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U(:*,j") = minmax U(3, j)
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G R XTI 2% (Generative Adversarial Networks, GAN)
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States Under Opponent’s Control:
Vis) = max V(s V(s = min Vi(s)
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Terminal States:
V(s) = known
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def max-value(state): def min-value(state):
initialize v = -0 initialize v = +o0
for each successor of state: <:> for each successor of state:
v = max(v, min-value(successor)) v = min(v, max-value(successor))
returnv returnv
V(s) = max V(s V(s = min V(s)

s’ Esuccessors(s) s€successors(s’)
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/def max-value(state): D
initialize v = -0
for each successor of state:

v = max(v, value(successor))

return v
)

/def min-value(state): N
initialize v = +o0
for each successor of state:

v = min(v, value(successor))

return v
4
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a: BRIALEER EAIRI MAXIIERIE (BIHK(E) 15587
B:HRIALEAR EAMIIMINGIRE (BIfRIVE) 1583

def max-value(state, a, B): def min-value(state, a, B):
initialize v = -0 initialize v = +o0
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a, B))
if v>PBreturnv ifv<areturnv
a = max(a, v) B =min(B, v)

return v return v
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#points in circle

Circle Surface = Square SurfaceX —
#points in total
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_ #win simulation cases started from s
Win Rate(s) =

#simulation cases started from s in total
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ZEEEN (Multi-Armed Bandits)

WSS K MEE, SXE— T RETIES,
TEtSH LU SBEY LT —EerE T

IHATER R SR =i P R K ?

BANDIT

" MULTI-ARMED u

RESFIA:
« IRZF(Exploration): (I AREERINS EEHIZERIKR/N)
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O [Eli#f (backpropagation) : ETHUERE KRBT REVRBIIHEARIGEIRE
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and simulation

(a) Selection
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* Opponent’s action: a, ~ (- | si; 0).
« TEXXZER, IR1EREr,

* Win: 7 = +1.

* Lose: rp = —1.

W, FEETLUBIS BRI, | AR

* v(S;41; W): output of the value network.
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ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison!, Arthur Guez!, Laurent Sifre!, George van den Driessche!,
Julian Schrittwieser, Ioannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman', Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuoglu!,

Thore Graepel' & Demis Hassabis'

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

All games of perfect information have an optimal value function, v'(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately b? possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (ba35, d~80)" and
especially Go (b~250,d~ 150)", exhaustive search is infeasible>?, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) ~v"(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess, checkers® and othello®, but it was believed to be intractable in Go
due to the complexity of the game’. Second, the breadth of the search
may be reduced by sampling actions from a policy p(als) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts® search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon® and
Scrabble’, and weak amateur level play in Go'°.

Monte Carlo tree search (MCTS)'""!2 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during

policies!*>~!* or value functions'® based on a linear combination of

input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion'7, face recognition'®, and playing Atari games'’. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image?°. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 x 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network p,, directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work'>!*, we also train a
fast policy p, that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network p,, that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vy that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.
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A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

Much progress towards artificial intelligence has been made using
supervised learning systems that are trained to replicate the decisions
of human experts' ™. However, expert data sets are often expensive,
unreliable or simply unavailable. Even when reliable data sets are
available, they may impose a ceiling on the performance of systems
trained in this manner’. By contrast, reinforcement learning systems
are trained from their own experience, in principle allowing them to
exceed human capabilities, and to operate in domains where human
expertise is lacking. Recently, there has been rapid progress towards this
goal, using deep neural networks trained by reinforcement learning.
These systems have outperformed humans in computer games, such
as Atari® and 3D virtual environments®-1°. However, the most chal-
lenging domains in terms of human intellect—such as the game of Go,
widely viewed as a grand challenge for artificial intelligence!'—require
a precise and sophisticated lookahead in vast search spaces. Fully gene-
ral methods have not previously achieved human-level performance
in these domains.

AlphaGo was the first program to achieve superhuman performance
in Go. The published version'?, which we refer to as AlphaGo Fan,
defeated the European champion Fan Hui in October 2015. AlphaGo
Fan used two deep neural networks: a policy network that outputs
move probabilities and a value network that outputs a position eval-

trained solely by self-play reinforcement learning, starting from ran-
dom play, without any supervision or use of human data. Second, it
uses only the black and white stones from the board as input features.
Third, it uses a single neural network, rather than separate policy and
value networks. Finally, it uses a simpler tree search that relies upon
this single neural network to evaluate positions and sample moves,
without performing any Monte Carlo rollouts. To achieve these results,
we introduce a new reinforcement learning algorithm that incorporates
lookahead search inside the training loop, resulting in rapid improve-
ment and precise and stable learning. Further technical differences in
the search algorithm, training procedure and network architecture are
described in Methods.

Reinforcement learning in AlphaGo Zero

Our new method uses a deep neural network f; with parameters 6.
This neural network takes as an input the raw board representation s
of the position and its history, and outputs both move probabilities and
avalue, (p, v) =fy(s). The vector of move probabilities p represents the
probability of selecting each move a (including pass), p, = Pr(als). The
value v is a scalar evaluation, estimating the probability of the current
player winning from position s. This neural network combines the roles
of both policy network and value network'? into a single architecture.
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BEIH B FAUESSIS?
ﬁ werewolf f’

villager

witch

guard

% seer

(i . ~\
| Good morning
everyone. Itsee-

4 Well, | agree with Player 1, 3 and Player 4. Based on my observation
and analysis, | also think Player 5 is a little suspicious. But we might no

3 Hi, | agree with Player 1 and Player 4 that we should ex |

ms like we had a vote to kill him casually. \

change informations actively. Based on my observation,
| think Player 5 is a little suspicious.

t
L

peaceful night. |
was wondering if
anyone has any
suspicions or
observations they
would like to
share? | think its
important for us to
start discussing
and sharing our
thoughts to find
outwho the

werewolves are.
| J/

’ Player 2

7 | agree with Player1,2 and 6. | think we have to actively gather infor—
mation and seriously speculate about who the werewolves are. We
should protect ourselves as much as possible and avoid being killed
by the werewolves. | will use my special ability wisely at night.

6 | observed that Player 5 was killed last night. As a witch, | used my
antidote to save him. Therefore, Player 5 may not be a werewolf, but
as killed by the werewolf last night.

J

(2 )
2 Good morning
everyone. As a
villager, | dont have
any clear suspici-
ons yet, but 'min-
terested in hearing
what others have
to say. Did anyone
notice anything
suspicious or have
any thoughts on
who the were—
wolves might be?

s

J

~N

5 | have to defend myself bacause | am innocent. | think we should ga-
ther imformation and have a full discussion now, we can'’tkill a potenti—
alteammate in a hurry. On the contrary, | think Player 3 is a bit aggre-
ssive, and | suspect he is one of the werewolf.
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