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Abstract. Semi-supervised learning provides an expressive framework for ex-
ploiting unlabeled data when labels are insufficient. Previous semi-supervised
learning methods typically match model predictions of different data-augmented
views in a single-level interaction manner, which highly relies on the quality of
pseudo-labels and results in semi-supervised learning not robust. In this paper,
we propose a novel SSL method called DualMatch, in which the class predic-
tion jointly invokes feature embedding in a dual-level interaction manner. Dual-
Match requires consistent regularizations for data augmentation, specifically, 1)
ensuring that different augmented views are regulated with consistent class pre-
dictions, and 2) ensuring that different data of one class are regulated with sim-
ilar feature embeddings. Extensive experiments demonstrate the effectiveness of
DualMatch. In the standard SSL setting, the proposal achieves 9% error reduc-
tion compared with SOTA methods, even in a more challenging class-imbalanced
setting, the proposal can still achieve 6% error reduction. Code is available at
https://github.com/CWangAI/DualMatch

Keywords: Semi-supervised learning· Dual-Level interaction.

1 Introduction

Machine learning, especially deep learning [12], has achieved great success in various
tasks. These tasks, however, crucially rely on the availability of an enormous amount of
labeled training data. In many real-world applications, the acquisition of labeled data is
expensive and inefficient. On the contrary, there are usually massive amounts of unla-
beled data. Therefore, how to exploit unlabeled data to improve learning performance
is a hot topic in the machine learning community [18].

Semi-supervised learning (SSL) provides an expressive framework for leveraging
unlabeled data when labels are insufficient. Existing SSL methods can be categorized
into several main classes in terms of the use of unlabeled data, such as pseudo-labeling
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Fig. 1: An illustration of DualMatch with dual-level head interaction. Aligning the predictions of
augmented data into their ground-truth labels is a single-level interaction manner ( 1⃝) in semi-
supervised learning, while the class predictions in such a manner may lack a stability
guarantee for pseudo-labeling, even not robust. DualMatch reconsiders 1⃝ by aligning
the feature embedding of one class and then considers a new interaction 2⃝ by aggre-
gating class distribution with consistent feature embeddings.

methods [13], which assign pseudo-labels to unlabeled data based on the model pre-
diction and train the model with labels and pseudo-labels in a supervised manner, and
consistency regularization methods, which require that the output of the model should
be the same when the model or data is perturbed. In much recent work, it has been
reported that holistic SSL methods, e.g., MixMatch [3], ReMixMatch [2], and Fix-
Match [21], which consider the pseudo-labeling and consistency strategies simultane-
ously, have reached state-of-the-art (SOTA) performance. For example, in the image
classification task, holistic SSL methods can achieve the performance of fully super-
vised learning even when a substantial portion of the labels in a given dataset have been
discarded [21].

Although the holistic SSL methods have been reported to achieve positive results,
they mainly adopt a single-level interaction manner between class prediction and the
feature embedding, resulting in low quality of the pseudo-labels and weak SSL robust-
ness performance. Take the SOTA FixMatch method as an example: FixMatch generates
both weakly and strongly augmented views for unlabeled data, assigns high-confidence
pseudo-labels predicted on the weakly augmented data to the strongly augmented one,
and then optimizes the model by minimizing the cross-entropy loss between the predic-
tion of the strongly augmented views and the corresponding pseudo-labels. This process
is a single-level interaction since only different data augmentations are regulated by
consistent class predictions. This results in the SSL performance being highly related
to the correctness of the pseudo-label, and wrong pseudo-labels can lead to the confir-
mation bias of the model with error accumulation [1]. How to improve the robustness
of SSL methods for pseudo-labels has emerged as a critical issue in SSL research.

In this paper, we propose a novel SSL algorithm called DualMatch. Compared with
previous SSL methods that only consider the consistency between predictions for differ-
ent augmentations, two consistency regularization factors are proposed in DualMatch,
which derives more robust learning performance: 1) different augmented representa-
tions of training data should be regulated with consistent class predictions, and 2) dif-



DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction 3

ferent class predictions should be regulated with consistent feature representations. We
illustrate the new manner of dual-level interaction in Figure 1. Specifically, in the first-
level interaction, supervised contrastive learning is utilized for aligning the feature rep-
resentations of one class with highly confident predictions. This requires that the fea-
tures of strongly augmented views be clustered together in the low-dimensional embed-
ding space, and then pseudo-labels are assigned from their weakly augmented views. In
the second-level interaction, class distributions with consistent feature embeddings are
aggregated to generate pseudo-labels for class prediction fine-tuning. Under this dual-
level learning manner, the consistency of the same data represented in two heads is en-
hanced, and more reliable pseudo-labels are generated for matching strongly augmented
class prediction. Compared with the FixMatch algorithm, the DualMatch achieves 9%
error reduction in the CIFAR-10 dataset; even on a more challenging class-imbalanced
semi-supervised learning task, the DualMatch can still achieve 6% error reduction com-
pared with the FixMatch algorithm.

Our contributions can be summarized as follows:

– We point out that the single-level interaction that existing SSL methods commonly
adopted will result in weak SSL robustness performance.

– We first propose the dual-level interaction between classification and feature em-
beddings and a novel DualMatch algorithm to improve the robustness of SSL.

– We rigorously evaluate the efficacy of our proposed approach by conducting exper-
iments on standard SSL benchmarks and class-imbalanced semi-supervised learn-
ing. Our results demonstrate significant performance improvement.

2 Related Work

2.1 Semi-Supervised Learning

A prerequisite for SSL is that the data distribution should be based on a few assump-
tions, including smoothness, cluster, and manifold [4]. Technically, the smoothing as-
sumption denotes that the nearby data are likely to share the same class label, and the
manifold assumption denotes that the data located inner on low-dimensional streaming
clusters are more likely to share the same labels. Recently, consistency regularization
methods [3,26] have been widely applied and achieved outstanding results in SSL. An
inherent observation is that the consistency regularization could be founded on the man-
ifold or smoothness assumption, and requires that different perturbation methods for the
same data hold consistent predictions against their employed diverse models.

From the perspective of consistency, there are two classical branches: model-level
[20,11] and data-level consistency. As an early branch, [20] denotes the addition of ran-
dom perturbation techniques (such as dropout [22] and random max-pooling methods)
to the model should have consistent prediction results. To improve its robustness, [11]
further aggregates the previous results of the model. Considering the pseudo-label can-
not vary in iterative epochs, [24] then replace the aggregation with the exponential mov-
ing average (EMA) method. Data-level consistency is established by virtual adversarial
training (VAT) [17] and unsupervised data augmentation (UDA) [26]. As an expres-
sive consistency method, VAT produces optimally augmented views by adding random
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noise to the data and using an adversarial attack method. Differently, UDA utilizes the
random augmentation (RA) [7] technique to produce strongly augmented views and
minimizes the prediction disagreement between those views and their associated origi-
nal data. Considering different levels of perturbations to the original input data, aligning
different models’ feedback to their early slightly perturbed inputs, i.e., anchoring, has
been proven to be more effective. A series of strategies are then presented by taking
this augmentation anchoring idea. In detail, MixMatch [3] adopts the mixup [28] trick
to generate more augmented data by randomly pairing samples with each other and
sharpening the average of multiple augmented data prediction distributions to generate
pseudo-labels. Remixmatch [2] further improves the MixMatch approach by proposing
a distribution alignment method (DA), which encourages the prediction of the marginal
distribution of mixed data to be consistent with the true data distribution. FixMatch [21]
simply considers weakly augmented view predictions with high confidence in unlabeled
data as pseudo-labels for strongly augmented views and achieves SOTA performance.

2.2 Supervised Contrastive Learning

Self-supervised contrastive learning has been widely noticeable for its excellent perfor-
mance by training models using unlabeled data and fine-tuning them for downstream
tasks. MoCo [8] and SimCLR [5] establish the classical framework of self-supervised
contrastive learning, which distinguishes the representations of each sample from the
others. The contrastive learning frameworks consider different augmented views of the
same sample as positive sample pairs and other samples as negative samples, by mini-
mizing the info Noise Contrastive Estimation (InfoNCE) loss to pull the positive sam-
ples together and to push the negative samples away in the low-dimensional embedding
space. For semi-supervised tasks, SimCLR v2 [6] indicates that a big self-supervised
pre-trained model is a strong semi-supervised learner and simply fine-tunes the pre-
trained model by using labeled samples to train a semi-supervised model. However,
self-supervised contrastive learning only considers data features without focusing on
class information and causes class conflicts by pushing far away samples, resulting
in the inability to be directly combined with SSL. Supervised contrastive learning [9]
extends the self-supervised contrastive learning methods by leveraging labeled data in-
formation to pull the samples of one class closer and push apart clusters of samples
from different classes in a low-dimensional embedding space. Therefore, supervised
contrastive learning mitigates the class collision phenomenon and it can be considered
for application in SSL tasks.

3 Method

In this section, we introduce the preliminaries and present the two levels of interaction
of DualMatch. Consisting of the new manner, the final objective is constructed.

3.1 Preliminaries

The semi-supervised classification setting is described as follows. For an C-class classi-
fication problem, given a batch of B labeled samples X = {(xb, yb) : b ∈ (1, . . . , B)},



DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction 5

Classfication 
Head

Non-linear 
Projection 

Head

Embeddings

Class predictions

Encoder

Augw

Augs

Unlabeled
samples

High 
Confidence

Same Label

Align
DistributionAggregate

Supervised 
Contrastive Matrix

Sample Similarity 
Matrix

ℒ𝒶ℊℊ  

ℒ𝓊  

ℒ𝓈𝒸ℓ  

Fig. 2: The framework of the proposed DualMatch. Given a batch of unlabeled images, a class
prediction of weakly augmented views is generated by the classifier head. The first-level interac-
tion aligning distribution: pseudo-labels with high confidence are used to generate the supervised
contrastive matrix and the sample similarity matrix is constructed by computing the similarity be-
tween strongly augmented embeddings to match the supervised contrastive matrix. The second-
level interaction aggregating pseudo-labeling: the low-dimensional embedding similarity features
of the weakly augmented view are combined with predictions to aggregate the class distribution
of samples. (The red and green lines indicate the process lines of the weakly and strongly aug-
mented views, respectively.)

where xb denotes the training samples and yb denotes its one-hot label, and a batch
of unlabeled samples are denoted by U = {ub : b ∈ (1, . . . , µB)}, where µ de-
termines the relative sizes of X and U . Given those settings, the next is to learn a
convolutional encoder f (·) with labeled and unlabeled samples, a fully connected clas-
sification head g (·), and a non-linear projection head h (·). In particular, the labeled
samples are randomly weakly augmented Augw (·) predicted by the classifier head
pb = g (f (Augw (xb))). Then the labeled samples can be optimized with cross-entropy
loss which evaluates the ground-truth labels and the class predictions:

Lx =
1

B

B∑
b=1

H (yb, pb) , (1)

where H (·, ·) denotes the cross-entropy between two distributions.
Following FixMatch, [21] apply the weak augmentation operation and the Random

Augmentation method as strong augmentation operation Augs (·) to the unlabeled sam-
ples to obtain weakly and strongly augmented views respectively. The unsupervised
classification loss can be defined as the cross-entropy loss of the predictions of the two
views:

Lu =
1

µB

µB∑
b=1

1 (max(DA (pwb )) ≥ τ)H (ŷb, p
s
b) , (2)

where pwb = g (f (Augw (ub))) and psb = g (f (Augs (ub))) refer to the prediction
distributions of the weakly augmented and strongly augmented classifications of un-
labeled samples. ŷb = argmax (DA (pwb )) is the pseudo-label of the predicted weakly
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augmented view. τ is the pseudo-label confidence threshold. We only consider data
pseudo-labels with maximum class probability greater than the threshold τ . By fol-
lowing [2], DA (·) denotes the distribution alignment (DA) trick that is applied to the
model’s class prediction for unlabeled samples. DA maintains the predicted marginal
distribution of the data consistent with the true data distribution. We compute p̃w as the
moving average of the model’s predictions for unlabeled samples over the last 32 steps
as the marginal distribution and adjust pwb with Normalize (pwb /p̃

w).

3.2 The DualMatch Structure

Motivation of DualMatch. In DualMatch, we adopts dual-level interaction between
class prediction p of classification head and feature embedding z = h (f (x)) of non-
linear projection head. Following the augmentation anchoring method [2], there are
two augmented views used to represent the feature embedding, i.e., weakly augmented
embedding zwb and strongly augmented embedding zsb . However, some strategies use
multiple augmented views to capture the feature embedding and also obtain promised
performance. To provide a fair comparison with classical SSL methods [21], we gen-
erate a weakly augmented view for labeled samples and also solicit another strongly
augmented view for unlabeled samples.
Framework of DualMatch. Figure 2 illustrates the DualMatch framework with dual-
level interaction. In the first-level interaction, we introduce the aligning distribution
algorithm, which utilizes supervised contrastive learning to cluster the feature embed-
ding with consistent predictions. Then, we show the aggregated pseudo-labeling method
in the second-level interaction, which fine-tunes the class prediction by aggregating
pseudo-labels of similar feature embeddings. We below explain the two interactions of
DualMatch in detail.

3.3 First-level Interaction: Align

The first-level interaction aligning distribution aims to align the underlying distribu-
tion of the class prediction and feature embedding, where its inherent assumption is
that different data of one class should have similar feature embedding. Theoretically,
strongly augmented views of unlabeled samples should be clustered together in the
low-dimensional embedding space, while their weakly augmented views should have
the same confidence level on pseudo-labeling.
Protocol of Aligning. Our protocol of aligning the class prediction and feature em-
bedding is generalized into their matrix match. Specifically, we construct a supervised
contrastive matrix to solicit those predictions with high confidence from the weakly
augmented views, which are required to match its associated embeddings of the sample
similarity matrix from the strongly augmented views.

In short, we construct the set Z = Zx ∪ Zu of the feature embeddings, including
all labeled feature embeddings and partial unlabeled feature embeddings, where Zx =
{(zxb , yb) : b ∈ (1, . . . , B)} and Zu = {(zsb , ŷb) : max(pwb ) ≥ τ, b ∈ (1, . . . , µB)}.
Note that τ denotes the confidence level threshold.
Supervised Contrastive Matrix aims to obtain associations between samples from the
class prediction information of the weakly augmented views. Inspired by the positive



DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction 7

and negative sample pairs proposed by self-supervised contrastive learning [8], we con-
sider the samples of one class as positive samples and samples of different classes as
negative samples. In this way, we construct a supervised contrastive matrix Wscl to rep-
resent the category relationship between different samples, where the element located
at the i-th row and j-th column is defined as follows:

wscl
ij =

0 if i = j,
1 if yi = yj and i ̸= j,
0 otherwise.

(3)

Remark 1. Following contrastive learning, each sample is used as an anchor for the
other samples, not as a positive sample. We thus set the samples with the same indices
(i.e., elements on the diagonal) as 0 and the samples with the same labels as 1.

Sample Similarity Matrix aims to obtain the similarity between the low-dimensional
feature embeddings of the samples. The sample similarity matrix S is constructed by
computing the similarity between embeddings in the set Z . For each element sij ∈ S,
it is characterized by the cosine similarity, i.e.,

sim(zi, zj) =
zTi zj

∥zi∥ ∥zj∥
. (4)

where zi and zj are feature embeddings of Z .
Recalling the protocol of aligning, improving the consistency between the class

predictions and feature embeddings can be achieved by matching two matrices Wscl

and S. Due to the disagreement of metrics in the two matrices, we employ the InfoNCE
loss of supervised contrastive learning [9] to align their elements:

Lscl =
∑
i∈I

Li(zi)

=
∑
i∈I

−1

|J (i)|
∑

j∈J (i)

log
exp (zi · zj/t)∑

a∈A(i) exp (zi · za/t)
,

(5)

where i ∈ I denotes the indices of the embedding in Z, A(i) = I\ {i} denotes the set
of indices without i, J (i) = {j ∈ A (i) : yj = yi} is the indices of the set of positive
instances of the same label as i, and t is a temperature parameter. Let Wi denote the
i-th row of the matrix Wscl. To facilitate computer calculations, the Eq. (5) can be
simplified by the elements in matrix Wscl and S as follows:

Lscl = −
∑
i∈I

1

∥Wi∥
∑
j∈I

log
wscl

ij · exp (sij/t)∑
a∈A(i) exp (sia/t)

(6)

3.4 Second-level Interaction: Aggregate

The second-level interaction aggregating pseudo-labeling aims to aggregate class dis-
tributions with consistent feature embeddings to generate pseudo-labels for class pre-
diction fine-tuning. Intuitively, samples with similar features embeddings in the low-
dimensional embedding space should have the same labels, so that, for a batch of un-
labeled samples, we can generate aggregated pseudo-labels by aggregating the class
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predictions of each sample’s neighbors in the embedding space to improve pseudo-
labeling robustness. To avoid the cumulative error caused by the class predictions of
dissimilar samples, we select K neighbor samples with the most similar feature embed-
dings. Then the aggregated pseudo-label qwb of ub in a batch of unlabeled samples can
be defined as follows:

qwb =
1

K

K∑
k=1

sim(zwb , z
w
k ) · pwk , (7)

where pwk and zwk denote the class prediction and feature embedding of weakly aug-
mented unlabeled views, respectively. In particular, the class distribution is weighted
by the similarity sim(zwb , z

w
k ) of the samples to their neighbors. Since the weighted

class distribution cannot directly represent the classification probabilities, we adjust
qwb = Normalize (qwb ). Like the unsupervised classification loss, we only consider the
samples with high confidence aggregated pseudo-labels. The difference is that aggre-
gated pseudo-label is soft (a vector of probabilities) because we aim to adjust the class
predictions. The aggregation loss can be optimized by cross-entropy as follows:

Lagg =
1

µB

µB∑
b=1

1 (max (qwb ) ≥ τ1)H (qwb , p
s
b) , (8)

where τ1 is the confidence threshold of the aggregated label.

3.5 Final Objective

The overall loss of the semi-supervised DualMatch method consists of the supervised
loss Lx (w.r.t. Eq. (1)) and unsupervised loss Lu (w.r.t. Eq. (2)). Meanwhile, to achieve
the consistency of the classification prediction and feature embedding, we add the su-
pervised contrastive loss Lscl (w.r.t. Eq. (6)), and aggregation loss Lagg (w.r.t. Eq. (8)).
In such settings, our optimization objective is to minimize the overall loss:

Loverall = Lx + λuLu + λsclLscl + λaggLagg, (9)

where λu, λscl, and λagg are hyperparameters used to control the weights of loss. Dual-
Match can be summarized as Algorithm 1.
Exponential Moving Average. From the perspective of consistent model regulariza-
tion, we employ the Exponential Moving Average (EMA) strategy [24] to smooth the
model parameters with an expectation of lower variation. Technically, the parameters of
EMA are usually weighted by previously associated model parameters in the iterative
updates:

θ = mθ + (1−m) θ, (10)

where θ denotes the parameters of the EMA model, θ denotes the parameters of the
training model, and m denotes the EMA decay rate. Note that the experiments also
employ the EMA model for testing.
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Algorithm 1: DualMatch algorithm.
1 Input: Labeled batch X = {(xb, yb) : b ∈ (1, . . . , B)}, unlabeled batch

U = {ub : b ∈ (1, . . . , µB)}, encoder f(·), classification head g(·), non-linear
projection head h(·).

2 for step=1 to total-step do
3 pb = g (f (Augw (xb))) zxb = h (f (Augw (xb)))
4 pwb = g (f (Augw (ub))) zwb = h (f (Augw (xb)))
5 psb = g (f (Augs (ub))) zsb = h (f (Augs (xb)))
6 ŷb = argmax (DA (pwb ))
7 Construct feature embedding set Z = Zx ∪ Zu

8 Zx = {(zxb , yb) : b ∈ (1, . . . , B)}
9 Zu = {(zsb , ŷb) : max(pwb ) > τ, b ∈ (1, . . . , µB)}

10 for i ∈ {1, ..., µB} and j ∈ {1, ..., µB} do
11 wscl

ij =∈ Wscl is constructed by Eq.( 3)
12 sij ∈ S is constructed by Eq. (4)
13 end
14 qwb = 1

K

∑K
k=1 sim(zwb , zwk ) · pwk

15 qwb = Normalize (qwb )
16 Lx = 1

B

∑B
b=1 H (yb, pb) ,

17 Lu = 1
µB

∑µB
b=1 1 (max(DA (pwb )) ≥ τ)H (ŷb, p

s
b)

18 Lscl = −
∑

i∈I
1

∥Wi∥
∑

j∈I log
wscl

ij ·exp(sij/t)∑
a∈A(i) exp(sia/t)

19 Lagg = 1
µB

∑µB
b=1 1 (max (qwb ) ≥ τ1)H (qwb , p

s
b)

20 Loverall = Lx + λuLu + λsclLscl + λaggLagg

21 Optimize f(·), g(·) ,and h(·) by minimizing Loverall

22 end
23 Output: Trained model.

4 Experiment

In this section, we evaluate DualMatch on several semi-supervised tasks including semi-
supervised classification and class-imbalanced semi-supervised classification. Our ab-
lation studies the effect of dual-level interaction and hyperparameters on the framework.

4.1 Semi-supervised Classification

First, we evaluate DualMatch on the semi-supervised classification using the CIFAR-
10, CIFAR-100 and STL-10 datasets. CIFAR-10 consists of 60,000 32×32 images di-
vided into 10 classes, with 6,000 images in each class. There are 50,000 training im-
ages and 10,000 test images. Following the widely adopted setting in SSL studies Fix-
match [21], we randomly select 4, 25, and 400 samples per class from the training set
as labeled data and then use the rest of the training set as unlabeled data, respectively.
In this setting, CIFAR-100 has the same number of training set and test set images as
CIFAR-10, while CIFAR-100 is divided into 100 classes with 600 images in each class.
We thus randomly select 25, 100 samples per class as labeled data. STL-10 has 5,000
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Table 1: Error rate (mean±std %) of semi-supervised classification of DualMatch vs. baseline
methods over varying numbers of labeled samples (5 runs).

CIFAR-10 CIFAR-100 STL-10

Method 40 labels 250 labels 4000 labels 2500 labels 10000 labels 1000 labels

Π-Model 74.34±1.76 54.26±3.97 41.01±0.38 57.25±0.48 37.88±0.11 32.78±0.40
Pseudo-Labeling 74.61±0.26 49.78±0.43 16.09±0.28 57.38±0.46 36.21±0.19 32.64±0.71
Mean Teacher 70.09±1.60 32.32±2.30 9.19±0.19 53.91±0.57 35.83±0.24 33.90±1.37
MixMatch 47.54±11.50 11.05±0.86 6.42±0.10 39.94±0.37 28.31±0.33 21.70±0.68
UDA 29.05±5.93 8.82±1.08 4.88±0.18 33.13±0.22 24.50±0.25 6.64±0.17
ReMixMatch 19.10±9.64 5.44±0.05 4.72±0.13 27.43±0.31 23.03±0.56 6.74±0.14
FixMatch 13.81±3.37 5.07±0.65 4.26±0.05 28.29±0.11 22.60±0.12 6.25±0.33
CoMatch 6.91±1.39 4.91±0.33 4.06±0.03 27.18±0.21 21.83±0.23 8.66±0.41
CR 5.69±0.90 5.04±0.30 4.16±0.13 27.58±0.37 21.03±0.23 6.96±0.42

DualMatch(Ours) 5.75±1.01 4.89±0.52 3.88±0.10 27.08±0.23 20.78±0.15 5.94 ±0.08

labeled and 100,000 unlabeled 96×96 images in 10 classes for training, and 8,000 im-
ages for testing. We randomly select 100 samples per class from labeled images as
labeled data. Please note that we evaluate the experiment with different random seeds
for 5 runs.
Implementation Details. We use the Wide ResNet-28-2 [27] with a weight decay of
0.0005 for the CIFAR-10, Wide ResNet-28-8 with a weight decay of 0.001 for the
CIFAR-100 , and Wide ResNet-37-2 with a weight decay of 0.0005 for the STL-10.
The classification head is a softmax layer and the non-linear projection head is set as
a two-layer MLP. Following the implementation of [21], the model uses the SGD op-
timizer with the Nesterov momentum [23] of 0.9. For the learning rate, we use the
cosine learning rate decay and set the learning rate to 0.03 · cos

(
7πn
16N

)
, where n de-

notes the current training steps and N denotes the number of the total training steps.
For the rest of the hyperparameters, we set λu = 1, λscl = 1, λagg = 0.5, µ = 7,
B = 64, τ = 0.95, τ1 = 0.9, and t = 0.5, m = 0.999. For the training steps, we set
N = 220 for CIFAR-10, STL-10 and N = 219 for CIFAR-100. Moreover, we utilize
the warm-up trick to train aggregation loss after the first 30×210 training steps. For the
neighbor settings, we set K = 10 for CIFAR-10, STL-10 and K = 2 for CIFAR-100.
For data augmentation, we follow the implementation details of the weak and strong
augmentation of FixMatch [21].
Compared Methods. We compare with the following baseline methods: 1) Model-
level consistency methods including the Π-Model [19], Pseudo-labeling [13], and Mean
Teacher [24], 2) Data-level methods including the UDA [26], MixMatch [3], ReMix-
Match [2], FixMatch [21], CoMatch [15], CR [14].
Results. The SSL results are presented in Table 1, where DualMatch achieves SOTA
performance at different number settings of labeled samples. For model-level consis-
tency, we observe that the Π-model, Pseudo-Labeling, and Mean Teacher perform
poorly with extremely few numbers of labeled samples, but the improvement in error
rate becomes more significant after adding more labeled samples. It is thus the model-
level consistency semi-supervised methods that are highly dependent on the number of
labeled samples. For data-level consistency, we observed that the performance of UDA,
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Table 2: Error rate (mean±std %) for CIFAR-10 with the labeled ratio β = 10% and imbalance
ratio γ = {50, 100, 200} (5 runs).

Method γ = 50 γ = 100 γ = 200

Pseudo-Labeling 47.5±0.74 53.5±1.29 58.0±1.39
Mean Teacher 42.9±3.00 51.9±0.71 54.9±1.28
MixMatch 30.9±1.18 39.6±2.24 45.5±1.87
FixMatch 20.6±0.65 33.7±1.74 40.3±0.74
FixMatch w/ DA 19.8±0.45 30.3±1.27 38.0±0.84
CoMatch 19.7±0.68 28.6±1.85 40.0±1.56

DualMatch(Ours) 19.0±0.82 28.3±1.38 37.3±0.39

MixMatch, ReMixMatch, and FixMatch with the help of data augmentation methods
improved significantly in extremely few labeled samples. Moreover, the performance of
the semi-supervised methods using strong augmentation (e.g., Randaugment [7]) tricks
exceeds that of simple that of the simple tricks for data augmentation, e.g., mixup.
Therefore, the data-level consistency semi-supervised methods utilize various data aug-
mentation tricks to overcome the shortcoming of insufficient labeled data volume. Com-
pared to the above methods, CoMatch and DualMatch introduce feature embedding to
further exploit the underlying distribution of classes, and the error rate reduction of
training on 40 labeled samples of CIFAR-10 is much better than that of the data-level
and model-level consistency methods. Furthermore, training on 250 and 4000 labeled
samples of CIFAR-10 also achieves attractive results, but not so significantly as 40
labeled samples. Additionally, compared with FixMatch, DualMatch achieves a 9% er-
ror reduction in CIFAR-10. The potential result is that such a semi-supervised training
manner with efficient feature embeddings performs closely to fully supervised training
in CIFAR-10.

4.2 Class-imbalanced Semi-supervised Classification

Standard SSL assumes the class distribution is balanced, however, in real-world tasks,
the data distribution is often class-imbalanced [16]. How to guarantee the performance
robustness of SSL algorithms under class-imbalanced settings is an important problem
that has attracted the great attention of SSL researchers [10,25]. Therefore, we also
conduct experiments to evaluate the effectiveness of our proposal on class-imbalanced
semi-supervised learning problems. DARP [10] denotes that class-imbalanced data bi-
ases SSL methods in generating pseudo-labels for the majority classes. To evaluate the
effectiveness of the semi-supervised model in the class-imbalance task, we compare
the results of Dualmatch and major semi-supervised methods under imbalanced data
distribution.
Problem Setup. By following [25], for an C-class classification problem, given a la-
beled set X = (xm, ym) : m ∈ (1, . . . ,M), where xm are the training samples and
ym are one-hot labels. The number of class c in X is denoted as Mc and

∑C
c=1 Mc =

M . [25] assume that the marginal class distribution of X is skewed and the classes
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are ordered by decreasing order, i.e. M1 ≥ M2 ≥ · · · ≥ MC . Class imbalance
can be measured by the imbalance ratio γ = M1

MC
. And given a unlabeled set U =

(ul : l ∈ (1, . . . , L) with the same class distribution as X . The labeled ratio β = M
M+L

denotes the percentage of labeled data to the training data. Specifically, the CIFAR-10
dataset consists of 5000 images in each class, and the imbalanced majority class em-
ploys 5000 images. The setting of our evaluation experiment is on CIFAR-10 with the
labeled ratio β of 10%, i.e. 500 labeled images and 4500 unlabeled images in the major-
ity class and the imbalance ratio γ of 50, 100, and 200, respectively. For the evaluation
criterion of the experiment, the data of the test set is class-balanced.
Implementation Details. We use mostly the same parameter settings as for the semi-
supervised classification task, except that the number of neighbor samples K is set to
2. For each experimental setting, the training steps are set to 217 for MixMatch and 216

for FixMatch and CoMatch. For a fair comparison, we set the total training steps to 216

for DualMatch. For each experiment, we evaluate 5 times with different random seeds
and report the mean and std of the test error rate. We report the performance using the
EMA model.
Results. The results of class-imbalanced semi-supervised classification are presented
in Table 2. Overall, the DualMatch achieves better performance than the typical semi-
supervised baselines using different imbalance ratios. Moreover, all semi-supervised
baselines are affected by class-imbalanced data, and their error rate increases with the
increase of the imbalance ratio. For this ratio, we also observe that the data-level con-
sistency baselines achieve the best performance if the imbalance ratio is set as 100, at
least better than the setting of 50 and 200. The potential reasons are as follows. For
the imbalance ratio of 200, there is only 1 labeled sample for the minority class, which
leads difficult to learn the features of the minority class during model training. For the
imbalance ratio of 50, the effect of imbalanced data is not significant in causing class
bias, but rather in the increase in error rate due to the reduction of training samples. For
the imbalance ratio of 100, the class bias caused by class-imbalanced data leads to in-
stability of the model and increases the std of error rate. The results show that CoMatch
is more affected by the imbalance ratio and performs poorly at the imbalance ratio of
200, and the improvement of DualMatch is effective. We can conclude that DualMatch
aligns the feature embeddings of one class during the training period, which can sepa-
rate the features of different classes and make the classification boundary clearer. It also
adjusts the bias of class prediction by aggregating feature embeddings to enhance the
robustness of the classification boundary and mitigate the influence of class with few
samples from others. Additionally, DualMatch achieves a 6% error reduction at the im-
balance rate of 100 compared to FixMatch, and a 6.5% error reduction at the imbalance
rate of 200 compared to CoMatch.

4.3 Ablation Study

We study the unlabeled data error rate of FixMatch and DualMatch on the setting of
training CIFAR-100 with 10000 labeled samples. This helps us to reveal the potential
influence of pseudo-labeling on semi-supervised training. Then, we analyze the head
interaction and parameter perturbation of each level of DualMatch on the setting of
training CIFAR-10 with 250 labeled samples.
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(b) Unlabeled Sample Error Rate
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(c) Test Error Rate

Fig. 3: The training process of FixMatch and DualMatch on CIFAR-100 with 10000 labeled sam-
ples. (a) Ratio of samples with high-confidence pseudo-labels. (b) Error rate of all unlabeled
sample. (c) Error rate of test samples.

Unlabeled Samples Error Rate. In Figure 3, we study the training process of Fix-
Match, FixMatch with DA, and DualMatch on the setting of training CIFAR-100 with
10000 labeled samples. The potential observation factors are 1) the unlabeled sam-
ple error rate, and 2) the sample ratio of high-confidence pseudo-labels. From the pre-
sented curves of Figures 3b and 3a, as the number of training epochs increases, both
the unlabeled sample error rate and high-confidence sample ratio of FixMatch fluctuate
dramatically and become increasingly unstable. It is worth noting that the DualMatch
starts with a high unlabeled sample error rate in the first few epochs, however, as the
number of training epochs increases, the unlabeled sample error rate decreases more
smoothly to the FixMatch level. The DualMatch achieves a lower test error rate than
FixMatch and FixMatch with DA throughout the training process. The results show
that the pseudo-labels of the unlabeled samples of FixMatch vary continuously, which
makes the learning model’s poor stability even worse and affects the classification re-
sults. In contrast, DualMatch provides more robust and high-quality pseudo-labeling
during training, which significantly improves the performance of the semi-supervised
learning model.
Align Distribution. We vary the labeled and unlabeled augmentation views of the fea-
ture embedding set to perform the ablation study of Align Distribution (AD). The re-
sults are presented in Table 3. Note that when the feature embeddings are not used, the
experiments fall back to DualMatch without AD. Furthermore, we also observe that si-
multaneously employing both labeled and unlabeled feature embeddings can effectively
improve the model performance.
Number of Neighbors. Figure 4a illustrates the effect of different numbers of neigh-
bors K of Eq. (7) on the aggregating pseudo-labeling. Note that K = 0 means that
DualMatch only uses Aligning Distribution. We observe that aggregating neighbor in-
formation improves model performance, but the number of neighbors within a scope
has less influence on the model with a high confidence threshold.
Aggregation Threshold. We vary the threshold τ1 of Eq. (8) to control the confident
level of aggregated labels. Figure 4b shows the effect on aggregation threshold. When
τ1 > 0.6, the aggregated labels are less affected by the unreliable pseudo-labels.

We also investigate the effect of different aggregation thresholds combined with
different numbers of neighbors on model performance. Figure 4c illustrates the effect
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Table 3: Error rate(%) of varying the labeled and unlabeled augmentation views of the feature
embedding set.

Ablation
Labeled Unlabeled

Error Rate
Weak Weak Strong

DualMatch 1 0 1 4.41
w/o AD 0 0 0 4.77
w/o AD (τ1 = 0.6) 0 0 0 5.49
w/o labeled 0 0 1 4.68
w/o unlabeled 1 0 0 4.93
w/ multi 2 1 1 4.48
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0.6.

Fig. 4: Ablation study of the Second-level Interaction: (a)Error rate of the varying number of
neighbors. (b)Error rate of the varying threshold of aggregated pseudo-labeling. (c)Error rate of
the varying number of neighbors with τ1 = 0.6.

of the number of neighbors K with the aggregation threshold τ1 = 0.6. We observe
that performance decreases as the number of neighbors increases with a low confidence
threshold. The number of neighbors interacts with the aggregation threshold to ensure
the reliability of aggregated pseudo-labeling.

5 Conclusion

Our paper introduces a novel dual-interaction method for SSL that regulates diverse
augmented representations with consistent class predictions and different class pre-
dictions with coherent feature representations. Leveraging this new perspective, we
present a new SSL technique named DualMatch. DualMatch could learn more data-
efficient representation and provide more robust pseudo-labels than the previous single-
interaction-based SSL methods. Experimental results on both standard semi-supervised
settings and more challenging class-imbalanced semi-supervised settings clearly demon-
strate that DualMatch can achieve significant performance improvement.
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Ethical Statement

The purpose of this research paper is to explore a picture classification task under semi-
supervised learning. In our study, we strictly adhere to ethical practice standards.

A number of ethical considerations were taken into account in conducting this study:

– We ensure that no private data with others is directly involved in the study.
– We ensure that no indirect leakage of researcher or participant privacy occurs or

privacy can be inferred in the course of the study.
– The data were collected from publicly available datasets. The data was analyzed

using open source models. We ensure that the data is reliable and public, and that
our analysis methods are widely accepted by the open source community and do
not contain any bias or undue influence.

We also considered potential ethical issues that may arise in the course of the study.
Semi-supervised learning has been widely used in various real-world scenarios, and
this study explores the potential feature of data in semi-supervised scenarios, which
is uninterpretable, and uses this feature to improve the performance and robustness of
the model. With the development of deep learning, the potential features provided by
the encoder may be interpreted, which may lead to the leakage of data privacy when
improperly handled in the application of realistic scenarios.

We can conclude that our study is based on the open source community’s code,
models and public datasets. At this stage it does not cause privacy issues such as per-
sonal data leakage. Moreover, our study is currently not applied in real-world scenarios
and there is no conflict of interest.
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