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Computing Machinery and
Intelligence
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““Can machine think?”
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b propose to consider

the question;'Can
machines think?’

~’Alan Turing
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1912-1954
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1956-1960s: Logic Reasoning
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1990s -now: Machine Learning
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Challenge Match

8 - 15 March 2016

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE
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A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to cat
motorcycle on a dirt road. on a ramp. frisbee.
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A group of young people

playing 8 game of frisbee. over the puck. A refrigerator filled with lots of

food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yellow school bus parked in
across a dry grass field. on a couch. side of the road. a parking lot.
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The third interrelated force is the increasing rate of technological creation and adoption.
This is not just in infermation technologies, where Gordon Moore's projections of
exponential advances in processing, storage, and switches continue to be realized.
Scientists are also unlocking new properties of commonplace materials and creating new
materials altogether at astonishing speeds. Novel uses for increasingly sophisticated

H H ini ‘ robotics, energy storage, 3-D printing, and networks of low-cost sensors, to name just
A DeSI.g.n for M h n.ta I.nlng a few examples, are changing almost every facet of how we work and live. Genetic
Marltlme Superlorlty science is just beginning to demonstrate its power. Artificial intelligence is just getting

started and could fundamentally reshape the environment. And as technology is
introduced at an accelerating , it 1s being adopted by society just as fast — people are
sing these new tools as gy ey are introduced, and in new and novel ways.

“ NI & GEIT 28 FF 7]
AR AR FEH (R
%) s

specifically on our vulnerabilities and are increasingly designed from the ground up
to leverage the maritime, technological and information systems. They continue to
develop and field information-enabled weapons, both kinetic and non-kinetic, with
increasing range, precision and destructive capacity. Both China and Russia are also
engaging in coercion and competition below the traditional thresholds of high-end
conflict, but nonetheless exploit the weakness of accepted norms in space, cyber and
the electromagnetic spectrum. The Russian Navy is operating with a frequency and in
areas not seen for almost two decades, and the Chinese PLA(N) is extending its reach
around the world.

\ = N . N Russia and China are not the only actors seeking to gain advantages in the emerging
% jﬂ i /f/ﬁ &t j]g “& JOhn R 1 Char d SOn 2 0 1 6 ﬁ— %]] i security environment in ways that threaten U.5. and global interests. Others are now
. Y pursuing advanced technelogy, including military technologies that were once the
<r N > o NS exclusive province of great powers — this trend will only continue. Coupled with a
%_ é@ << /T% F-? %]J VE: j\X %}1 %IJ >> [:Fl HH % j:a ]l:JJ:l] /\ I— % ﬁb continued dedication to furthering its nuclear weapons and missile programs, North
Korea's provocative actions continue to threaten security in North Asia and beyond.
P ty Y
é@ E % And while the recent international agreement with Iran is intended to curb its nuclear
ambitiens, Tehran's advanced missiles, proxy forces and other conventional capabilities
continue to pose threats to which the Navy must remain prepared to respond. Finally,
international terrorist groups have proven their resilience and adaptability and now

pose a long-term threat to stability and security around the world. All of these actors
seek to exploit all three forces described above — the speed, precision and reach that

These thr
informati
interplay
must do
competit]
their wak]

Conclusion

We will remain the werld's finest Navy enly if we all fight each an
better. Our competitors are focused on taking the lead — we mus
deny them. The margins of victory are razor thin — but decisivel

integrity, accountability, initiative, and toughness to execute the |
in this Design, execute our mission, and achieve our end state. |

to lead you.
A 2m

JOHN M. RICHARDSON

Version 1.0

January 2016
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http://www.navy.mil/navydata/fact display.asp?cid=2100&ti
d=1237&ct=2

http://www.navysbir.com/nl5 1/N151-049.htm

2015 US Navy Official
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HybridLogic Navy:
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ﬁ—% %ﬂ iﬁ /\ *)‘L }E ﬁ? éﬁ j\( )1}% \\/EJ ’ & H-\j— /fék LJ‘J:,I % {i AN/DVS-1 COASTAL BATTLEFIELD RECONNAISSANCE AND ANALYSIS - (COBRA)
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and obstacles in the surf zone and beach zone prior to an amphibious assault. The COBRA airborne payload

http_'//menvasolutions. Com/index.Dhﬂ[vortfolio/hVbrid—logic—navv will be carried on the MQ-8 Fire Scout unmanned air system. This allows operators and other personnel to
B 2 B AR A

remain at a safe distance from the mine and obstacle belts and enemy direct and indirect fire. COBRA will be

2016 Commercial embarked in the Littoral Combat Ship (LCS) as part of the Mine Countermeasures (MCM) Mission Package
(MP).
A)
A A& 'll’ P
DESCRIPTION: The Coastal Battlefield and Reconnalssance (COBRA) program (Ref 1) is |nleresled in technolagles that _mj_
facilitate automated target recognition (ATR) in aerial multi-spectral images for pi y unseen
and target types. Targets of interest include mlnefelds and obstacles in various land and marine environmel N
ATR i are developed offline (post ) using previously acquired test data sets. These algorit é \
on supervised learning methods (Ref 2) that mcorporale dala from a limited set of test fields. When data is

requires the efforts of expert analysts to assimilate data sets, determine target truth, analyze target features, train the ATR
classifiers and evaluate performance.

There is a need for innovative methods that can 1) incorporate information from new data sets into the ATR system as they AJ N \/L, E
are acquired, and 2) re-optimize ATR algorithms quickly across all known environments, including those of newly acquired \//\ }:E
data. Online Machine Learning (OML) algorithms (Ref 3-5) can potentially be used to "learn™ in the field based on operator-

N provided resuits without affecting prior performance. The information collected online can be used to refine the prediction

= =l % > H= ”}\, _}5 > N é hypothesis (classifier) used in the ATR algorithms. In addition, the information may provide input for automated methods of
TT ‘l’ I {T am /é U] N optimizing ATR performance across all known data sets.

The proposed effort will develop innovative OML algorithms for ATR that can incorporate human operator decisions to

J optimize probability of detection and probability of false alarm performance in new environments and for new target types.
These algorithms will be integrated into mission and post-mission analysis systems in which operators review acquired
images. The it will be i d as object-oriented C++ code for insertion into the operator systems
Development of the online learning i must be ined with i ion of how the operator will interact with

I"] > them to provide updated decision inf¢ ion. Robust optimization of the ATR i may be performed post-mission,
- ] which will require the development of separate software tools for processing historical data sets. The OML algorithms and
L N optimization tools developed in this effort will reduce program costs by minimizing the time required for optimizing ATR

algorithms to perform well in unseen operational environments.

N > % S 3] \ N2 N environments, the algorithms often must be to have good in that , as well a: in|a|n
é 7 ; ‘[,‘T'L vAN '[, _> / ~ fﬁ yp‘” performance in previously seen environments. The process for performing this offline re-optimization is often costl slnc'e it N A} \ N
T <~ AR : % N /</2 A\
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Software to transform ship maintenance

September 21, 2016

SEA-CORES. Credit: University of Southampton

Researchers from the University of Southampton are to develop software that can monitor the equipment, fuel
and energy performance of a ship at sea

The University is part of the Ship Energy — Condition O & Routing E: System
(SEA-CORES) consortium, which provides a live model of ship performance on global operations. The
development of the software is led by BAE Systems and is sponsored by Innovate UK

SEA-CORES is able to correlate variables that could affect a ship's performance, such as energy consumption
and different weather conditions. Using genetic algorithms to track and capture the live data, SEA-CORES
provides those on board with a greater understanding of the vessel's capabilities across a wide range of
operations.

SR DR R A
— BN 3] T ik
A T3k B iR AR
fog AT R R
KEWESF

Researchers from Electronics and Computer Science at the University of Southampton will work on monitoring
loads on the ship and applying novel machine learning techniques to a domain that has largely been data poor.

Dr Sarvapali Ramchurn, who is leading the Southampton research group, said: "Unleashing such technologies
on the marine sector is likely to have a huge impact. The work we are doing at Southampton in terms of
autonomous systems and machine learning will help improve the efficiency of ships and detect potential issues
before they cause major damage.”

BAE Systems is developing and testing SEA-CORES on a commercial tanker provided by James Fisher Marine
Services. The trial will analyse the vibration and trim performance of the vessel, its hull state and monitor the
integrity of the ship's superstructure

Chris Courtaux, Head of Engineering and Energy Services at BAE Systems, said: "SEA-CORES is able to
consider all of the important components which affect the of a vessel during

"For instance, reducing speed may save fuel but increase the wear to the engine if below its optimum
performance. This could in turn increase the maintenance requirements for these vessels and reduce their
availabilty. It is crucial that we continue to analyse what more can be done to maintain these vessels in an
efficient manner and increase the number of ships available for the Royal Navy fleet.”

The software connects technologies in delivering fuel and engine optimisation through the use of the BAE
Systems' Ship Energy Assessment System (SEAS), together with big data analysis by using System Information
Exploitation (SIE) technology.

SEA-CORES has been developed in response to the increasing complexities of modern warships and the
amount of data their systems produce. The technology could transform how the Royal Navy and BAE Systems
maintain and support warships i the future by using the genetic algorithms to identify the relationships between
a ship's systems, calculate their different permutations and ultimately recommend a strategy to optimise the
vessel's performance.
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Home » Organization » Departments » Code 31 » All Programs » Division 311 » Machine Learning and Intelligence

Code 31 . . . .
Machine Learning, Reasoning and Intelligence Program
All Programs

Division 311 ” The Office of Naval Research (ONR) Machine Learning, Reasoning and Intelligence program is
N . concerned with building intelligent agents that can function in the environments in which
Machine Learning and warfighters operate, that is, environments that are unstructured, open, complex and dynamically
Intelligence changing. Agents (cyber or physical) do not yet have the level of intelligence needed to operate in
such open, uncertain and unpred\(mble environments either independently or alongside
Division 312 * warfighters. The program’s main objectives are to develop principles of machine intelligence,
] imar .. efficient computational methods, algorithms and tools for building versatile smart agents that can
Division 313 * perform missions autonomously with minimal human supervision and collaborate seamlessly with
ey e teams of warfighters and other agents. Program focus areas include the following thrusts:
. Contacts e
..... « Intelligence for Autonomous Agents: This thrust focuses on developing the intelligence
| needed for agents to function autonomously in a variety of situations. The following are of
Lorw Pomer Proceasor particular interest. (1) Building Blocks of Machine Intelligence. Some suggested topics of
e e interest are: (a) Methods for building knowledge bases from diverse sources; (b) Learning
My <ore Procesace complex concepts and tasks from examples, instructions, and demonstrations; (c) Reasoning

with uncertain and qualitative information, as well as methods for meta-reasoning for self-
assessment; (d) Planning in large domains in partially known environments and incompletely
modeled goals and domains; () Intelligent architectures that seamlessly integrate knowledge-
bases, learning, reasoning, and planning, for decision-making. (2) Teams of Unmanned Vehicles.
Some suggested topics of interest are: (a) Computational methods for building decentralized
collaborating teams of autonomous agents, in particular agents that are fairly capable in terms
of sensing, communication and computational resources; (b) Mathematical theories of swarm
control, particularly engineered swarms with desired behaviors. (3) Human-Agent Collaboration.
Some suggested topics of interest are: (a) Multi-modal, multi-participant, human-agent
dialogue systems for seamless interactions that are natural to humans; (b) Computational

models of human behavior and decision-making for use by autonomous agents.
)‘IJ %S k i %; « Image Understanding: The goal of this thrust is to develop theory and algorithms for
] :]_ understanding surveillance imagery, for semantic search of visual datasets, and for autonomous

agent perception. The main focus is on reconstructing 3D scenes, recognizing object classes

) NY; \ and specific objects, recognizing activities and events, inferring intentions, as well as succinct
/’ r—I natural language descriptions of images and video. Of particular interest is developing visual
’?‘ AN J represemau'qns, methods for bg\ld‘mg visya\ knowledge bases optimized for inference, and

methods for integrating reasoning with high-level knowledge and image data

7%@ éyl\] ]\15] EP’I R dﬂ ﬁ ﬁ E a[% é]\ 7'?)-/]' H_—’J E% ﬁ /5.\ éf\j &t Note: raposers are encouraged to contat the program ofcr o dlscuss tefresearc inteest
BHEFE, mAMBAPATHE oo o
http.//futureforce.navylive.dodlive.mil/2017/07/popcorn-linux-sofiware-for-a- % j/ﬁ i E}E % F]':-é .

diverse-world/

2017 03 0D O SHAMAMEZY, BHMEEIRE, BRER
EFATHE

https..//www.onr.navy.mil/en/Science-Technology/Departments/Code-31/All-
Programs/311-Mathematics-Computers-Research/Machine-Learning-Reasoning-

Intelligence
2017 US Navy Official / US Naval Research Division 311.
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FAREIN
ICML (International Conference on Machine Learning)
NeurlPS (Neural Information Processing Systems)
ICLR (International Conference on Learning Representation)
KDD (ACM SIGKDD Conf. on Knowledge Discovery and Data Mining)
AAAI (AAAI conference on Artificial Intelligence)
lJCAI (International Joint Conference on Artificial Intelligence)

COLT (Conference on Learning Theory)

E : MLA. Valse. CCML. CCDM....




China Symposium on Machine Learning and Applications

HrE b A X RN BT &

h T RBE S BAABESIR T HMARR, kSt RREAR T EHEE B RIIBHTA" . DL
220 R TS H20024E 086, e e B mER. JbRt. VEREHRAT. EPHTSEEBIEEN
AP BHLES 2 S R RSB R E R S5 HIT AR R FHTEAPE, NREBHEM 2, RALEsE]
B RGUIRAI2EE « IR RIRFUFRER GBS INTHE . R TIRBLES 2 5] KAl XSk AR 72 4 2 18] A
B RAES R RS Z RN, 2006-20104E7ENL88 24 > R H M FBHTS (MLA) JHE, RB247 THL
PR R Ho 2R S (SSMLA) |, 5T £ El AMLA fPoster session.

PTFERLSESUHRFER:

MLA"20 20204E11H, BE A%
MILA'19 20194E11 5, KRR
MLA'18 20184E11H, BRIk "t L
MLA'17 201751311E , jb;‘%’tfﬁj{% MLA'18 - The 16th China Symposium on Machine Learning a:ld Applications
— ’ ~ 2018511 H2-4H, BRAZ®, ER
MILA'15 20154115, BIE A%
MLA'14 20144111, PLHBETRE R e

~WHNR
MLA'13 20134¢11H, EH K% I SWEBH
MLA'12 20124E11 H, R TR
MLA'11 20114E11 83, {EHERY¥ vﬁmm
MLAllo SSMLA']O 20105'511)% , ﬁ;ﬂij‘# JJl;;;;TuL FrERRYESR/N, BEEEFRE, BEHER
MLA'09 SSMLA'09 20094E11 1, BIEAR%¥ . TR
MLA'08  SSMLA'08 20084E11H, B R% SRR
MLAO7  SSMLAO7  20074E11H, RistA2:. BIRcliiviik Z“‘*

e

MLA'06  SSMLA'06 20064E11 7, BRKY. BRiss AR




FNHAF

e AlJ {Artificial Intelligence)

e JMLR {Journal of Machine Learning Research)

e TPAMI {IEEE Trans. on Pattern Analysis and Machine Intelligence)
e TKDE {IEEE Trans. on Knowledge and Data Engineering)

e ML} {Machine Learning)

e TNNLS <IEEE Trans. on Neural Network and Learning Systems)
o EW: (FEMFFEEMAF)




Arxiv

https://arxiv.org/

Physics

Astrophysics (astro-ph new, recent, search )

includes: s of Galaxies; C and Nongalactic Astrophysics; Earth and Planetary Astrophysics; High Energy
Condensed Matter (cond-mat new, recent, search )

includes: Disordered Systems and Neural Networks; Materials Science; Mesoscale and Nanoscale Physics; Other Condensed Matter; Quantum Gases; Soft Condensed Matter; Statistical Mechanics; Strongly Correlated Electrons; Superconductivity

General Relativity and Quantum Cosmology (gr-qc new, recent, search )

High Energy Physics - Experiment (hep-ex new, recent, search )

High Energy Physics - Lattice (hep-lat new, recent, search )

High Energy Physics - Phenomenology (hep-ph new, recent, search )

High Energy Physics - Theory (hep-th new, recent, search )

Mathematical Physics (math-ph new, recent, search )

Nonlinear Sciences (nlin new, recent, search )

includes: Adaptation and Self-Organizing Systems; Cellular Automata and Lattice Gases; Chaotic Dynamics; Exactly Solvable and Integrable Systems; Pattern Formation and Solitons

Nuclear Experiment (nucl-ex new, recent, search )

Nuclear Theory (nucl-th new, recent, search )

Physics (physics new, recent, search )

includes: Accelerator Physics; Applied Physics; Atmospheric and Oceanic Physics; Atomic and Molecular Clusters; Atomic Physics; Biological Physics; Chemical Physics; Classical Physics; Computational Physics; Data Analysis, Statistics and Probability; Fluid Dynamics; General Physics; Geophysics; History and Philosophy of Physics;
Instrumentation and Detectors; Medical Physics; Optics; Physics and Society; Physics Education; Plasma Physics; Popular Physics; Space Physics

* Quantum Physics (quant-ph new, recent, search )

physical P Instr ion and Methods for Astrophysics; Solar and Stellar Astrophysics

Mathematics

* Mathematics (math new, recent, search )
includes: (see detailed description): Algebraic Geometry; Algebraic Topology; Analysis of PDEs; Category Theory; Classical Analysis and ODEs; Combinatorics; Commutative Algebva Complex Variables; Dlﬁerenual Geometry; Dynamical Systems; Functional Analysis; General Mathematics; General Topology; Geometric Topology; Group Theory;
History and Overview; Information Theory; K-Theory and Homology; Logic; Mathematical Physics; Metric Geometry; Number Theory; Numerical Analysis; Operator Algebras; O and Control; P y; Quantum Algebra; Representation Theory; Rings and Algebras; Spectral Theory; Statistics Theory; Symplectic Geometry

Computer Science

« Computing Research Repository (CORR new, recent, search )
includes: (see detailed description): Artificial Intelligence; Computation and Language; Computational Complexny, Computational Englneenng, Finance, and Science; Computational Geometry; Computer Science and Game Theory; Computer Vision and Pattern Recognition; C and Society; Cr and Security; Data Structures
and Algorithms; Databases; Digital leranes Discrete Mathematics; Distributed, Parallel, and Cluster C¢ Emerging Tec Formal L and Theory; General Literature; Graphics; Hardware Architecture; Human-Computer Interaction; Information Retrieval; Information Theory; Logic in Computer Science; Machine
Learning; ical Software; Systems; il ia; Networking and Internet Architecture; Neural and Evolutionary Computing; Numerical Analysis; Operating Systems; Other Computer Science; Performance; Programming Languages; Robotics; Social and Information Networks; Software Engineering; Sound; Symbolic
Computation; Systems and Control

Quantitative Biology

* Quantitative Biology (q-bio new, recent, search )
includes: (see detailed description): Biomolecules; Cell Behavior; Genomics; Molecular Networks; Neurons and Cognition; Other Q itative Biology; and Evolution; Q itative Methods; Subcellular Processes; Tissues and Organs

Quantitative Finance

* Quantitative Finance (q-fin new, recent, search )
includes: (see detailed description): Computational Finance; Economics; General Finance; Mathematical Finance; Portfolio Management; Pricing of Securities; Risk Management; Statistical Finance; Trading and Market Microstructure

Statistics

 Statistics (stat new, recent, search )
includes: (see detailed description): Applications; Computation; Machine Learning; Methodology; Other Statistics; Statistics Theory
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Tom Dietterich
President, Association for the Advancement of Artificial
Intelligence

Tom Dietterich

AAAI/AAAS/ACM Fellow
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A unified framework which accommodates and enables
machine learning and logical reasoning to work together

Why ?
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VxVy.Parent(x,y) = Older(x, y)
VxVy.Mother(x,y) = Parent(x, y)

-—MBiERT, BI,

Mother(Lulu, Fif1)

so 5 M TAERHIER M BVES £,

Name [Ramk [ Years | Tenured |
Mike Assistant Prof 3 no
Mary |Associate Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave  |Assistant Prof 6 no
Anne |Associate Prof 3 no

Who is older?
- Lulu

f@=3 K (x.x)

N K(x)=(o).0)
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> BB EREFRIR LT e.g. PRISM, ICL, ProbLog, LPADs, CP-logic, ...
(Probabilistic Logic Programming, PLP) T / N causal-
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L switches cts
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(Statistical Relational Learning, SRL)  Vx Smokes(x):Cancer(x) Fnends(Aa
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=14 (Learnware)

{4 (Learnware) = & E! (model) + # £\ (specification)
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[1] Z.-H. Zhou. Learnware: on the future of machine learning.
Frontiers in Computer Science, 2016, 10(4): 589-590.

2] B M85 ) KRS FRK. PHIHENS BN,
2017, 13(1): 44-51.
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Computational learning theory

e 2 NIEICERY:

(A

Leslie Valiant

CRITA « 45 &3 5F)
(1949- )

PAC (Probably Approximately Correct, ~ 2010FERX

BERTMERR) learning model  [valiant, 1984]

P(lf(x) —yl<e)=1-09
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