
人工智能导论

对抗搜索

郭兰哲
南京大学 智能科学与技术学院

https://www.lamda.nju.edu.cn/guolz/IntroAI/fall2025/index.html
Email: guolz@nju.edu.cn

https://www.lamda.nju.edu.cn/guolz/IntroAI/fall2025/index.html
mailto:guolz@nju.edu.cn

对抗搜索

提纲

p 对抗博弈

Ø 双人零和博弈

p 确定性搜索

Ø 最大最小搜索

Ø Alpha-beta 剪枝

p 基于模拟的搜索

Ø 蒙特卡洛树搜索

提纲

p 对抗博弈

Ø 双人零和博弈

p 确定性搜索

Ø 最大最小搜索

Ø Alpha-beta 剪枝

p 基于模拟的搜索

Ø 蒙特卡洛树搜索

博弈

对抗搜索（Adversarial Search）也称为博弈搜索（Game Search）

博弈的种类：

ü 确定的、有随机性的

ü 是否有完整信息？

ü 几个玩家？

ü 是不是零和博弈？

零和博弈

一个玩家赢了，则对手一定输了 你可能赚了，但我也不亏

双人零和博弈

VS.

我们考虑信息确定、全局可观察、竞争对手轮流行动、输赢

收益零和假设下的双人博弈问题

对抗搜索

Two-Step Game

• Two step game: 首先，Alice选择第	𝑖	行，然后，Bob选择第	𝑗	列

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Alice选择第	𝑖	行，然后，Bob选择第	𝑗	列

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Alice选择第	𝑖	行，然后，Bob选择第	𝑗	列

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Alice选择第	𝑖	行，然后，Bob选择第	𝑗	列

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Alice选择第	𝑖	行，然后，Bob选择第	𝑗	列

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

• A MinMax Game

Two-Step Game

• Two step game: 首先，Bob选择第	𝑗	列，然后， Alice选择第	𝑖	行

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Bob选择第	𝑗	列，然后， Alice选择第	𝑖	行

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Bob选择第	𝑗	列，然后， Alice选择第	𝑖	行

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Bob选择第	𝑗	列，然后， Alice选择第	𝑖	行

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

Two-Step Game

• Two step game: 首先，Bob选择第	𝑗	列，然后， Alice选择第	𝑖	行

• 结果：Alice输（Bob赢）第	𝑖	行第	𝑗	列的元素值

• A MaxMin Game

Quiz：MinMax = MaxMin?

2 5 4

3 1 6

7 2 3

生成对抗网络(Generative Adversarial Networks, GAN)

是否可以构建出一个模型𝐺:𝒵 → 𝒳，使之可以生成符合数据分布𝑝(𝑥)的样本？

生成对抗网络(Generative Adversarial Networks, GAN)

• 生成对抗网络[Goodfellow et al., 2014]通过对抗训练和最大最小优化的方式使得生成

网络产生的样本服从真实数据分布

• 判别网络(Discriminator)：目标是尽量准确地判断一个样本是来自于真实数据还是由

生成网络产生

• 生成网络(Geneartor)：目标是尽量生成判别网络无法区分来源的样本

生成对抗网络的典型应用
• 图像到图像(Image-to-Image)

确定性策略和非确定性策略

提纲

p 对抗博弈

Ø 双人零和博弈

p 确定性搜索

Ø 最大最小搜索

Ø Alpha-beta 剪枝

p 基于模拟的搜索

Ø 蒙特卡洛树搜索

单一Agent搜索树

8662

状态的价值 V

从当前状态出发能

获得的最大价值

Non-Terminal States:

Terminal States:

博弈搜索树

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

多步搜索

两⼈轮流在⼀有九格方盘上划加字或圆圈, 谁先把三个同⼀记号

排成横线、直线、斜线, 即是胜者

问题定义

p状态：状态𝑠包括当前的游戏局面和当前行动的玩家

p动作：给定状态𝑠，动作指的是𝑝𝑙𝑎𝑦𝑒𝑟(𝑠)在当前局面下可以采取的操作𝑎，记
动作集合为𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑠

p状态转移：给定状态𝑠和动作𝑎 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠(𝑠)，状态转移函数𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)决定了
在𝑠状态采取𝑎动作后所得后继状态

p终局状态检测：终止状态检测函数𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑡𝑒𝑠𝑡(𝑠)用于测试游戏是否在状态𝑠
结束

p终局得分：终局得分𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑠, 𝑝)表示在终局状态𝑠时玩家𝑝的得分

搜索树

最优策略

最优策略

12 8 5 23 2 144 6

3 2 2

3

最优策略

minimax s

=
utility 𝑠 , if terminal_test(s)

max!∈#$%&'() * minimax result 𝑠, 𝑎 , if player 𝑠 = 𝑀𝐴𝑋
min!∈#$%&'()) minimax result 𝑠, 𝑎 , if player 𝑠 = 𝑀𝐼𝑁

给定一棵博弈树，最优策略可以通过检查每个节点的极小极大值来决定，记为minimax(n)

最小最大搜索

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

最小最大搜索

def value(state):
if the state is a terminal state: return the state’s utility
if the agent is MAX: return max-value(state)
if the agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

性能分析

•时间和空间?

• 和 DFS 类似

• 时间复杂度: O(bm)

• 空间复杂度: O(bm)

• Example: For chess, b » 35, m » 100

• 精确的搜索几乎是不可行的

树剪枝

提纲

p 对抗博弈

Ø 双人零和博弈

p 确定性搜索

Ø 最大最小搜索

Ø Alpha-beta 剪枝

p 基于模拟的搜索

Ø 蒙特卡洛树搜索

树剪枝

12 8 5 23 2 144 6

MAX

树剪枝168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Vector:[alpha, beta]

树剪枝

Vector:[alpha, beta]

168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

树剪枝

168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Vector:[alpha, beta]

树剪枝

168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Vector:[alpha, beta]

树剪枝

168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Vector:[alpha, beta]

树剪枝

168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Vector:[alpha, beta]

树剪枝168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Alpha-Beta剪枝

Section 5.3. Alpha–Beta Pruning 169

Player

Opponent

Player

Opponent

m

n

•

•

•

Figure 5.6 The general case for alpha–beta pruning. If m is better than n for Player, we
will never get to n in play.

α = the value of the best (i.e., highest-value) choice we have found so far at any choice point
along the path for MAX.

β = the value of the best (i.e., lowest-value) choice we have found so far at any choice point
along the path for MIN.

Alpha–beta search updates the values of α and β as it goes along and prunes the remaining
branches at a node (i.e., terminates the recursive call) as soon as the value of the current
node is known to be worse than the current α or β value for MAX or MIN, respectively. The
complete algorithm is given in Figure 5.7. We encourage you to trace its behavior when
applied to the tree in Figure 5.5.

5.3.1 Move ordering

The effectiveness of alpha–beta pruning is highly dependent on the order in which the states
are examined. For example, in Figure 5.5(e) and (f), we could not prune any successors of D

at all because the worst successors (from the point of view of MIN) were generated first. If
the third successor of D had been generated first, we would have been able to prune the other
two. This suggests that it might be worthwhile to try to examine first the successors that are
likely to be best.

If this can be done,2 then it turns out that alpha–beta needs to examine only O(bm/2)

nodes to pick the best move, instead of O(bm) for minimax. This means that the effective
branching factor becomes

√
b instead of b—for chess, about 6 instead of 35. Put another

way, alpha–beta can solve a tree roughly twice as deep as minimax in the same amount of
time. If successors are examined in random order rather than best-first, the total number of
nodes examined will be roughly O(b3m/4) for moderate b. For chess, a fairly simple ordering
function (such as trying captures first, then threats, then forward moves, and then backward
moves) gets you to within about a factor of 2 of the best-case O(bm/2) result.

2 Obviously, it cannot be done perfectly; otherwise, the ordering function could be used to play a perfect game!

α:目前为止路上发现的 MAX的最佳（即极大值）选择，即α=“至少”

β:目前为止路径上发现的MIN的最佳（即极小值）选择，即β=“至多”

如果对于玩家来说，m好于𝑛，

那么我们永远不会在博弈中到达𝑛

Alpha-Beta剪枝

l 对于MAX节点，如果其孩子结点（MIN结点）的收益大于当前的𝛼值，则将𝛼值更新为该收益；

对于MIN结点，如果其孩子结点（MAX结点）的收益小于当前的𝛽值，则将𝛽值更新为该收益。

根结点（MAX结点）的𝛼值和𝛽值分别被初始化为−∞和+∞

l 随着搜索算法不断被执行，每个结点的𝛼值和𝛽值不断被更新。大体来说，每个结点的[𝛼, 𝛽]从其

父结点提供的初始值开始，取值按照如下形式变化：𝛼逐渐增加、𝛽逐渐减少。不难验证，如果

一个结点的𝛼值和𝛽值满足𝛂 > 𝛃的条件，则该结点尚未被访问的后续结点就会被剪枝，因而不会

被访问

Alpha-Beta剪枝

def min-value(state, α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α:目前为止路上发现的 MAX的最佳（即极大值）选择
β:目前为止路径上发现的MIN的最佳（即极小值）选择

Quiz1: Alpha-Beta剪枝

Quiz2: Alpha-Beta剪枝

Quiz2: Alpha-Beta剪枝

10

10

>=100 2

<=2

思考

启发？

可以设计方案对后继状态进行排序，

例如，对于象棋，可以设计排序规则：吃子>威胁>前进>后退

搜索顺序很重要

资源受限

尽管alpha-beta剪枝能够避免搜索完整的空间，

但是仍然要搜索部分空间直至终止状态，这样

的搜索深度也是不现实的

一个可行的思路：

参考启发式搜索，设计评估函数用于搜索中的

状态，有效地把非终止节点变成终止节点
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

评估函数

如何设置评估函数？

以象棋为例，要考虑兵的数目、车的数目、马的数目等等

兵1分，马3分，车5分…

形式化描述：加权线性函数

𝑤!表示权重，𝑓!是棋局的某个特征

评估函数

Ø 分支因子大
围棋分支因子开始时为361，搜索层数受限

Ø 评估函数难设置

现代围棋程序基本不采用alpha-beta搜索

Alpha-beta搜索用于围棋

会面临什么挑战？

提纲

p 对抗博弈

Ø 双人零和博弈

p 确定性搜索

Ø 最大最小搜索

Ø Alpha-beta 剪枝

p 基于模拟的搜索

Ø 蒙特卡洛树搜索

状态评估

如果不采用评价函数，有没有其他办法评估状态的好坏？

蒙特卡洛方法

• 蒙特卡洛方法（Monte-Carlo methods）是一类广泛的计算算法

• 依赖于重复随机抽样来获得数值结果

• 例如，计算圆的面积

Circle Surface = Square Surface×
#points in circle
#points in total

围棋对弈：估计当前状态下的胜率

Win Rate(𝑠) =
#win simulation cases started from 𝑠

#simulation cases started from 𝑠 in total

从当前状态出发，做随机模拟

蒙特卡洛方法

蒙特卡洛搜索

57/100 65/10039/100

模拟：从一个节点出发，进行大量模拟，记录赢的次数

蒙特卡洛搜索

57/100 59/1000/100

模拟：从一个节点出发，进行大量模拟，记录赢的次数

蒙特卡洛搜索

77/140 90/1500/10

模拟：从一个节点出发，进行大量模拟，记录赢的次数

蒙特卡洛搜索

57/100 65/10039/100

资源是有限的，选择哪些节点进行模拟？

选择更有希望的节点进行模拟

蒙特卡洛搜索

先有鸡还是

先有蛋？

如何评估节点的价值？

大量的模拟

多臂老虎机

赌博机有	𝐾	个摇臂，每次转动一个赌博机摇臂，

赌博机则会随机吐出一些硬币

多臂老虎机 （Multi-Armed Bandits）

如何在有限次数的尝试中使收益最大化？

探索与利用：

• 探索(Exploration)：估计不同摇臂的优劣 (奖赏期望的大小)

• 利用(Exploitation)：选择当前最优的摇臂

探索-利用

基于目前策略获取已知最优收益还是尝试不同的决策

• Exploitation：执行能够获得已知最优收益的决策

• Exploration：尝试更多可能的决策，不一定会是最优收益

探索-利用窘境

Ø 仅探索（Exploration-only)

每个摇臂摇动 T / K 次

如何在有限次数的尝试中使收益最大化？

不足：浪费次数在收益较差的摇臂上

Ø 仅利用（Exploitation-only)

1. 每个摇臂摇动一次，记录收益

2. 剩余的T-K次全部用在收益最大的摇臂上

不足：一次估计的结果不可靠

探索利用窘境

Exploration-Exploitation Dilemma

𝜖-贪心算法

𝝐-贪心算法：在探索与利用之间进行平衡的搜索算法

• 以 𝟏 − 𝝐 的概率，选择在过去𝑡 − 1次摇动赌博机

所得平均收益最高的摇臂进行摇动；

• 以 𝝐 的概率，随机选择一个摇臂进行摇动。

在第𝑡步，𝜖-贪心算法按照如下机制来选择摇动赌博机：

不足：没有考虑每个摇臂被探索的次数

Softmax

• Softmax：基于当前已知的摇臂平均奖赏来对探索与利用折中

• 若某个摇臂当前的平均奖赏越大，则它被选择的概率越高

• 概率分配使用Boltzmann分布：

𝜖-贪心与Softmax算法都有一个折中参数(𝜖, 𝜏) ，算法性能孰好孰坏取决于具体应用问题

上限置信区间（Upper-Confidence Bound）

上限置信区间算法（Upper Confidence Bounds, UCB）：为每个动作的奖励

期望计算一个估计范围，优先采用估计范围上限较高的动作

假设每个摇臂的均值为𝑄 𝑘 ，估计的偏差为𝛿(𝑘)

每次根据𝑄 𝑘 + 𝛿(𝑘)选择摇臂

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

蒙特卡洛搜索

p 选择（selection）：从根节点开始，按照某种选择策略（通常为UCB）向下选择子节点，直至

到达叶子结点

p 扩展（expansion）：为所选节点生成一个新的子节点 （注意：MCTS有不同实现方式，有的是

每次随机生成一个子节点，有的是生成所有后继节点再进行选择）

p 模拟（simulation）：从新生成的节点出发出发，模拟扩展搜索树，获得模拟结果

p 回溯（backpropagation）：基于模拟结果自底向上更新路径的节点的奖励均值和被访问次数

（注意：只有胜方的获胜次数和模拟次数都会增加，败方节点只增加模拟次数）

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=0
T=0

𝑈𝐶𝐵 𝑘 = 𝑄+ + 2 ∗ [𝑙𝑛	𝑇
𝑇+

V=0
T=0

V=0
T=0

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=0
T=0

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=0
T=0

V=0
T=0

假设v=20

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=20
T=1

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=1

V=0
T=0

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=20
T=1

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=1

V=0
T=0

假设v=10

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=30
T=2

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=1

V=10
T=1

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=30
T=2

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=1

V=10
T=1

𝑆$ 𝑆%
V=0
T=0

V=0
T=0

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=30
T=2

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=1

V=10
T=1

𝑆$ 𝑆%
V=0
T=0

V=0
T=0

假设v=0

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=30
T=3

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=2

V=10
T=1

𝑆$ 𝑆%
V=0
T=1

V=0
T=0

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=30
T=3

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=2

V=10
T=1

𝑆$ 𝑆%
V=0
T=1

V=0
T=0 𝑆$ 𝑆%

V=0
T=0

V=0
T=0

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=30
T=3

𝑈𝐶𝐵 𝑘 = 𝑄+ + 𝐶 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=2

V=10
T=1

𝑆$ 𝑆%
V=0
T=1

V=0
T=0 𝑆$ 𝑆%

V=0
T=0

V=0
T=0

假设v=14

蒙特卡洛搜索

𝑆!

𝑆" 𝑆#

V=44
T=4

𝑈𝐶𝐵 𝑘 = 𝑄+ + 2 ∗ [𝑙𝑛	𝑇
𝑇+

V=20
T=2

V=24
T=2

𝑆$ 𝑆%
V=0
T=1

V=0
T=0 𝑆$ 𝑆%

V=14
T=1

V=0
T=0

蒙特卡洛搜索

蒙特卡洛搜索

2/3 0/1 2/2

4/7 0/1 0/1

4/9

1/1

1/2

5/10

AlphaGO

综合使用蒙特卡洛搜索、神经网络、强化学习等技术

训练神经网络直接评估当前节点，无需模拟

训练策略网络进行
节点扩展

AlphaGO

围棋

•围棋棋盘：19×19=361

• State：19×19的矩阵

• Action: 𝒜 ⊂ 1, 2, 3, ⋯ , 361

AlphaGo眼中的围棋

• AlphaZero使用的是19*19*17的张量表示一个状态

• 17：最近八步棋盘上黑子的位置，最近八步棋盘上白子的位置，以及当前该

哪一方下棋（如果是黑棋，矩阵全为1，否则全为0）

策略网络(AlphaZero)

Conv

state feature

Dense

19×19×17 tensor

⋮

𝜋 1 𝑠, 𝛉
𝜋 2 𝑠, 𝛉
𝜋 3 𝑠, 𝛉

𝜋 359 𝑠, 𝛉
𝜋 360 𝑠, 𝛉
𝜋 361 𝑠, 𝛉

Probability distribution
over the 361 actions

• 策略网络：𝜋(𝑎|𝑠; 𝜃)，输入是状态，输出是每个动作的概率

策略网络(AlphaGo)

Conv

state
19×19×48 tensor

⋮

𝜋 1 𝑠, 𝛉
𝜋 2 𝑠, 𝛉
𝜋 3 𝑠, 𝛉

𝜋 359 𝑠, 𝛉
𝜋 360 𝑠, 𝛉
𝜋 361 𝑠, 𝛉

Probability distribution
over the 361 actions

价值网络

Conv

state feature
19×19×17 tensor

Dense

State value

• 价值网络：𝑣(𝑠;𝑤)，对状态价值函数的估计，输入是状态，输出是一个实数，

表示当前状态的好坏

蒙特卡罗搜索

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

1. 选择(Selection)

2. 扩展(Expansion)

3. 评估(Evaluation)

4. 回溯(Backup)

第一步：选择

𝑠! 给定状态𝑠H, 找出胜算较大的动作，只搜索这些好的动作

• 𝑄 𝑎 ：蒙特卡洛搜索模拟带来的动作价值估计
• 𝜋 𝑎	|	𝑠H; θ : 策略网络的输出
• 𝑁 𝑎 : 𝑠H下动作𝑎已经被访问的次数

score 𝑎 = 𝑄 𝑎 + 𝜂 ⋅
𝜋 𝑎	|	𝑠H; 𝛉
1 + 𝑁 𝑎

第一步：选择

• 𝑄 𝑎 ：蒙特卡洛搜索模拟带来的动作价值估计
• 𝜋 𝑎	|	𝑠H; θ : 策略网络的输出
• 𝑁 𝑎 : 𝑠H下动作𝑎已经被访问的次数

score 𝑎 = 𝑄 𝑎 + 𝜂 ⋅
𝜋 𝑎	|	𝑠H; 𝛉
1 + 𝑁 𝑎

𝑠!
0.6 0.3 0.8

给定状态𝑠H, 找出胜算较大的动作，只搜索这些好的动作

第一步：选择

• 𝑄 𝑎 ：蒙特卡洛搜索模拟带来的动作价值估计
• 𝜋 𝑎	|	𝑠H; θ : 策略网络的输出
• 𝑁 𝑎 : 𝑠H下动作𝑎已经被访问的次数

score 𝑎 = 𝑄 𝑎 + 𝜂 ⋅
𝜋 𝑎	|	𝑠H; 𝛉
1 + 𝑁 𝑎

𝑠!
0.6 0.80.3

给定状态𝑠H, 找出胜算较大的动作，只搜索这些好的动作

第二步：扩展

对手接下来会做什么动作？
𝑠!

𝑎! AlphaGo用自己的策略网络去模拟对手，根据策略网络采样一个动作

𝑎HI ∼ 	𝜋 ⋅ 	 |	𝑠HI; 𝛉

第二步：扩展

对手接下来会做什么动作？

AlphaGo用自己的策略网络去模拟对手，根据策略网络采样一个动作

𝑎HI ∼ 	𝜋 ⋅ 	 |	𝑠HI; 𝛉

𝑠!

𝑎!
Prob = 0.4 Prob = 0.6

第二步：扩展

对手接下来会做什么动作？

AlphaGo用自己的策略网络去模拟对手，根据策略网络采样一个动作

𝑎HI ∼ 	𝜋 ⋅ 	 |	𝑠HI; 𝛉

𝑠!

𝑎!
Prob = 0.4 Prob = 0.6

𝑠!"#

第三步：模拟

• Player’s action: 𝑎f ∼ 𝜋 ⋅ 	 |	𝑠f; 𝛉 .
• Opponent’s action: 𝑎fg ∼ 𝜋 ⋅ 	 |	𝑠fg ; 𝛉 .

策略网络自我博弈，一直到分出胜负为止

•游戏结束，获得奖赏𝑟h
• Win: 𝑟N = +1.
• Lose: 𝑟N = −1.

第三步：模拟

• Player’s action: 𝑎f ∼ 𝜋 ⋅ 	 |	𝑠f; 𝛉 .
• Opponent’s action: 𝑎fg ∼ 𝜋 ⋅ 	 |	𝑠fg ; 𝛉 .

策略网络自我博弈，一直到分出胜负为止

• 游戏结束，获得奖赏𝑟N
• Win: 𝑟N = +1.
• Lose: 𝑟N = −1.

𝑠!

𝑎!

𝑠!"#

• 𝑣 𝑠ijk; 𝐰 : output of the value network.

• 此外，还可以通过价值网络评判𝑠ijk的好坏Record 𝑉 𝑠HOP

𝑉 𝑠HOP =
1
2
𝑣 𝑠HOP; 𝐰 +

1
2
𝑟N

第四步：回溯
𝑠!

𝑎!

Records:
• 𝑉,

, ,
• 𝑉-

, ,
• 𝑉.

, ,
• 𝑉/

, ,
• ⋮

Records:
• 𝑉,

- ,
• 𝑉-

- ,
• 𝑉.

- ,
• 𝑉/

- ,
• ⋮

• 模拟过程会重复很多次，得到多个记录
• 把所有的记录做个平均，得到𝑄(𝑎H)

MCTS的决策

𝑠! • 𝑁 𝑎 : 记录每个动作在模拟过程中被选择的次数

•真正的决策：
𝑎i = argmax

n
𝑁 𝑎𝑁 𝑎 "

𝑁 𝑎 #
𝑁 𝑎 $

策略网络的训练

1. 随机初始化策略网络，从人类棋谱中学习策略网络

2. 让两个策略网络自我博弈，改进策略网络

3. 基于已经训练好的策略网络，训练价值网络

• AlphaGo版本

价值网络的训练

• 让训练好的策略网络做自我博弈，记录状态回报二元组
(𝑠H, 𝑔H)

• 让价值网络𝑣(𝑠H; 𝑤)去拟合回报𝑔H

AlphaZero版本

• AlphaZero和AlphaGo2016版本最大的区别在于训练策略网络的方式，不再从人类棋谱学习，

而是向MCTS学习

• 用MCTS控制两个玩家对弈，每走一步棋，MCTS需要做成千上万次模拟，并记录下每个动

作被选中的次数𝑁(𝑎)

• 假设当前状态是𝑠0，执行MCTS，完成很多次模拟，得到361个整数：
𝑁 1 ,⋯ ,𝑁(361)，表示每个动作被选中的次数，归一化：

• 更新策略网络：让𝜋(⋅ |𝑠0, 𝜃)尽量接近𝑝0

AlphaGo

博弈AI的发展现状

p 跳棋：1990年战胜人类冠军，使用alpha-beta搜索和存有

390000亿个残局的数据库表现趋于完美

p 国际象棋：IBM的深蓝国际象棋程序，1997年击败世界

冠军Garry Kasparov，每步棋搜索最多至300亿个棋局，常

规搜索深度是14步，某些情况下搜索深度可以达到40层，

评估函数考虑了超过8000个特征

p 围棋：AlphaGO，采用蒙特卡洛搜索+深度强化学习，

AlphaZero，无需人类棋谱数据进行训练

博弈AI的发展现状

p 星际争霸： DeepMind 团队基于多智能体深度强化学

习推出的AlphaStar在星际争霸II中达到了人类大师级

的水平，并且在《星际争霸II》的官方排名中超越了

99.8%的人类玩家

p DOTA2：OpenAI推出的“OpenAI Five”击败世界冠军

p 王者荣耀：腾讯推出的觉悟AI，可以击败97%的玩家，

并且多次击败顶尖职业团队

大模型能胜任博弈AI任务吗？

Think in Games: Learning to Reason in Games via Reinforcement Learning with Large Language Models. https://arxiv.org/pdf/2508.21365

https://arxiv.org/pdf/2508.21365

大模型能胜任博弈AI任务吗？

Exploring Large Language Models for Communication Games: An Empirical Study on Werewolf. https://arxiv.org/pdf/2309.04658

https://arxiv.org/pdf/2309.04658

大模型能胜任博弈AI任务吗？

A Survey on Large Language Model Based Game Agents. https://arxiv.org/pdf/2404.02039

https://arxiv.org/pdf/2404.02039

本章小结

p 双人零和博弈：两个Rational Agent之间的游戏

p 最大最小搜索：类似于DFS，通过递归实现

p Alpha-Beta剪枝：减去不会影响上层节点的分支

p 蒙特卡洛搜索：通过模拟判断节点的价值

搜索部分小结

p 掌握常见的无信息搜索算法，能够编程实现DFS, BFS, UCS

p 掌握常见的启发式搜索算法，能够编程实现A*搜索

p 掌握常见的局部搜索算法，能够编程实现爬山搜索

p 了解博弈搜索算法的基本思想，能够综合运用，解决现实博弈问题，如

黑白棋、五子棋、象棋等

前往下一站

Search

确定环境

从起点到终点动作序列

非确定环境

学会一个策略，能够在任意状态下

找到最佳动作

Reinforcement
Learning

