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Convex Function

  is convex if
 is convex

  



Convex Function

  is convex if
 is convex

  

  is strictly convex if




Convex Function

  is convex if
 is convex

  

 is concave if is convex
 is convex

 Affine functions are both convex and 
concave, and vice versa.



Extended-value Extensions 

 The extended-value extension of is



 



 Example
 ଵ ଶ ଵ ଶ

 ଵ ଶ

ଵ ଶ



Extended-value Extensions 

 The extended-value extension of is



 

 Example
 Indicator Function of a Set 





Zeroth-order Condition

 Definition
 High-dimensional space

 A function is convex if and only if it is 
convex when restricted to any line 
that intersects its domain.
 , 
 is convex is convex
 One-dimensional space



First-order Conditions 

 is differentiable. Then is convex if 
and only if
 is convex
 For all 

𝑓 𝑦  𝑓 𝑥  𝛻𝑓 𝑥 ୃሺ𝑦 െ 𝑥ሻ

First-order Taylor approximation 



First-order Conditions 

 is differentiable. Then is convex if 
and only if
 is convex
 For all 

 Local Information Global Information


 is strictly convex if and only if

𝑓 𝑦  𝑓 𝑥  𝛻𝑓 𝑥 ୃሺ𝑦 െ 𝑥ሻ

𝑓 𝑦  𝑓 𝑥  𝛻𝑓 𝑥 ୃሺ𝑦 െ 𝑥ሻ



Proof

 is convex 
ᇱ

 Necessary condition:
𝑓 𝑥  𝑡 𝑦 െ 𝑥  1 െ 𝑡 𝑓 𝑥  𝑡𝑓 𝑦 , 0  𝑡  1

⇒ 𝑓 𝑦  𝑓 𝑥   ௫ା௧ ௬ି௫ ି ௫
௧

௧→
𝑓 𝑦  𝑓 𝑥  𝑓ᇱ 𝑥 𝑦 െ 𝑥

 Sufficient condition:
𝑧 ൌ 𝜃𝑥  1 െ 𝜃 𝑦

𝑓 𝑥  𝑓 𝑧  𝑓ᇱ 𝑧 𝑥 െ 𝑧
𝑓 𝑦  𝑓 𝑧  𝑓ᇱ 𝑧 𝑦 െ 𝑧

ቑ ⇒ 𝑓 𝑥  𝑓 𝑧  ሺ1 െ 𝜃ሻ𝑓ᇱ 𝑧 𝑥 െ 𝑦
𝑓 𝑦  𝑓 𝑧 െ 𝜃𝑓ᇱ 𝑧 𝑥 െ 𝑦 ቋ

⇒ 𝜃𝑓 𝑥  1 െ 𝜃 𝑓 𝑦  𝑓 𝑧 ⇒ 𝑓 𝜃𝑥  1 െ 𝜃 𝑦  𝜃𝑓 𝑥  1 െ 𝜃 𝑓 𝑦



Proof

 is convex 
ᇱ

  is convex 
ୃ

 𝑓 is convex ⇒ is convex ⇒ 𝑔 1  𝑔 0 
𝑔ᇱ 0 ⇒ 𝑓 𝑦  𝑓 𝑥  𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥

𝑔 𝑡 ൌ 𝑓 𝑡𝑦  1 െ 𝑡 𝑥 , 𝑔′ 𝑡 ൌ 𝛻𝑓 𝑡𝑦  1 െ 𝑡 𝑥 ୃ 𝑦 െ 𝑥

𝑓 is 
convex 

𝑔 is 
convex 

First-order 
condition of 𝑔

First-order 
condition of 𝑓



Proof

 is convex 
ᇱ

  is convex 
ୃ



⇒ 𝑔 𝑡  𝑔 𝑡  𝑔ᇱ 𝑡 𝑡 െ 𝑡 ⇒ 𝑔 𝑡 is convex ⇒
𝑓 is convex

𝑔 𝑡 ൌ 𝑓 𝑡𝑦  1 െ 𝑡 𝑥 , 

𝑓 𝑡𝑦  1 െ 𝑡 𝑥  𝑓 𝑡𝑦  1 െ 𝑡 𝑥 
𝛻𝑓 𝑡𝑦  1 െ 𝑡 𝑥 ୃ 𝑦 െ 𝑥 𝑡 െ 𝑡

𝑔′ 𝑡 ൌ 𝛻𝑓 𝑡𝑦  1 െ 𝑡 𝑥 ୃ 𝑦 െ 𝑥

𝑓 is 
convex 

𝑔 is 
convex 

First-order 
condition of 𝑔

First-order 
condition of 𝑓



Second-order Conditions

 is twice differentiable. Then is 
convex if and only if
 is convex
 For all , ଶ

 Attention
 ଶ is strictly convex
 is strict convex ଶ

ସ is strict convex but 
 is convex is necessary, ଶ



Examples 

 Functions on 
 ௫ is convex on , 

  is convex on ାା when or , 

and concave for 

 , for , is convex on 

 is concave on ାା

 Negative entropy is convex on ାା



Examples 

 Functions on 

 Every norm on  is convex 

 ଵ 

 Quadratic-over-linear: ௫మ

௬
  dom 𝑓ൌ ሺ𝑥, 𝑦ሻ ∈ 𝐑ଶ 𝑦  0ሽ 

 ௫భ ௫

ଵ  ଵ 

 

ୀଵ

ଵ/ is concave on ାା


 is concave on ାା




Examples 

 Functions on 

 Every norm on  is convex 

 𝑓ሺ𝑥ሻ is a norm on 𝐑

 𝑓 𝜃𝑥  1 െ 𝜃 𝑦  𝑓 𝜃𝑥  𝑓 1 െ 𝜃 𝑦

ൌ 𝜃𝑓 𝑥  1 െ 𝜃 𝑓ሺ𝑦ሻ

 ଵ   

 𝑓 𝜃𝑥  1 െ 𝜃 𝑦 ൌ max


ሼ 𝜃𝑥  1 െ 𝜃 𝑦ሽ

                                          𝜃max


ሼ𝑥ሽ  1 െ 𝜃 max


ሼ𝑦ሽ



Examples 

 Functions on 


௫మ

௬
ଶ

 𝛻ଶ𝑓 𝑥, 𝑦 ൌ ଶ
௬య

𝑦ଶ െ𝑥𝑦
െ𝑥𝑦 𝑥ଶ ൌ ଶ

௬య
𝑦

െ𝑥 𝑦
െ𝑥 

ୃ
≽ 0



Examples 

 Functions on 

 ௫భ ௫

 



Examples 

 Functions on 

 ௫భ ௫

 𝛻ଶ𝑓 𝑥 ൌ ଵ
𝟏௭ మ 𝟏ୃ𝑧 diag 𝑧 െ 𝑧𝑧ୃ

 𝑧 ൌ 𝑒௫భ, … , 𝑒௫

 𝑣ୃ𝛻ଶ𝑓 𝑥 𝑣 ൌ ଵ
𝟏௭ మ ቀ ∑ 𝑧


ୀଵ ∑ 𝑣

ଶ𝑧

ୀଵ െ

                                          ∑ 𝑣𝑧

ୀଵ

ଶቁ  0

 Cauchy-Schwarz inequality: ሺ𝑎ୃ𝑎ሻሺ𝑏ୃ𝑏ሻ 

𝑎ୃ𝑏 ଶ 



Examples 

 Functions on 

 is concave on ାା


 𝑔 𝑡 ൌ 𝑓 𝑍  𝑡𝑉 , 𝑍  𝑡𝑉 ≻ 0, 𝑍 ≻ 0

 𝑔 𝑡 ൌ log detሺ𝑍  𝑡𝑉ሻ

ൌ log det 𝑍
భ
మ 𝐼  𝑡𝑍ିభ

మ𝑉𝑍ିభ
మ 𝑍

భ
మ

ൌ ∑ logሺ1  𝑡𝜆ሻ
ୀଵ  log det 𝑍

 𝜆ଵ, … , 𝜆 are the eigenvalues of 𝑍ିభ
మ𝑉𝑍ିభ

మ

 𝑔ᇱ 𝑡 ൌ ∑ ఒ
ଵା௧ఒ


ୀଵ , 𝑔ᇱᇱ 𝑡 ൌ െ ∑ ఒ

మ

ଵା௧ఒ మ

ୀଵ  

det 𝐴𝐵 ൌ det 𝐴 detሺ𝐵ሻ https://en.wikipedia.org/wiki/Determinant



Sublevel Sets

 -sublevel set

 is convex ఈ is convex
 ఈ is convex is convex 

௫

 -superlevel set

 is concave ఈ convex
 


ୀଵ

భ


ଵ
 


ୀଵ

 ା
 is convex

𝐶ఈ ൌ 𝑥 ∈ dom 𝑓 𝑓ሺ𝑥ሻ  𝛼ሽ

𝐶ఈ ൌ 𝑥 ∈ dom 𝑓 𝑓 𝑥  𝛼ሽ



Epigraph 

 Graph of function 



 Epigraph of function 





Epigraph 

 Epigraph of function 



 Hypograph


 Conditions
 is convex is convex
 is concave is convex 



Example

 Matrix Fractional Function

 Quadratic-over-linear: ଶ

 ୃ ିଵ

ୃ

 Schur complement condition
 is convex
 Linear matrix inequality
 Recall Example 2.10 in the book

𝑓 𝑥, 𝑌 ൌ 𝑥ୃ𝑌ିଵ𝑥, dom 𝑓 ൌ 𝐑୬ ൈ 𝐒ାା
୬



Example

 Matrix Fractional Function

 Quadratic-over-linear: ଶ

 ୃ ିଵ

ୃ

 Schur complement condition

 Linear Matrix Inequality

𝑓 𝑥, 𝑌 ൌ 𝑥ୃ𝑌ିଵ𝑥, dom 𝑓 ൌ 𝐑୬ ൈ 𝐒ାା
୬

𝐴 𝑥 ൌ 𝑥ଵ𝐴ଵ  ⋯  𝑥𝐴

ሼ𝑥|𝐴ሺ𝑥ሻ ≼ 𝐵ሽ ൌ 𝑥 𝐵 െ 𝐴 𝑥 ∈ 𝐒ା




Application of Epigraph 

 First order Condition
 𝑓 𝑦  𝑓 𝑥  𝛻𝑓 𝑥 ୃሺ𝑦 െ 𝑥ሻ

 𝑦, 𝑡 ∈ epi 𝑓 ⇒ 𝑡  𝑓 𝑦  𝑓 𝑥  𝛻𝑓 𝑥 ୃሺ𝑦 െ 𝑥ሻ



Application of Epigraph 

 First order Condition
 𝑓 𝑦  𝑓 𝑥  𝛻𝑓 𝑥 ୃሺ𝑦 െ 𝑥ሻ

 𝑦, 𝑡 ∈ epi 𝑓 ⇒ 𝑡  𝑓 𝑥  𝛻𝑓 𝑥 ୃሺ𝑦 െ 𝑥ሻ

 𝑦, 𝑡 ∈ epi 𝑓 ⇒ 𝛻𝑓 𝑥
െ1

ୃ 𝑦
𝑡 െ

𝑥
𝑓 𝑥  0

Support epi 𝑓 at 
point ሺ𝑥, 𝑓ሺ𝑥ሻሻ



Jensen’s Inequality

 Basic inequality




 points
  ଵ 

 ଵ ଵ   ଵ ଵ  



Jensen’s Inequality

 Infinite points
 ௌ

 ௌ ௌ


 𝑓 𝑥  𝐄𝑓ሺ𝑥  𝑧ሻ, 𝑧 is a zero-mean noisy

 Hölder’s inequality


ଵ


ଵ


  

ୀଵ 


ୀଵ

భ
 


ୀଵ

భ
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Nonnegative Weighted Sums 
 Finite sums
 𝑤  0, 𝑓 is convex
 𝑓 ൌ 𝑤ଵ𝑓ଵ  ⋯  𝑤𝑓 is convex

 Infinite sums
 𝑓ሺ𝑥, 𝑦ሻ is convex in 𝑥, ∀𝑦 ∈ 𝒜, 𝑤 𝑦  0
 𝑔 𝑥 ൌ  𝑓 𝑥, 𝑦 𝑤ሺ𝑦ሻ𝒜 𝑑𝑦 is convex

 Epigraph interpretation
 𝐞𝐩𝐢 𝑤𝑓 ൌ ሼሺ𝑥, 𝑡ሻ|𝑤𝑓ሺ𝑥ሻ  𝑡ሽ

 𝐼 0
0 𝑤 𝐞𝐩𝐢 𝑓 ൌ ሼሺ𝑥, 𝑤𝑡ሻ|𝑓 𝑥  𝑡ሽ

 𝐞𝐩𝐢 𝑤𝑓 ൌ 𝐼 0
0 𝑤 𝐞𝐩𝐢 𝑓

The set of convex 
functions is itself a

convex cone



Composition with an affine 
mapping 

 

 ൈ 

 Affine Mapping 

 If is convex, so is 

 If is concave, so is 

𝑔 𝑥 ൌ 𝑓ሺ𝐴𝑥  𝑏ሻ



Pointwise Maximum

 ଵ ଶ is convex

is convex with ଵ ଶ


ൌ maxሼ𝑓ଵ 𝜃𝑥  1 െ 𝜃 𝑦 , 𝑓ଶ 𝜃𝑥  1 െ 𝜃 𝑦 ሽ
 maxሼ𝜃𝑓ଵ 𝑥  1 െ 𝜃 𝑓ଵ 𝑦 , 𝜃𝑓ଶ 𝑥  ሺ1 െ

           𝜃ሻ𝑓ଶ 𝑦 ሽ
 𝜃 max 𝑓ଵ 𝑥 , 𝑓ଶ 𝑥  1 െ 𝜃 max 𝑓ଵ 𝑦 , 𝑓ଶ 𝑦
ൌ 𝜃𝑓 𝑥  1 െ 𝜃 𝑓 𝑦

 𝑓ଵ, … , 𝑓 is convex ⇒ 𝑓 𝑥 ൌ maxሼ𝑓ଵ 𝑥 , … , 𝑓ሺ𝑥ሻሽ

ଵ ଶ



Examples

 Piecewise-linear functions
 ଵ

ୃ
ଵ 

ୃ


 Sum of largest components 
 

ଵ ଶ 

 

ୀଵ is convex

భ ೝ ଵ 

 Pointwise maximum of !
!  ି  !

linear 
functions



Pointwise Supremum 

 is convex in 

is convex with om
om

௬∈𝒜

 Epigraph interpretation
 ௬∈𝒜

 Intersection of convex sets is convex
 Pointwise infimum of a set of 

concave functions is concave

௬∈𝒜



Examples

 Support function of a set 
 

 
ୃ

 
௬∈

ୃ

 Distance to farthest point of a set 
 


௬∈

 



Examples

 Maximum eigenvalue of a symmetric 
matrix 
 ୫ୟ୶



 ୃ
ଶ

 Norm of a matrix  
 ଶ is maximum singular value 

of 
 ൈ

 ୃ
ଶ ଶ



Representation

 Almost every convex function can be 
expressed as the pointwise supremum 
of a family of affine functions. 

⟹ 𝑓 𝑥 ൌ supሼ𝑔ሺ𝑥ሻ|𝑔 affine, 𝑔 z  𝑓 𝑧  ∀𝑧 ሽ

𝑓: 𝐑 → 𝐑 is convex and dom 𝑓 ൌ 𝐑



Compositions

 Definition 
   

 



 Chain Rule
 

𝑓 𝑥 ൌ ℎ 𝑔 𝑥

𝛻ଶ𝑓ሺ𝑥ሻ ൌ ℎᇱሺ𝑔ሺ𝑥ሻሻ𝛻ଶ𝑔ሺ𝑥ሻ  ℎᇱᇱ 𝑔 𝑥 𝛻𝑔 𝑥 𝛻𝑔ሺ𝑥ሻୃ



Scalar Composition


 and are twice differentiable


 is convex, if ᇱᇱ

 ᇱᇱ

 ℎ is convex and nondecreasing 𝑔 is convex

 ᇱᇱ ᇱ ᇱᇱ

 ℎ is convex and nonincreasing, 𝑔 is concave

𝑓ᇱᇱ 𝑥 ൌ ℎᇱᇱ 𝑔 𝑥 𝑔′ 𝑥 ଶ  ℎᇱ 𝑔 𝑥 𝑔′′ሺ𝑥ሻ



Scalar Composition


 and are twice differentiable


 is concave, if ᇱᇱ

 ᇱᇱ ᇱ ᇱᇱ

 ℎ is concave and nondecreasing 𝑔 is concave

 ᇱᇱ ᇱ ᇱᇱ

 ℎ is concave and nonincreasing, 𝑔 is convex

𝑓ᇱᇱ 𝑥 ൌ ℎᇱᇱ 𝑔 𝑥 𝑔′ 𝑥 ଶ  ℎᇱ 𝑔 𝑥 𝑔′′ሺ𝑥ሻ



 

 Without differentiability assumption
 Without domain condition

 ℎ 𝑥 ൌ 0 with dom ℎ ൌ ሾ1,2ሿ, which is convex 
and nondecreasing

 𝑔 𝑥 ൌ 𝑥ଶ with dom 𝑔 ൌ 𝐑, which is convex

 dom 𝑓 ൌ െ 2, െ1 ∪ ሾ1, 2ሿ

𝑓 𝑥 ൌ ℎ 𝑔 𝑥 ൌ 0

Scalar Composition



 

 Without differentiability assumption
 Without domain condition

 ℎ is convex, ℎ෨ is nondecreasing, and 𝑔 is 
convex ⇒ 𝑓 is convex

 ℎ is convex, ℎ෨ is nonincreasing, and 𝑔 is 
concave ⇒ 𝑓 is convex

 The conditions for concave are similar

Scalar Composition



Extended-value Extensions 



Examples
 is convex is convex
 is concave and positive is 

concave
 is concave and positive is 

convex
 is convex and nonnegative and 

 is convex
 is convex is convex on 



Vector Composition   

 


 ℎ and 𝑔 are twice differentiable
 dom 𝑔 ൌ 𝐑, dom ℎ ൌ 𝐑

𝑓 ൌ ℎ ∘ 𝑔 ൌ ℎሺ𝑔ଵ 𝑥 , … , 𝑔 𝑥 ሻ

𝑓ᇱᇱ 𝑥 ൌ 𝑔ᇱ 𝑥 ୃ𝛻ଶℎ 𝑔 𝑥 𝑔′ሺ𝑥ሻ  𝛻ℎ 𝑔 𝑥 ୃ𝑔′′ሺ𝑥ሻ

𝑓′ 𝑥 ൌ 𝛻ℎ 𝑔 𝑥 ୃ𝑔′ሺ𝑥ሻ



Vector Composition   

 


 ℎ and 𝑔 are twice differentiable
 dom 𝑔 ൌ 𝐑, dom ℎ ൌ 𝐑

 𝑓 is convex, if 𝑓ᇱᇱ 𝑥  0
 ℎ is convex, ℎ is nondecreasing in each 

argument, and 𝑔 are convex
 ℎ is convex, ℎ is nonincreasing in each 

argument, and 𝑔 are concave

𝑓 ൌ ℎ ∘ 𝑔 ൌ ℎሺ𝑔ଵ 𝑥 , … , 𝑔 𝑥 ሻ

𝑓ᇱᇱ 𝑥 ൌ 𝑔ᇱ 𝑥 ୃ𝛻ଶℎ 𝑔 𝑥 𝑔′ሺ𝑥ሻ  𝛻ℎ 𝑔 𝑥 ୃ𝑔′′ሺ𝑥ሻ



Vector Composition   

 


 ℎ and 𝑔 are twice differentiable
 dom 𝑔 ൌ 𝐑, dom ℎ ൌ 𝐑

 𝑓 is concave, if 𝑓ᇱᇱ 𝑥  0
 ℎ is concave, ℎ is nondecreasing in each 

argument, and 𝑔 are concave

 The general case is similar

𝑓 ൌ ℎ ∘ 𝑔 ൌ ℎሺ𝑔ଵ 𝑥 , … , 𝑔 𝑥 ሻ

𝑓ᇱᇱ 𝑥 ൌ 𝑔ᇱ 𝑥 ୃ𝛻ଶℎ 𝑔 𝑥 𝑔′ሺ𝑥ሻ  𝛻ℎ 𝑔 𝑥 ୃ𝑔′′ሺ𝑥ሻ



Examples
 ℎ 𝑧 ൌ 𝑧 ଵ  ⋯  𝑧  , 𝑧 ∈ 𝐑, 𝑔ଵ, … , 𝑔 are convex ⇒

ℎ ∘ 𝑔 is convex
 ℎ 𝑧 ൌ logሺ∑ 𝑒௭

ୀଵ ሻ , 𝑔ଵ, … , 𝑔 are convex ⇒ ℎ ∘ 𝑔 is 
convex

 ℎ 𝑧 = ∑ 𝑧


ୀଵ
ଵ/ on 𝐑ା

 is concave for 0  𝑝  1, 
and its extension is nondecreasing. If 𝑔 is 
concave and nonnegative ⇒ ℎ ∘ 𝑔 ൌ

∑ 𝑔 𝑥 
ୀଵ

ଵ/is concave

 Suppose 𝑝   1, and 𝑔ଵ, … , 𝑔 are convex and 
nonnegative. Then the function ∑ 𝑔 𝑥 

ୀଵ
ଵ/ is 

convex



Minimization 
 is convex in is convex
 𝑔 𝑥 ൌ inf

௬∈
𝑓ሺ𝑥, 𝑦ሻ is convex if 𝑔 𝑥 

െ ∞, ∀ 𝑥 ∈ dom 𝑔
 dom 𝑔 ൌ 𝑥 𝑥, 𝑦 ∈ dom 𝑓 for some 𝑦 ∈ 𝐶

 Proof by Epigraph
 epi 𝑔 ൌ ሼሺ𝑥, 𝑡ሻ| 𝑥, 𝑦, 𝑡 ∈ epi 𝑓 for some 𝑦 ∈ 𝐶ሽ
 The projection of a convex set is convex.



Minimization 
 is convex in is convex
 𝑔 𝑥 ൌ inf

௬∈
𝑓ሺ𝑥, 𝑦ሻ is convex if 𝑔 𝑥 

െ ∞, ∀ 𝑥 ∈ dom 𝑔
 dom 𝑔 ൌ 𝑥 𝑥, 𝑦 ∈ dom 𝑓 for some 𝑦 ∈ 𝐶

 is convex in 

is convex with om
om

௬∈𝒜

Pointwise Supremum 

௬∈𝒜



 Schur complement  
 𝑓 𝑥, 𝑦 ൌ 𝑥ୃ𝐴𝑥  2𝑥ୃ𝐵𝑦  𝑦ୃ𝐶𝑦
 𝐴 𝐵

𝐵ୃ 𝐶 ≽ 0, 𝐴, 𝐶 is symmetric ⇒ 𝑓ሺ𝑥, 𝑦ሻ is convex
 𝑔 𝑥 ൌ inf

௬
𝑓 𝑥, 𝑦 ൌ 𝑥ୃ 𝐴 െ 𝐵𝐶ற𝐵ୃ 𝑥 is convex 

     ⇒ 𝐴 െ 𝐵𝐶ற𝐵ୃ ≽ 0, 𝐶ற is the pseudo-inverse of 𝐶 

 Distance to a set   
 𝑆 is a convex nonempty set, 𝑓 𝑥, 𝑦 ൌ ‖𝑥 െ 𝑦‖ is 

convex in ሺ𝑥, 𝑦ሻ
 𝑔 𝑥 ൌ dist 𝑥, 𝑆 ൌ inf

௬∈ௌ
‖𝑥 െ 𝑦‖

Examples



 Schur complement  
 𝑓 𝑥, 𝑦 ൌ 𝑥ୃ𝐴𝑥  2𝑥ୃ𝐵𝑦  𝑦ୃ𝐶𝑦
 𝐴 𝐵

𝐵ୃ 𝐶 ≽ 0, 𝐴, 𝐶 is symmetric ⇒ 𝑓ሺ𝑥, 𝑦ሻ is convex
 𝑔 𝑥 ൌ inf

௬
𝑓 𝑥, 𝑦 ൌ 𝑥ୃ 𝐴 െ 𝐵𝐶ற𝐵ୃ 𝑥 is convex 

     ⇒ 𝐴 െ 𝐵𝐶ற𝐵ୃ ≽ 0, 𝐶ற is the pseudo-inverse of 𝐶 

 Distance to a set   
 𝑆 is a convex nonempty set, 𝑓 𝑥, 𝑦 ൌ ‖𝑥 െ 𝑦‖ is 

convex in ሺ𝑥, 𝑦ሻ
 𝑔 𝑥 ൌ dist 𝑥, 𝑆 ൌ inf

௬∈ௌ
‖𝑥 െ 𝑦‖

 Distance to farthest point of a set 
 𝐶 ⊆ 𝐑

 𝑓 𝑥 ൌ sup
௬∈

‖𝑥 െ 𝑦‖ 

Examples



Examples

 Affine domain  
 ℎሺ𝑦ሻ is convex
 𝑔 𝑥 ൌ inf  ሼℎሺ𝑦ሻ|𝐴𝑦 ൌ 𝑥ሽ is convex

 Proof

 𝑓 𝑥, 𝑦 ൌ ቊℎ 𝑦     if 𝐴𝑦 െ 𝑥 ൌ 0
    ∞        otherwise

 𝑓ሺ𝑥, 𝑦ሻ is convex in ሺ𝑥, 𝑦ሻ
 𝑔 is the minimum of  𝑓 over 𝑦



Perspective of a function 

  ାଵ defined as

is the perspective of 
 dom 𝑔 ൌ ሼሺ𝑥, 𝑡ሻ|𝑥/𝑡 ∈ dom 𝑓, 𝑡  0ሽ
 𝑓 is convex ⇒ 𝑔 is convex

 Proof

 Perspective mapping preserve convexity

𝑥, 𝑡, 𝑠 ∈ epi 𝑔 ⇔ 𝑡𝑓
𝑥
𝑡  𝑠

⇔ 𝑓
𝑥
𝑡 

𝑠
𝑡

⇔ ሺ𝑥/𝑡, 𝑠/𝑡ሻ ∈ epi 𝑓 



Perspective Functions

 Perspective function ାଵ 

 If is convex, then its image

is convex
 If  is convex, the inverse image

is convex


ାା

ିଵ ାଵ



Example

 Euclidean norm squared
 ୃ


௫
௧

ୃ ௫
௧

௫௫
௧

 Composition with an Affine function
  is convex
 ൈ  

 ୃ ௫ା
௫ାௗ

 ୃ ௫ା
௫ାௗ

is convex



Outline
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 First-order Conditions, Second-order Conditions
 Jensen’s inequality and extensions
 Epigraph
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 Nonnegative Weighted Sums
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 Summary



Summary
 Basic Properties

 Definition
 First-order Conditions, Second-order Conditions
 Jensen’s inequality and extensions
 Epigraph

 Operations That Preserve Convexity
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 Minimization
 Perspective of a function


