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Abstract—Graph-based semi-supervised learning (GSSL) has
gained increased interests in the last few years. A large number
of empirical results show that the performance of GSSL methods
heavily depends on the graph construction approach. Although
great efforts have been devoted to construct good graphs, it
remains challenging to construct a good graph in general situa-
tions. To alleviate this problem, this paper presents a novel graph
construction approach. Unlike previous approaches that typically
optimize a kNN-type loss on the unlabeled data, the proposed
approach further enforces that the prediction of unlabeled data
has a large margin separation so as to help exclude low-quality
graphs. We formulate the problem as an optimization and present
an efficient algorithm. Experimental results on benchmark data
sets show that the proposed approach has a stronger ability
to construct good graphs comparing with several representative
graph construction approaches.

I. INTRODUCTION

With the data explosion in recent years, unlabeled data
has increased much more rapidly than labeled data which
requires extra human labor. With the ability to utilize unla-
beled data to improve performance, semi-supervised learning
(SSL) has aroused more and more interests. Among different
kinds of SSL paradigms, graph-based semi-supervised learning
(GSSL) attracts significant attention since proposed and has
been widely applied in a large number of applications [1]
because of its advantages such as closed-form solution, easy
implementation and promising performance.

The key to GSSL methods is its basic assumption: data lies
in an underlying manifold and closer points are more likely
share the same class. To approximate the underlying manifold,
a graph is constructed where a node corresponds to an instance
and a pair of nodes are connected by an edge. After a graph
is constructed, GSSL methods perform a process called label
inference on the graph where only a few nodes are associated
with labels to finally predict the labels of unlabeled data. It’s
obvious that the prediction performance heavily depends on
the graph construction approach. Using a low-quality graph
can degenerate performance and leads to unsafe problem [2],
[3]. The graph construction problem has been a consensus
in the research community recently [4], [5], [6]. Moreover, a
high-quality graph can also benefit other tasks, such as feature
selection [7] or matrix completion [8].
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Generally speaking, graph construction involves two im-
portant choices. First, the user chooses a similarity function
or kernel for estimating the affinity between all pairs of
instances, such as Gaussian kernel [9]. Second, the user
chooses a sparsification method to obtain a sparse weighted
subgraph from the fully connected weighted graph. Sparsity is
necessary to GSSL for being efficient and robust [1]. Unlike
the choice of the similarity function, it is generally hard to
say whether a specific sparsification method can get a good
graph. The most popular choice is the kNN method because
of its concision and effectiveness. In a kNN graph, each
node has edges to its first k nearest neighbors. εNN graph
is another choice where there is an edge between a pair of
nodes if their distance is less than ε, while it may be unstable
in some cases. As a most representative graph construction
approach, b-matching [5] guarantees a regular graph where all
nodes have the same degree b in contrast to the irregularity
of kNN graph. With experimental results, the authors argue
that a regular graph can achieve better classification results
compared to kNN. However, building a b-matching graph is
usually impractical in terms of computational cost. As another
way of graph construction, Argyriou et al. [10] propose a
graph construction approach which combines multiple graphs
constructed with a variety of distances functions and the ‘k’
in nearest neighbors. Despite its superior performance in some
cases, this method has heavy computational cost and unstable
performance. Despite the efforts devoted by existing research
works to construct good graphs, it’s still an open problem that
how to construct a good graph in general situations.

Recently, Li et al. [11] proposed a large margin criterion
to judge the quality of the graph. They performed a series
of experiments to show the effectiveness of the large margin
assumption on predictive values of good graphs. More specif-
ically, when a graph owns a high quality, its prediction on
unlabeled data may have a large margin separation. Following
their conclusion, in this paper, we propose a graph construction
approach by considering the large margin assumption. Unlike
previous approaches that typically optimize a kNN-type loss
on the unlabeled data, the proposed approach also optimizes
a margin-type loss so as to learn a graph that has large
margin separation on its prediction. We formulate the learning
problem as an optimization problem and present an efficient
algorithm to solve the problem. To the best of our knowledge,
there have no existing graph construction approaches utilizing



the large margin assumption before.
The rest of this paper is organized as follows. Section II

presents the proposed method. Section III gives an efficient
algorithm to solve the optimization problem. Empirical results
are reported in Section IV, finally, we conclude this paper in
Section VI.

II. THE PROPOSED METHOD

In GSSL, given a few of labeled instances {(xi, yi)}li=1 and
a large amount of unlabeled instances {xl+i}ui=1 (typically
l � u) where y ∈ {±1} is the output label for the input
instance x ∈ Rd. Let G = (V, E ,W) denotes a graph. Here
V is a set of n = l+u nodes in which each node corresponds
to an instance. E is a set of undirected edges between pairs of
nodes. W ∈ Rn×n is a nonnegative and symmetric adjacency
matrix associating with V and E where each element Wij is
the weight of the edge eij ∈ E and reflects the affinity between
xi and xj . The sparsity of a graph means the number of edges
|E| � n(n−1)

2 i.e. , W is a sparse matrix.
Given a graph G = (V, E ,W), GSSL aims to infer the

labels {yl+i}ui=1 of unlabeled instances {xl+i}ui=1 by minimiz-
ing a kNN-type loss as follows (ignoring specific constraints):

min
f∈Rn

1

2

n∑
i,j=1

Wij(fi − fj)2 (1)

where fi is the predictive value for xi. Specific label inference
methods may have different constraints to control the value of
f , such as fi for labeled data is exactly equal to yi or fi
and yi need to be close for labeled data but not necessarily
be the same. Finally, GSSL predicts the labels by outputting
yi = sign(fi) for unlabeled data.

In [11], authors proposed a large margin assumption with
respect to the predictive value of GSSL. Specifically, suppose
we obtain two sets of prediction f (1) and f (2) from two
different graphs G(1) and G(2) respectively by performing one
GSSL algorithm, the assumption indicates that if f (1) has a
larger margin separation than f (2), then G(1) may be a better
graph than G(2) with high probability and vice versa.

Based on the large margin assumption, we present a graph
construction approach to take into account the margin-type
loss in order to learn a good graph whose prediction has a
large margin separation. The idea is that a good graph can be
constructed by minimizing a margin-type loss of its prediction.
All the proposed method do is like to select the graph with
the largest margin on its prediction from multiple candidate
graphs, only that the candidates are from a predefined domain.

Typically, hinge loss is used to reflect how much the model
violates the large margin assumption. However, for the conci-
sion of formulation and convenience of optimization, we adopt
least square loss instead of hinge loss. It has been theoretically
proved that least square loss corresponds to the hard margin
while hinge loss corresponds to the soft margin [12].

In order to learn a good graph, we formulate the learning
problem as an optimization problem:

min
W∈W

min
f∈R,ŷ∈B

1
2

∑n
i,j=1Wij(fi − fj)2
1
2

∑n
i,j=1Wij

+
λ

u

n∑
i=l+1

(fi − ŷi)2

(2)
where |E| = 1

2

∑n
i,j=1 I(Wij > 0) and u are normalizer, λ is

a parameter to trade off two different kinds of losses, and ŷ
is a set of pseudo labels. Let S denotes the set of symmetric
matrics, then W = {W ∈ Sn×n|diag(W) = 0; (W − A) ◦
W = 0; 1

2

∑n
i,j=1 I(Wij > 0) = C; ncc(W) = 1}, where

◦ denotes the Hadamard product and C ≥ n − 1 is a super
parameter to control the sparsity of the graph, ncc(W) denotes
the number of connected components. With L = {1, 2, . . . , l}
and U = {l + 1, l + 2, . . . , l + u}, R = {f ∈ Rn|fL =
yL}, B = {ŷ ∈ {±1}n|ŷL = yL;

1
u

∑
i∈U ŷi =

1
l

∑
i∈L ŷi},

where 1
u

∑
i∈U ŷi =

1
l

∑
i∈L ŷi constrains the ratio of classes

in order to avoid ill solver.
ForW , (W−A)◦W = 0 constrains the exact value of each

non-zero element in W, i.e. , Wij = Aij or Wij = 0, where A
is an affinity matrix which is given by users. There are several
approaches to estimate the affinity between pairs of nodes.
The simplest approach is the binary weighting approach, i.e. ,
Aij = 0/1. In this case, W is actually associated with an
unweighted graph. An alternative approach is Gaussian kernel,
which is defined as Aij = exp(−‖xi−xj‖2

2σ2 ). Moreover, the
cosine distance is also commonly used.

Let W = P◦A where P is an indicator matrix with binary-
valued elements, then Eq.(2) can be rewrite as

min
P∈P

min
f∈R,ŷ∈B

∑n
i,j=1 PijAij(fi − fj)2∑n

i,j=1 Pij
+
λ

u

n∑
i=l+1

(fi − ŷi)2

(3)
where P = {P ∈ {0, 1}n×n|P = PT; diag(P ) =
0;
∑n
i,j=1 Pij = 2C; ncc(P) = 1}.

III. ALGORITHM

To solve the objective in Eq.(2), we use an alternative
optimization method. It alternatively optimizes the variable W
(or {f , ŷ}) when fixing {f , ŷ} (or W) as constants. Specif-
ically, when W is fixed, we further employ an alternating
optimization w.r.t. f and ŷ. Since the objective in Eq.(2) is
jointly convex for {f , ŷ} when W is fixed, the subproblems
of alternating optimization are convex for both f and ŷ.

More specifically, when f is fixed, according to [13], it is
known that the rank of the elements in ŷ is consistent to that of
the elements in f . Moreover, since we constrain that ŷL = yL,
the optimal solution of ŷU could be solved in a closed-form
solution:

yl+j =

{
+1 rj ≤ u

l

∑l
i=1 I(yi = +1)

−1 otherwise
(4)

where {r1, . . . , ru} are the ranks of the predictions on the
unlabeled instances {xl+1, . . . ,xl+u} (sorted in a descending
order).



When ŷ is fixed, the inner minimization problem of Eq.(2)
is equivalent to the following form:

min
f∈R

fTLf

C
+
λ

u
‖fU − ŷU‖2 (5)

where L is the graph Laplacian defined as L = diag(W1)−
W.

Since f = [fTL , f
T
U ]

T and we constrain fL = yL, the
Laplacian L can be partitioned into four blocks:

L =

[
LLL LLU
LUL LUU

]
(6)

Eq.(5) can be rewritten as

min
fU∈Ru

2

C
yT
LLLU fU +

1

C
fTULUU fU +

λ

u
fTU fU −

2λ

u
ŷT
U fU (7)

Let G(fU ) denote the objective in Eq.(7), then

∇G =
2

C
LULyL +

2

C
LUU fU +

2

u
λfU −

2

u
λŷU (8)

Since ∇2G � 0, by setting ∇G to 0 we can obtain the global
solution

fU = (
1

C
LUU +

λ

u
I)−1(

λ

u
ŷU −

1

C
LULyL) (9)

When {f , ŷ} are fixed, the optimization problem of Eq.(3)
is equivalent to the following form:

min
P∈P

n∑
i,j=1

PijAij(fi − fj)2 (10)

which can be effectively solved by Minimum Spanning Tree
algorithm. Specifically, a symmetric matrix M ∈ Rn×n is
constructed according to A and f such that Mij = Aij(fi −
fj)

2. Then a minimum spanning tree G′ = {V ′, E ′,W′} is
constructed by taking M as the input. Set Mij and Mji to 0 for
each eij ∈ E ′ (note eij is undirected while M is symmetric).
Then every time select the minimal non-zero element Mij in
M, set Mij and Mji to 0, and add corresponding edge eij to
E ′ until |E ′| increases to C. Finally, let P be the unweighted
adjacency matrix of E ′ and it is the solution of Eq.(10).

After alternating optimization converges, an expected large
margin graph is constructed as W = P◦A. The pseudo code
of the whole proposed method is given in Algorithm 1.

IV. EXPERIMENT

A. Experimental Setting

We perform the experiments on 6 UCI data sets1. We
do experiment on noisy graphs with noisy ratio range from
[0, 0.5]. For the GSSL method, we adopt the classical method:
the Class Mass Normalization (CMN) [9]. For the graph
construction method, we compared with noisy kNN, randomly
denoise and LMG with λ = 0 and λ = 0.1. For each data set,
we random select l = 10 labeled instances and the others
are treated as unlabeled instances. Experimental results are
obtained from 30 repeated runs for each case.

1http://archive.ics.uci.edu/ml/datasets.html

Algorithm 1 Large Margin Graph Construction
Input: labeled instances {(xi, yi)}li=1, unlabeled instances
{xi}l+ui=l+1, affinity matrix A, initial sparsification matrix
P (generally a kNN graph is recommended), model pa-
rameters C and λ.

Output: an adjacency matrix W associated with a weighted
undirected graph.

1: Initialize W = P◦A and fL = yL, where L = {1, . . . , l}
2: Perform a GSSL algorithm on the adjacency matrix W

to obtain a set of pseudo labels ŷU for the unlabeled
instances, where U = {l + 1, . . . , l + u}

3: repeat
4: repeat
5: Fix ŷU and update the solution of fU via Eq.(9)
6: Fix fU and update the solution of ŷU via Eq.(4)
7: until the objective of Eq.(2) does not decrease
8: Construct M such that Mij = Aij(fi − fj)2
9: Perform the Minimum Spanning Tree algorithm on M

to obtain an unweighted symmetric adjacency matrix P
10: If Pij = 1 then Mij = 0 for i, j = 1, . . . , l + u

11: while 1
2

∑l+u
i,j=1 Pij < C do

12: Select minimal non-zero element Mij of M
13: Set Pij = Pji = 1 and Mij =Mij = 0
14: end while
15: Set W = P ◦A
16: until the objective of Eq.(2) does not decrease
17: return W

B. Performance with Noisy Graphs

Experimental results with noisy graphs are shown in Figure
1. From the experiment results, we can see that the proposed
method is always better than randomly denoise method and
comparable with noisy kNN. In three cases, the proposed
method achieves a significant performance gain. Moreover,
the red line (CMN with LMG (λ = 0.1)) is always better
than the cyan line (CMN with LMG (λ = 0)). These validate
the effectiveness proposed method. Besides, there is another
thing need to be mentioned: randomly removing edges may
lead to a graph that has more than one connected components,
while the proposal does not suffer this problem.

V. LARGE MARGIN GRAPH CONSTRUCTION V.S. GRAPH
PRESENTATION LEARNING

Graph representation learning, i.e., learning a low dimen-
sional vector representation of nodes in graphs, has attracted
significant attention in recent years and plays a critical role in
the area of GSSL. Meantime, large margin principle is also
widely used to train a robust classifier and help avoid over-
fitting issues, which is particularly useful when labeled data
is limited. However, to our best knowledge, the large-margin
principle has rarely been applied to graph-based methods. In
this paper, we proposed a graph construction method based on
large margin principle and show its effectiveness with empiri-
cal results. It demonstrates that the large margin principle can
work well with graph-based methods. It is innovative for the



Fig. 1. Performance of the proposed method with noisy graphs. ‘λ = 0’ refers to that optimization objective only consists of kNN-type loss. ‘Randomly
denoise’ refers to that randomly remove edges of the noisy graph until the number of edges down to C = 1
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algorithm design of graph representation learning. We think
that one key reason for why large margin principle works
well with graph-based methods is that, the underlying as-
sumption for large margin principle (large-margin assumption)
and graph-based methods (manifold assumption) are kind of
complementary. Specifically, manifold assumption emphasizes
that the data closeness within same classes, whereas ignores
the data separability between different classes. By contrast,
large margin assumption emphasizes the data separability,
but ignores the data closeness. Therefore, by taking the two
assumptions into account simultaneously, one can encourage
the inter-class separability between learned features for graphs
and leads to a better decision boundary.

VI. CONCLUSION

In this paper, we study the graph construction problem in
GSSL, a key component for GSSL performance, and develop
a novel graph construction method by considering the margin
assumption. The proposed methods optimize a margin-type
loss to learn a graph that has a large margin separation on
its prediction and can be formulated as an alternative opti-
mization problem which can be solved efficiently. Extensive
experimental results validate the effectiveness of the proposed
method.
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