

- Affine and Convex Sets
- Operations That Preserve Convexity
- ☐ Generalized Inequalities
- □ Separating and Supporting Hyperplanes
- Dual Cones and Generalized Inequalities
- Summary

Separating Hyperplane Theorem

□ Suppose C and D are nonempty disjoint convex sets, i.e., $C \cap D = \emptyset$. Then, there exist $a \neq 0$ and b such that

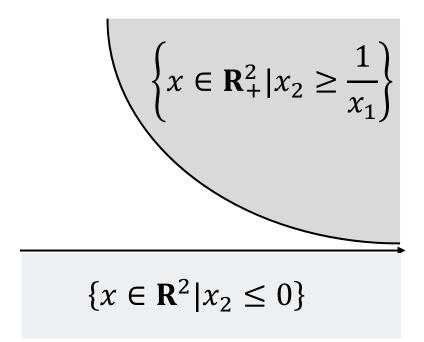


Separating Hyperplane Theorem

- □ Suppose C and D are nonempty disjoint convex sets, i.e., $C \cap D = \emptyset$. Then, there exist $a \neq 0$ and b such that $a^{T}x \leq b$ for all $x \in C$ and $a^{T}x \geq b$ for all $x \in D$.
- \square { $x | a^T x = b$ } is called a separating hyperplane for the sets C and D.

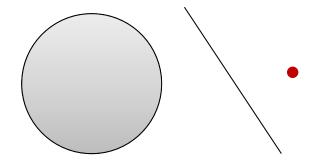
Strict Separation

- \Box $a^{\mathsf{T}}x < b$ for all $x \in C$ and $a^{\mathsf{T}}x > b$ for all $x \in D$
- May not be possible in general



Strict Separation

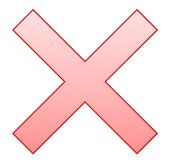
- \Box $a^{\mathsf{T}}x < b$ for all $x \in C$ and $a^{\mathsf{T}}x > b$ for all $x \in D$
- May not be possible in general
- A Point and a Closed Convex Set



A closed convex set is the intersection of all halfspaces that contain it

Converse separating hyperplane theorems

Suppose *C* and *D* are convex sets, and there exists an affine function *f* that is nonpositive on *C* and nonnegative on *D*. Then *C* and *D* are disjoint.



Converse separating hyperplane theorems

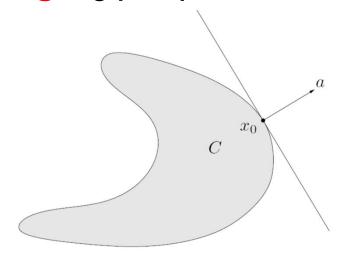
- □ Suppose *C* and *D* are convex sets, with *C* open, and there exists an affine function *f* that is nonpositive on *C* and nonnegative on *D*. Then *C* and *D* are disjoint.
- \square Any two convex sets \mathcal{C} and \mathcal{D} , at least one of which is open, are disjoint if and only if there exists a separating hyperplane.

Supporting Hyperplanes

□ Suppose $C \subseteq \mathbb{R}^n$, and x_0 is a point in its boundary bd C, i.e.,

$$x_0 \in \text{bd } C = \text{cl } C \setminus \text{int } C$$

☐ If $a \neq 0$ satisfies $a^{\mathsf{T}}x \leq a^{\mathsf{T}}x_0$ for all $x \in \mathcal{C}$. The hyperplane $\{x | a^{\mathsf{T}}x = a^{\mathsf{T}}x_0\}$ is called a supporting hyperplane to \mathcal{C} at the point x_0



Supporting Hyperplanes

□ Suppose $C \subseteq \mathbb{R}^n$, and x_0 is a point in its boundary bd C, i.e.,

$$x_0 \in \text{bd } C = \text{cl } C \setminus \text{int } C$$

- ☐ If $a \neq 0$ satisfies $a^{\mathsf{T}}x \leq a^{\mathsf{T}}x_0$ for all $x \in C$. The hyperplane $\{x | a^{\mathsf{T}}x = a^{\mathsf{T}}x_0\}$ is called a supporting hyperplane to C at the point x_0
 - The point x_0 and the set C are separated by the hyperplane $\{x | a^{\mathsf{T}}x = a^{\mathsf{T}}x_0\}$
 - The hyperplane $\{x|a^{\mathsf{T}}x=a^{\mathsf{T}}x_0\}$ is tangent to C at x_0 , and the halfspace $\{x|a^{\mathsf{T}}x\leq a^{\mathsf{T}}x_0\}$ contains C

Two Theorems

Supporting Hyperplane Theorem

For any nonempty convex set C, and any $x_0 \in \operatorname{bd} C$, there exists a supporting hyperplane to C at x_0 .

Converse Theorem

If a set is closed, has nonempty interior, and has a supporting hyperplane at every point in its boundary, then it is convex.

Outline

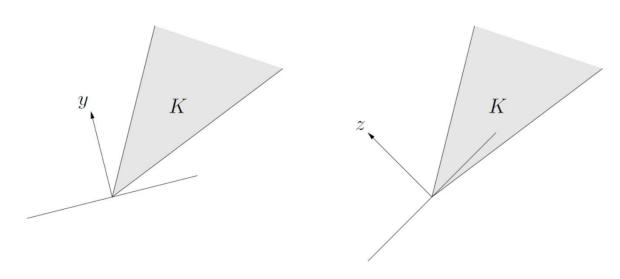
- Affine and Convex Sets
- Operations That Preserve Convexity
- ☐ Generalized Inequalities
- □ Separating and Supporting Hyperplanes
- □ Dual Cones and Generalized Inequalities
- Summary

Dual Cone

□ Dual Cone of a Given Cone *K*

$$K^* = \{y | x^\top y \ge 0 \text{ for all } x \in K\}$$

- \blacksquare K^* is convex, even when K is not
- $y \in K^*$ if and only if -y is the normal of a hyperplane that supports K at the origin



Examples

■ Subspace

The dual cone of a subspace $V \in \mathbf{R}^n$ $V^{\perp} = \{y | v^{\top}y = 0 \text{ for all } v \in V\}$

■ Nonnegative Orthant

The cone \mathbf{R}^n_+ is its own dual $x^{\mathsf{T}}y \geq 0$ for all $x \geq 0 \iff y \geq 0$

Positive Semidefinite Cone

■ \mathbf{S}_{+}^{n} is self-dual $\operatorname{tr}(XY) \geq 0$ for all $X \geq 0 \iff Y \geq 0$

Properties of Dual Cone

- \square K^* is closed and convex.
- \square $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$
- \square If K has nonempty interior, then K^* is pointed.
- ☐ If the closure of K is pointed then K^* has nonempty interior.
- \square K^{**} is the closure of the convex hull of K. (Hence if K is convex and closed, $K^{**} = K$.)

Dual Generalized Inequalities

- □ Suppose that the convex cone K is proper, so it induces a generalized inequality \leq_K .
- ☐ Its dual cone K^* is also proper. We refer to the generalized inequality \leq_{K^*} as the dual of the generalized inequality \leq_{K^*} .

Dual Generalized Inequalities

- □ Suppose that the convex cone K is proper, so it induces a generalized inequality \leq_K .
- ☐ Its dual cone K^* is also proper. We refer to the generalized inequality \leq_{K^*} as the dual of the generalized inequality \leq_{K^*} .
 - $\blacksquare x \leq_K y$ if and only if $\lambda^\top x \leq \lambda^\top y$ for all $\lambda \geqslant_{K^*} 0$

$$x \leq_{K} y \Rightarrow y - x \in K$$

$$\lambda \geq_{K^{*}} 0 \Rightarrow \lambda \in K^{*}$$

$$\lambda^{\top}(y - x) \geq 0$$

$$K^{*} = \{y | x^{\top}y \geq 0 \text{ for all } x \in K\}$$

Dual Generalized Inequalities

- □ Suppose that the convex cone K is proper, so it induces a generalized inequality \leq_K .
- □ Its dual cone K^* is also proper. We refer to the generalized inequality \leq_{K^*} as the dual of the generalized inequality \leq_{K^*} .
 - $\blacksquare x \leq_K y$ if and only if $\lambda^\top x \leq \lambda^\top y$ for all $\lambda \geqslant_{K^*} 0$
 - $x \prec_K y \text{ if and only if } \lambda^\top x < \lambda^\top y \text{ for all } \lambda \geqslant_{K^*} 0, \\ \lambda \neq 0$
 - These properties hold if the generalized inequality and its dual are swapped

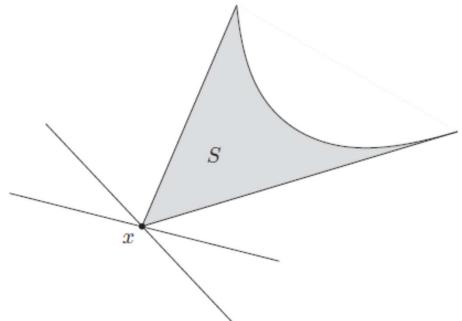
Dual Characterization of Minimum Element

- \square x is the minimum element of S, with respect to the generalized inequality \leq_K , if and only if for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over $z \in S$.
- □ That means, for any $\lambda \succ_{K^*} 0$, the hyperplane $\{z \mid \lambda^{\mathsf{T}}(z x) = 0\}$ is a strict supporting hyperplane to S at x.

$$\lambda^{\mathsf{T}}z \ge \lambda^{\mathsf{T}}x \Leftrightarrow -\lambda^{\mathsf{T}}z \le -\lambda^{\mathsf{T}}x, \quad \forall z \in S$$

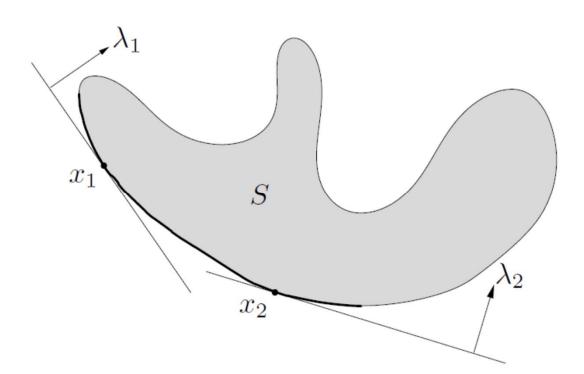
Dual Characterization of Minimum Element

 \square x is the minimum element of S, with respect to the generalized inequality \leq_K , if and only if for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over $z \in S$.



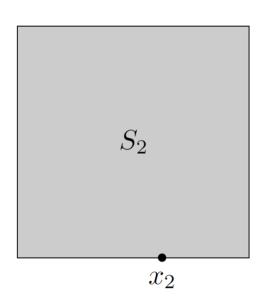
Dual Characterization of Minimal Elements (1)

□ If $\lambda \succ_{K^*} 0$, and x minimizes $\lambda^T z$ over $z \in S$, then x is minimal.



Dual Characterization of Minimal Elements (1)

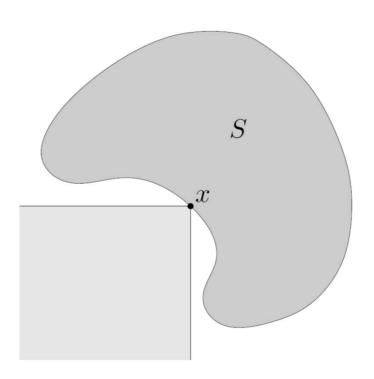
□ Any minimizer of $\lambda^T z$ over $z \in S$, with $\lambda \geq_{K^*} 0$, is minimal.



 x_2 minimizes $\lambda^T z$ over $z \in S_2$ for $\lambda = (0,1) \ge 0$

Dual Characterization of Minimal Elements (2)

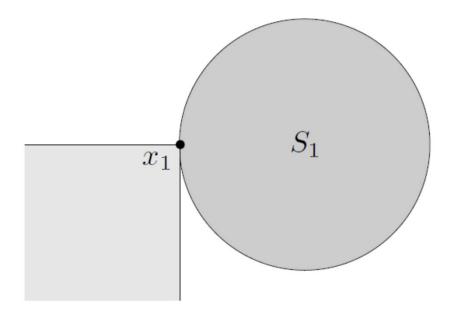
□ If *x* is minimal, then *x* minimizes $\lambda^T z$ over $z \in S$ with $\lambda \succ_{K^*} 0$.



Dual Characterization of Minimal Elements (2)

If *S* is convex, for any minimal element *x* there exists a nonzero $\lambda \geq_{K^*} 0$ such that *x* minimizes $\lambda^T z$ over

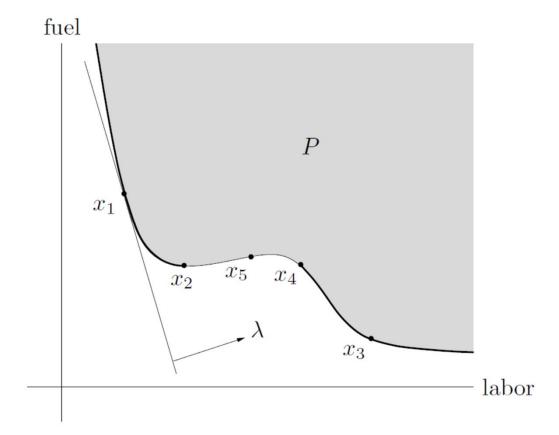
 $z \in S$.



 x_1 minimizes $\lambda^T z$ over $z \in S_1$ for $\lambda = (1,0) \ge 0$

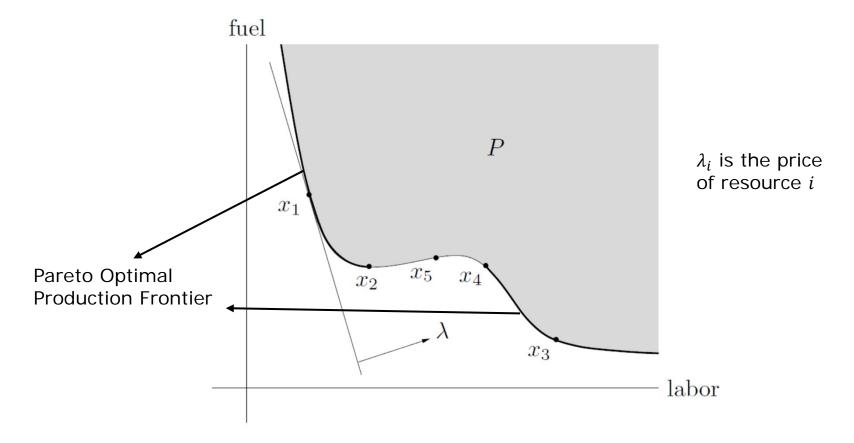
Pareto Optimal Production Frontier

- \square A product which requires n sources
- \square A resource vector $x \in \mathbb{R}^n$



Pareto Optimal Production Frontier

- \square A product which requires n sources
- \square A resource vector $x \in \mathbb{R}^n$



Outline

- Affine and Convex Sets
- Operations That Preserve Convexity
- □ Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cones and Generalized Inequalities
- □ Summary

Summary

- Affine and convex
- Operations that preserve convexity
- ☐ Generalized Inequalities
- Separating and supporting hyperplanes
 - Theorems
- Dual cones and generalized inequalities