
Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding

Lan-Zhe Guo 1 Yu-Feng Li 1

Abstract

Semi-supervised learning (SSL) has proven to be
successful in overcoming the difficulties of data
labeling by leveraging unlabeled data. Previous
SSL algorithms typically assume a balanced class
distribution and exploit unlabeled data by assign-
ing pseudo-labels with a fixed high-confidence
prediction. However, it is well-known that real-
world dataset is often imbalanced, the perfor-
mance of existing SSL algorithms is seriously de-
creased under imbalanced class distribution since
pseudo-labels that are generated based on a fixed
confidence threshold are biased toward majority
classes and result in low recall on minority classes.
In this paper, we develop a simple yet powerful
framework, whose key idea is to select a subset of
pseudo-labeled examples based on thresholds that
can be adaptively adjusted for different classes.
Specifically, an optimization objective that con-
siders the number of pseudo-labels being selected
for each class is proposed and a highly efficient
closed-form solution that produces the adaptive
thresholds can be derived from the optimization.
We empirically demonstrate the effectiveness of
the proposal in extensive experimental settings.

1. Introduction
Machine learning, especially deep learning, has been repeat-
edly reported that can achieve competitive or even better per-
formance than human beings on certain supervised learning
tasks (LeCun et al., 2015). These tasks, however, crucially
rely on the availability of a large number of labeled train-
ing data. In many practical tasks, large-scale well-labeled
datasets are difficult to obtain, as the acquisition of labeled
data requires huge human labor and financial costs (Zhou,
2017; Li et al., 2019). On the other hand, there are usu-
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ally abundant unlabeled data. Therefore, it is desirable for
machine learning models to work with unlabeled data.

Semi-supervised learning (SSL) is one of the most promis-
ing learning paradigms to bypass the labeling cost by lever-
aging an abundance of unlabeled data (Chapelle et al., 2006).
In much recent work, SSL can be categorized into several
main classes in terms of the use of unlabeled data, such as
entropy minimization (Grandvalet & Bengio, 2005), con-
sistency regularization (Laine & Aila, 2017; Tarvainen &
Valpola, 2017; Miyato et al., 2018), pseudo-labeling (Lee,
2013), and their combinations (Berthelot et al., 2019; Sohn
et al., 2020; Berthelot et al., 2020; Xu et al., 2021). Due to
its capability to handle both labeled and unlabeled data, SSL
has been successfully applied into various tasks such as im-
age classification (Sohn et al., 2020), object detection (Jeong
et al., 2019), semantic segmentation (Souly et al., 2017),
text classification (Miyato et al., 2017), etc. It has been
reported in certain cases, such as image classification (Sohn
et al., 2020), SSL methods can achieve the performance of
purely supervised learning even when a substantial portion
of the labels in a given dataset has been discarded.

All of the positive results of SSL, however, are based on a
basic assumption that the class distribution is balanced in
both labeled and unlabeled data, i.e., the number of exam-
ples in each class is nearly the same. Such an assumption is
difficult to hold in practical applications. For example, in
computer vision tasks, the frequency distribution of visual
categories in our daily life is inherently imbalanced (Wang
et al., 2017); in medical diagnosis tasks, a malignant lesion
is rare compared to benign ones (Johnson & Khoshgoftaar,
2019), etc.

It is well-known that machine learning models suffer severe
performance degradation with such an imbalanced class dis-
tribution (Dong et al., 2019). Unfortunately, the class imbal-
ance issue can be more problematic for SSL algorithms since
they generate pseudo-labels for unlabeled data from the
model’s biased predictions. Take the SOTA SSL algorithm
FixMatch (Sohn et al., 2020) for an example, FixMatch
uses the unlabeled examples with a fixed high-confidence
prediction (e.g., 0.95) in classification tasks. However, the
prediction confidence is biased towards the majority classes
under class-imbalanced distribution, adopting a fixed thresh-
old for all classes results in the minority classes losing too



Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding

(a) Imbalanced Dataset (b) Test Recall (%)

Figure 1. An example of experimental results on Wide ResNet-28-
2 for the synthetically class-imbalanced CIFAR-10 dataset. (a)
Both labeled and unlabeled datasets are class-imbalanced, where
the most majority class has 100× more examples than the most
minority class. (b) Recall rate on a balanced test data. FixMatch
selects pseudo-labels if its confidence prediction is greater than
0.95 for all classes, while the proposed Adsh algorithm selects
pseudo-labels based on an adaptive class-dependent threshold. The
results show that our proposal can improve the recall on minority
classes, comparing to FixMatch.

many unlabeled examples with correct pseudo-labels, re-
sulting in low recall rates. (see Figure 1). That is to say,
it may not be good enough for SSL algorithms to use a
fixed threshold to select pseudo-labels for all classes under
class-imbalanced data distribution.

Unlike the previous works, we aim to the proposed approach
has the ability to adaptively adjust the threshold for each
class based on the class distribution. This inspires us to
consider answering the following question in this study:
Can we design an SSL algorithm that selects pseudo-
labels with adaptive thresholding?

To this end, we propose a generic SSL algorithm with
adaptive thresholding (Adsh) that can adaptively select
pseudo-labeled examples based on a class dependent thresh-
old during the training process. Specifically, our high-level
idea is to formulate the pseudo-label selection process as an
optimization objective and explicitly consider the number of
pseudo-labels to be selected for every class in order to over-
come the class imbalance. A highly efficient closed-form
solution can be derived from the optimization objective.
Then, based on the solution we obtain an adaptive threshold-
ing technique that encodes class-wise distribution to obtain
class-dependent thresholds. The proposal Adsh can be in-
tegrated with existing SSL methods like FixMatch (Sohn
et al., 2020). Empirical evaluations on extensive settings
demonstrate the effectiveness of Adsh comparing with the
state-of-the-art SSL algorithms. For example, experimental
results on CIFAR-10, SVHN, STL-10 datasets with different
levels of class imbalance and different numbers of labeled
data consistently show the performance improvement of
our proposal. We also consider class imbalance and class
distribution mismatch between labeled and unlabeled data
simultaneously. Experimental results on this challenging

setting also show the superiority of our proposal.

2. Related Works
This work is mainly related to class-imbalanced learning
and semi-supervised learning.

Class-Imbalanced Learning. Real-world datasets usually
yield a class-imbalanced label distribution (Liu et al., 2019)
and make the standard training of machine learning models
harder to generalize (Wang et al., 2017). Various algorithms
have been proposed so far to address this problem (Buda
et al., 2018; Johnson & Khoshgoftaar, 2019). The most
commonly adopted approach is to re-balance the training
objective with respect to the class-wise sample sizes. Two of
such methods are representative: a) re-weighting, which in-
fluence the loss function by assigning relatively higher costs
to examples from minor classes (Cao et al., 2019; Cui et al.,
2019; Huang et al., 2019; Khan et al., 2019; 2017; Lin et al.,
2017; Ren et al., 2018; Hu et al., 2019); b) re-sampling,
which directly adjust label distribution by over-sampling
for the minority class or under-sampling for the majority
class, or both in order to obtain a balanced sampling dis-
tribution (Chawla et al., 2002; He & Garcia, 2009; Byrd
& Lipton, 2019). However, naively re-balancing the objec-
tive usually results in over-fitting to minority classes. Re-
cently, there are also transfer-learning based methods been
proposed by transferring features from majority classes to
under-represented minority classes (Hariharan & Girshick,
2017; Liu et al., 2019; Yin et al., 2019). Nevertheless, these
methods assume all labels are available and can not be ap-
plied to SSL scenarios directly.

Semi-Supervised Learning. SSL methods that aim to im-
prove model performance by leveraging unlabeled data have
a long history of research (Chapelle et al., 2006). Our paper
is mainly related to deep SSL that introduces SSL tech-
niques to DNNs and achieved significant advancement in
recent years (Berthelot et al., 2019; Grandvalet & Bengio,
2005; Laine & Aila, 2017; Miyato et al., 2018; Sohn et al.,
2020; Tarvainen & Valpola, 2017). Typical ways of these
SSL methods include training the model to fit pseudo-labels
or optimizing a well-designed objective that does not rely on
labels. For example, pseudo-labeling based methods (Lee,
2013) generate pseudo-labels for unlabeled examples and
train model to predict the pseudo-labels in a supervised man-
ner; entropy minimization based methods (Grandvalet &
Bengio, 2005) encourage the model’s predicted distribution
to have low entropy which does not require label informa-
tion; consistency regularization based methods, e.g., Tem-
poral Ensembling (Laine & Aila, 2017), Mean-Teacher (Tar-
vainen & Valpola, 2017), VAT (Miyato et al., 2018), etc,
produce augmentations for unlabeled examples and opti-
mize the consistency loss between the model output on
given examples and it’s augmented version. There are also
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methods called holistic methods that utilize these techniques
simultaneously, such as MixMatch (Berthelot et al., 2019),
ReMixMatch (Berthelot et al., 2020) and FixMatch (Sohn
et al., 2020). These SSL algorithms are reported to achieve
near supervised performance on benchmark tasks. How-
ever, in some realistic scenarios, SSL methods suffer poor
performance improvement (Guo et al., 2022), e.g, when
labeled and unlabeled data distribution is mismatch (Oliver
et al., 2018; Guo et al., 2020a;b; Zhou et al., 2021) or when
class distribution is imbalanced (Kim et al., 2020; Wei et al.,
2021; Guo et al., 2021). In this paper, we mainly focus on
the class-imbalanced SSL problem.

Class-Imbalanced Semi-Supervised Learning. Recently,
two representative algorithms DARP (Distribution Align-
ing Refinery of Pseudo-label) (Kim et al., 2020) and
CReST (Class-Rebalancing Self-Training) (Wei et al., 2021)
have been proposed to address the class-imbalanced semi-
supervised learning. Specifically, DARP refines raw biased
pseudo-labels to match the true class distribution. However,
the process needs to know the ground-truth class distribution
of unlabeled data as a prior which is evidently impossible
in real tasks. To alleviate this limitation, DARP further
proposes to estimate the class distribution by assuming that
the confusion matrix between labeled data and unlabeled
data are the same. Unfortunately, this assumption is also
inappropriate since the trained model tends to overfit the
small labeled dataset and obtain a nearly perfect confusion
matrix while this can not generalize well to unlabeled data.
CReST adopts a self-training manner that retrains the SSL
model after adaptively select pseudo-labeled data from the
unlabeled set to supplement the original labeled set. Differ-
ent from the classical self-training strategy, CReST samples
pseudo-labels according to the label frequency in order to
progressively align the class distribution (i.e., the examples
are selected with higher probabilities if they are predicted as
minority classes). However, CReST assumes that the class
distributions between labeled data and unlabeled data are
the same which is difficult to verify since we have no idea
about the true class distribution of unlabeled data. These
strict assumptions limit their wider applications.

3. Preliminary and Background
This section provides notations used in this paper and gives
a brief review of SSL algorithms with a fixed threshold.

3.1. Problem Setting and Notations

For a K-class classification task, we are given a set of train-
ing data from an unknown distribution, which includes N
labeled examples Dl = {(xl

1,y
l
1), · · · , (xl

N ,yl
N )} and M

unlabeled examples Du = {xu
1 , · · · ,xu

M} where x ∈ X ⊆
Rd denote the input d-dimensional feature vector and y ∈ Y
are corresponding one-hot label. The number of examples

in class k under Dl and Du are denoted by Nk and Mk,
respectively, i.e.,

∑K
k=1 Nk = N and

∑K
k=1 Mk = M .

Without loss of generality, we assume that the classes are
sorted in descending order, i.e., N1 ≥ N2 ≥, · · · ,≥ NK

and M1 ≥ M2 ≥, · · · ,≥ MK . We measure the degree
of class imbalance by imbalance ratio, which is defined as
γl = N1

NK
and γu = M1

MK
for labeled and unlabeled data

respectively. γl and γu could be much larger than 1 and it is
noteworthy that they are usually not the same in practical
tasks. The goal is to learn a model f(x; θ) : X → Y that
generalizes well under a class-balanced test criterion, where
θ is the model parameter.

The training loss of an SSL algorithm usually contains su-
pervised loss Ls and unsupervised loss Lu with a trade-off
parameter λu > 0: Ls + λuLu, where Ls is constructed on
Dl and Lu is constructed on Du. Typically, Ls applies the
standard cross-entropy loss on labeled examples:

Ls =
1

N

N∑
i=1

H(yi, f(y|xi; θ)) (1)

=
1

N

N∑
i=1

K∑
k=1

−yi,k log f(y = k|x; θ)

where f(y|x; θ) ∈ [0, 1]K is the predicted probabilities
produced by the model f with parameter θ for the input x,
and H(·, ·) is the cross-entropy function.

Different constructions of the unsupervised loss Lu lead to
different SSL methods. Typically, there are two ways of
constructing Lu: one is to use pseudo-labels to formulate a
"supervised loss" such as the cross-entropy loss (e.g., Fix-
Match (Sohn et al., 2020)), and another one is to optimize a
regularization that does not depend on labels such as con-
sistency regularization (e.g., UDA (Xie et al., 2020)). Next,
we will introduce the a recent SSL work to interpret how to
generate pseudo-labels and construct unsupervised loss Lu.

3.2. FixMatch: An SSL algorithm with Fixed
Thresholding

Due to its simplicity yet empirical success, we select Fix-
Match (Sohn et al., 2020) as an SSL example in this subsec-
tion. Moreover, we consider FixMatch as a warm-up of the
proposed algorithm, since FixMatch uses a fixed threshold
to select unlabeled examples, it will be used as a comparison
with the proposed algorithm.

FixMatch applies weak and strong augmentations to un-
labeled examples and generates pseudo-labels using the
model’s predictions on weakly augmented unlabeled ex-
amples. The pseudo-label is only retained if the model
produces a high-confidence prediction. The model is then
trained to predict the pseudo-label when fed a strongly aug-
mented version of the same example.
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Specifically, given a batch of B labeled examples {(xl
b,y

l
b) :

b ∈ (1, · · · , B)} and a batch of µB unlabeled examples
{xu

b : b ∈ (1, · · · , µB)} where µ determines the relative
bath size of labeled and unlabeled data.

For unlabeled data, FixMatch tries to generate pseudo-labels
via the model’s predictions. FixMatch first predict the class
distribution given a weakly augmented version of an unla-
beled example

qb = f(y|α(xu
b ); θ) (2)

where α(·) is the weak augmentation. Then, it creates a
pseudo-label by

ŷu
b = argmax(qb) (3)

Following by (Sohn et al., 2020), the argmax applied to
a probability distribution produces a one-hot probability
distribution. To construct the unsupervised loss, it computes
the model prediction for a strong augmentation A of the
same unlabeled examples xu

b :

f(y|A(xu
b ); θ) (4)

The unsupervised loss is defined as the cross-entropy be-
tween ŷu

b and f(y|A(xu
b ); θ):

H(ŷu
b , f(y|A(xu

b ); θ)) (5)

Eventually, FixMatch only uses the unlabeled examples with
a high-confidence prediction by selecting based on a fixed
threshold τ = 0.95 for all classes. Therefore, in FixMatch,
the unsupervised loss with cross-entropy and confidence
threshold is defined as:

Lu =
1

µB

µB∑
b=1

I(max(qb) ≥ τ)H(ŷu
b , f(y|A(xu

b ); θ))

(6)
where I(·) is an indicator function.

As we discussed in the introduction, with class-imbalanced
training data, adopting a fixed threshold for all classes may
lead to the elimination of too many unlabeled examples
with correct pseudo-labels in the minority classes (See Fig-
ure 1), resulting in low recall rates on minority classes and
eventually drop off the overall performance. It is natural to
think that: the threshold should be class-dependent and
adaptive to class distributions rather than being fixed
for all classes. Therefore, in the next section, we are going
to propose a new SSL scheme having adaptive thresholds
for different classes.

4. Adsh: An SSL Algorithm with Adaptive
Thresholding

We now turn to the framework we propose in this paper:
Adsh, an SSL algorithm with thresholds that can be adap-

Algorithm 1 Adsh Algorithm.
Input: Labeled Data Dl, unlabeled data Du, number of
classes K, number of epochs E, number of iterations T , un-
labeled loss weight λu, unlabeled data ratio µ, class bias s ∈
RK , model parameter θ0.

1: t = 0
2: for e = 1 to E do
3: for iter = 1 to ⌊T/E⌋ do
4: Sample {(xl

b,y
l
b) : b ∈ (1, · · · , B)} from Dl.

5: Sample {xu
b : b ∈ (1, · · · , µB)} from Du.

6: Ls = 1
B

∑B
b=1 H(yl

b, f(y|α(xl
b); θt)) // Com-

pute cross entropy loss for labeled examples
7: for b = 1 to µB do
8: qb = f(y|α(xu

b ); θt) // Predicted probability
distribution

9: ŷu
b = argmax(qb) // Pseudo-label for xu

b

10: Hb = H(ŷu
b , f(y|A(xu

b ); θ) // Compute
cross entropy loss for pseudo-labeled examples

11: end for
12: for k = 1 to K do
13: τk = exp(−sk) // Class-dependent adaptive

thresholds
14: end for
15: Lu = 1

µB

∑µB
b=1 I(max(qb) ≥ τŷu

b
)Hb

16: L = Ls + λuLu

17: θt+1 = Optimization Step(θt,L) // Update
model parameter via gradient methods, e.g., SGD

18: t = t+ 1
19: end for
20: Update s via algorithm 2 or Eq.(11) // Update s
21: end for
22: return θT .

tively adjusted for different classes. The detail algorithm
procedure is presented in Algorithm 1.

To alleviate the drawbacks of fixed thresholding on the class-
imbalanced datasets, we propose to select pseudo-labels via
class-dependent thresholds that adaptively change for each
class. Specifically, we formulate the SSL objective as an
optimization problem that explicitly encodes the number of
pseudo-labels to be selected for each class into the objective:

min
ŷ,s,θ

1

N

N∑
i=1

K∑
k=1

−yi,k log f(y = k|α(xl
i); θ) (7)

+
1

M

M∑
i=1

K∑
k=1

[−ŷi,k log f(y = k|α(xu
i ); θ)

−skŷi,k]
s.t. ŷi = [ŷi,1, · · · , ŷi,K ] ∈ {0, 1}K

0 ≤ 1⊤ŷi ≤ 1

sk > 0, ∀1 ≤ k ≤ K
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Algorithm 2 Algorithm for Computing s.
Input: Model parameter θ, unlabeled data Du = {xu

i }Mi=1,
number of classes K, user-defined threshold for the most
majority class τ1.

1: Initialize an array C with K rows to save model predic-
tion confidence

2: for xu in Du do
3: q = f(y|α(xu); θ) // Prediction confidence for

unlabeled examples
4: ŷ = argmax(q) // Predicted pseudo-label
5: Cŷ ← Append(max(q)) // Save the maximum

probability for each example
6: end for
7: ρ = 1.0
8: Sort Ck in descending order ∀1 ≤ k ≤ K
9: for len← 1 to length(C1) do

10: if C1[len] < τ1 then
11: break
12: end if
13: ρ = len

length(C1)
× 100% // Percentage of selected

pseudo-labels for the most majority class
14: end for
15: for k = 1 to K do
16: sk = − log(Ck[length(Ck) ∗ ρ]) // Determine sk

for other classes
17: end for
18: return s.

where ŷ ∈ RM×K is the pseudo-label matrix for unlabeled
examples and ŷi is the pseudo-label vector for example xu

i .
ŷi is required to be either a discrete one-hot or a zero vector,
assigning ŷi as 0 leads to ignoring this pseudo-label in the
model training. sk introduces different levels of class-wise
bias for pseudo-label selection, and a larger sk indicates
a larger number of pseudo-labeled examples would be se-
lected for class k.

Eq.(7) shows that, on one hand, the pseudo-label ŷ should
be consistent with the model prediction, on the other hand,
the number of selected pseudo-labels is controlled by sk
explicitly for each class k, rather than based on a fixed
threshold τ . Similar ideas to control the number of selected
examples have also been applied to other machine learning
problems, e.g., domain adaptation (Zou et al., 2018), cur-
riculum learning (Zou et al., 2019). Different from these
works, our paper pays attention to class imbalanced semi-
supervised learning and presents a general scheme for the
pseudo-label selection which is an important part of SSL
algorithms. This sheds new light on how to apply SSL to
more realistic and challenging scenarios.

Eq.(7) can be optimized alternatively: first, solving ŷ and s
given a fixed θ; then, optimizing θ in a supervised manner
by leveraging pseudo-labels ŷ.

Solving ŷ and s given a fixed θ. If the model parameter
θ is fixed, we have the following theorem to guarantee the
solution of ŷ.

Theorem 4.1. Given a learning model f(x; θ), the pseudo-
label ŷ in Eq.(7) has the closed-form solution:

ŷi,k =


1, if k = argmax

f(y = k|α(xu
i ); θ)

exp(−sk)
,

f(y = k|α(xu
i ); θ)

exp(−sk)
≥ 1.

0, otherwise.

(8)

Theorem 4.1 implies that pseudo-label ŷ is dependent on
both model predictions and sk. Moreover, we can show that
under certain conditions, Eq.(8) gives an class-dependent
adaptive threshold,

Lemma 4.2. If exp(sk − sk′) >
f(y=k′|α(xu

i );θ)
f(y=k|α(xu

i );θ)
holds for

all k and k′ that satisfy f(y = k|α(xu
i ); θ) > f(y =

k′|α(xu
i ); θ), then we have: argmax

f(y=k|α(xu
i );θ)

exp(−sk)
=

argmax f(y = k|α(xu
i ); θ).

It is noteworthy that the condition in above lemma is easy
to satisfy since the model prone to over-confident (Thu-
lasidasan et al., 2019), thus, f(y = k′|α(xu

i ); θ)/f(y =
k|α(xu

i ); θ) is relatively small in real tasks.

The above analysis shows that instead of selecting pseudo-
labels based on the original prediction confidence and a fixed
threshold τ , we select pseudo-label for unlabeled example
xu
i that are predicted as ŷu

i with

I(max(qi) ≥ exp(−sŷu
i
)) (9)

where qi = f(y|α(xu
i ); θ) and ŷu

i = argmax(qi).

If the ground-truth class distribution of unlabeled data is
known, we can solve sk to make the pseudo-label ŷ has the
same class distribution with the ground-truth y∗, i.e.,∑M

i=1 ŷi,k∑M
i=1 ŷi,k′

=

∑M
i=1 y

∗
i,k∑M

i=1 y
∗
i,k′

, ∀k, k′ ∈ {1, · · · ,K} (10)

Specifically, we can first set s1 using a user-defined hyper-
parameter, e.g., s1 = − log(0.95), then, sk for 2 ≤ k ≤ K
can be computed by:

M∑
i=1

I(f(y = k|α(xu
i ); θ) ≥ exp(−sk)) (11)

=

∑M
i=1 I(f(y = 1|α(xu

i ); θ) ≥ exp(−s1))
γk

where γk =
∑M

i=1 y∗
i,1∑M

i=1 y∗
i,k

indicates the imbalance ratio between

class 1 and class k.
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Table 1. Comparison of classification performance (Accuracy (%)) on imbalanced CIFAR-10 dataset under three different imbalance ratio:
γ = 50, 100, 150 and two different numbers of labeled data: N1 = 1500,M1 = 3000 and N1 = 500,M1 = 4000. The best results are
indicated in bold.

Imbalanced CIFAR-10 Dataset
N1 = 1500,M1 = 3000 N1 = 500,M1 = 4000

Algorithm γ = 50 γ = 100 γ = 150 γ = 50 γ = 100 γ = 150
Supervised 65.23 ± 0.05 58.94 ± 0.13 55.63 ± 0.38 51.31 ± 0.34 45.82 ± 0.41 40.90 ± 0.39

CBL 65.52 ± 0.31 58.52 ± 0.45 52.36 ± 0.58 51.94 ± 0.71 46.22 ± 0.92 41.58 ± 1.24
Re-Sampling 64.53 ± 0.39 56.34 ± 0.42 53.21 ± 0.51 51.96 ± 0.65 48.13 ± 1.25 40.26 ± 1.88

cRT 67.82 ± 0.14 63.43 ± 0.45 59.56 ± 0.44 56.28 ± 1.45 48.11 ± 0.79 45.02 ± 1.08
LDAM 68.91 ± 0.10 63.15 ± 0.24 58.68 ± 0.30 56.41 ± 0.92 49.27 ± 0.88 45.10 ± 0.75

Mean-Teacher 68.84 ± 0.82 61.33 ± 0.28 54.79 ± 0.31 56.34 ± 1.68 48.55 ± 0.77 45.32 ± 1.20
MixMatch 73.59 ± 0.46 65.03 ± 0.26 62.71 ± 0.29 65.32 ± 1.20 56.41 ± 1.96 52.38 ± 1.88

ReMixMatch 78.96 ± 0.29 72.88 ± 0.12 68.61 ± 0.40 76.83 ± 0.98 70.12 ± 1.23 59.58 ± 1.30
FixMatch 79.10 ± 0.14 71.50 ± 0.31 68.47 ± 0.15 77.34 ± 0.96 68.45 ± 0.94 60.10 ± 0.82

DARP 81.60 ± 0.31 75.23 ± 0.14 69.31 ± 0.26 76.72 ± 0.46 69.41 ± 0.50 61.23 ± 0.31
CReST 82.03 ± 0.26 75.08 ± 0.41 69.84 ± 0.39 76.18 ± 0.36 69.50 ± 0.70 60.81 ± 0.55
Adsh 83.38 ± 0.06 76.52 ± 0.35 71.49 ± 0.30 79.27 ± 0.38 70.97 ± 0.46 62.04 ± 0.51

However, in many realistic scenarios, the class distribution
is unknown, in this case we present a simple and effective
alternative strategy to determine s without introducing ad-
ditional hyper-parameters. The full procedure is presented
in algorithm 2. Specifically, the algorithm to determine sk
exploits the class-wise confidence threshold effectively by
ranking all the probabilities predicted as class k in descend-
ing order and setting sk such that exp(−sk) be equal to
the predicted probability ranked at ρ× length(Ck), where
length(Ck) is the number of unlabeled examples predicted
as class k and ρ× 100% denotes the percentage of selected
confident pseudo-labels. Such a strategy takes the predicted
probability ranked at ρ× 100% separately from each class
as a reference for thresholding.

The proportion ρ is computed from the majority class, i.e.,
the class 1. Specifically, we set s1 using a user-defined
hyper-parameter (e.g., τ1 = 0.95), then the proportion of
pseudo-labels selected for class 1 would be determined as:

ρ =

∑M
i=1 I(f(y = 1|α(xu

i ); θ) ≥ τ1)

length(C1)

where length(C1) =
∑M

i=1 I(argmax(f(y|α(xu
i ); θ)) =

1). This ensures pseudo-labels with the same confidence-
level with-in class can be selected for every class.

Solving θ given fixed ŷ and s. With the pseudo-label ŷ,
we can solve θ in the supervised manner. Same as previous
SSL methods, we optimize θ using the SGD algorithm, in
which the unsupervised loss Lu is given by

Lu =
1

µB

µB∑
b=1

I(max(qb) ≥ τŷu
b
)H(ŷu

b , f(y|A(xu
b ); θ))

(12)

The above unsupervised loss function implies that the
pseudo-label selection is not dependent on a fixed thresh-
old. Instead, it is dependent on a threshold that adaptively
changes for different classes. Selecting the pseudo-labels
by utilizing the adaptive thresholding gives the advantage of
selecting examples that have relatively low confidence, but
high within-class confidence and thus help alleviate the bias
problem of the original prediction under class-imbalanced
distribution.

5. Experiments
In this section, we give comprehensive evaluations on vari-
ous class-imbalanced SSL scenarios. We first describe the
experimental setups in Section 5.1. Then, we present em-
pirical results of our proposal and other compared methods
under extensive setups in Section 5.2. Finally, we present
detailed analyses to help understand the superiority of our
proposal in Section 5.3.

5.1. Experimental setup

Imbalanced Datasets. We conduct experiments on long-
tailed variants of CIFAR-10 (Krizhevsky & Hinton, 2009),
SVHN (Netzer et al., 2011) and STL-10 (Coates et al., 2011)
datasets with various levels of class imbalance and differ-
ent ratios of labeled data. These are all widely adopted
datasets to evaluate SSL algorithms. For constructing the
class-imbalanced training dataset, we use two parameters
γl, γu to denote the imbalance ratio of labeled and unlabeled
data, i.e., γl = N1

NK
, γu = M1

MK
. Once γl, γu and N1,M1 are

given, we set Nk = N1 ·γ
− k−1

K−1

l and Mk = M1 ·γ
− k−1

K−1
u for

1 < k ≤ K. Specifically, we consider two different num-
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(a) N1 = 1500, γl = 50 (b) N1 = 1500, γl = 100 (c) N1 = 1500, γl = 150

(d) N1 = 500, γl = 50 (e) N1 = 500, γl = 100 (f) N1 = 500, γl = 150

Figure 2. Comparison results of classification performance on CIFAR-10 with 12 different imbalance ratios, i.e., γl ∈ [50, 100, 150],
γu ∈ [1, 50, 100, 150] and 2 different number of labeled examples, i.e., N1 = 1500 (upper), N1 = 500 (lower).

bers of labeled examples, i.e., N1 = 500,M1 = 4000 and
N1 = 1500,M1 = 3000, and various imbalance ratios, i.e.,
γl and γu come from combinations of [1, 50, 100, 150]. The
test set remains untouched and balanced, so that accuracy is
adopted as the evaluation criterion.

Compared Methods. We compare our Adsh with many
methods, including class-imbalanced learning methods, SSL
methods, and recently proposed class-imbalanced SSL meth-
ods. Specifically, for class-imbalanced learning, we con-
sider a wide range of methods including a) Class-Balanced
Loss (CBL) (Cui et al., 2019), a representative re-weighting
strategy where labeled examples are re-weighted according
to the inverse of the effective number of examples in each
class; b) Re-Sampling (Byrd & Lipton, 2019), a typical
re-sampling strategy where each labeled example is sam-
pled with probability proportional to the inverse samples
of its class; c) classifier Re-Training (cRT) (Kang et al.,
2020), which retrains the classifier with a balancing objec-
tive after training the whole network to learn a representa-
tion under imbalanced distribution; d) Label-Distribution-
Aware Margin (LDAM), which imposes a larger margin
to minority class in the training process and balancing
the objective at the later stage of training. We also eval-
uate several classic SSL algorithms including a) Mean-
Teacher (Tarvainen & Valpola, 2017), which adds a con-

sistency regularization between the prediction of the current
model and the ensemble of the model in previous training
epochs; b) MixMatch (Berthelot et al., 2019), a holistic
SSL method that adopted both pseudo-label and consis-
tency regularization strategies with Mixup augmentations;
c) ReMixMatch (Berthelot et al., 2020), which further im-
proves MixMatch by adding an augmentation anchoring and
a distribution alignment; d) FixMatch (Sohn et al., 2020),
reported as the best performing SSL method, that generate
pseudo-labels from the weakly augmented data and applied
to strongly augmented data. To further show the efficacy
of our proposal, we also compared with recently proposed
algorithms that consider SSL and class-imbalance simul-
taneously, including a) Distribution Aligning Refinery of
Pseudo-label (DARP) (Kim et al., 2020), which refines the
pseudo-labels generated from the SSL model to match the
ground-truth class distribution of unlabeled data; b) Class-
Rebalancing Self-Training (CReST) (Wei et al., 2021), a
self-training based strategy that selects pseudo-labels ac-
cording to the inverse of label frequency and align distribu-
tion progressively.

Implementation Details. In all experiments, we adopt the
Wide ResNet-28-2 (Zagoruyko & Komodakis, 2016) as the
backbone since it is commonly adopted in various SSL meth-
ods (Oliver et al., 2018). We train the model with batch size
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(a) Confusion Matrix of FixMatch (b) Confusion Matrix of Adsh (c) Hyper-Parameter Sensitivity

Figure 3. Detailed analyses of the Adsh. (a) and (b): Confusion matrix on unlabeled data produced by FixMatch (left) and Adsh(right);
(c): Performance robustness with hyper-parameter τ1 changes.

64 for 218 iterations. We adopt Adam (Kingma & Ba, 2015)
optimizer with a learning rate 2× 10−3. Following (Sohn
et al., 2020) and (Kim et al., 2020), the exponential mov-
ing average (EMA) technique is applied with a decay rate
0.999. For all algorithms, we evaluate the model on the
test dataset every 512 iterations and record the average test
accuracy of the last 20 evaluations, following (Kim et al.,
2020). Mean ± std accuracy over five random runs is re-
ported. More details on the implementation are presented in
the supplementary material.

5.2. Empirical Results

We first evaluate Adsh with compared methods on the
CIFAR-10 dataset under various levels of imbalance ratio
and different numbers of labeled examples. In particular,
we study two situations: γl = γu and γl ̸= γu.

Results on CIFAR-10 with γl = γu. We first conduct
experiments in the case that γ := γl = γu, the most natu-
ral scenario that labeled and unlabeled data have the same
distribution. Table 1 summarizes the performance of our
Adsh and compared methods. From the results, we observe
that in most cases SSL methods perform better than class-
imbalanced learning methods since they use more unlabeled
training data. DARP and CReST methods achieve good
performance among compared methods since they consider
both unlabeled data exploitation and imbalanced distribu-
tion. It is noticeable that our proposal Adsh consistently
achieves the best performance in all settings with various
imbalance ratios and different numbers of labeled examples.

Results on CIFAR-10 with γl ̸= γu. γl ̸= γu brings new
challenges since the distribution between labeled and unla-
beled data is mismatched. We conduct experiments on 24
settings with different imbalance ratios γl, γu, and different
numbers of labeled examples. We report the results of com-
petitive methods FixMatch, DARP, and Adsh. The CReST
is omitted since it can not be applied to the mismatched

distribution. The results are summarized in Figure 2. An
interesting observation is that for a fixed γl, all three meth-
ods suffer performance degradation when γu = 1, even
this is the most balanced unlabeled dataset. One possible
reason is that the extent of distribution mismatch prevents
performance improvement. The results in Figure 2 show
that our Adsh performs better than DARP and FixMatch
methods on almost all settings while DARP performs even
worse than the FixMatch algorithm in some cases.

Table 2. Comparison of classification performance (Accuracy (%))
on imbalanced SVHN dataset with γ = γl = γu = 100, and
STL-10 datasets with γl = 10 or 20 and unknown γu. The best
results are indicated in bold.

SVHN STL-10
Algorithm γ = 100 γl = 10 γl = 20

ReMixMatch 88.91 ± 0.32 67.43 ± 0.43 60.82 ± 0.93
FixMatch 89.34 ± 0.20 73.25 ± 0.21 63.54 ± 0.21

DARP 90.15 ± 0.46 76.97 ± 0.45 68.87 ± 0.66
CReST 89.90 ± 0.64 76.30 ± 0.38 69.43 ± 0.89
Adsh 92.13 ± 0.39 79.25 ± 0.41 71.03 ± 0.20

Results on SVHN and STL-10. We also present experi-
mental results on SVHN and STL-10 datasets. In the case
of SVHN, we construct imbalanced dataset as done in Sec-
tion 5.1 in which 20% are labeled and γl = γu = 100. For
STL-10, we construct a long-tailed variants labeled dataset
with N1 = 450 and γl = {10, 20}. We fully use the un-
labeled data in STL-10 with M = 100, 000, whose class
distribution is imbalanced but the imbalance ratio γu is un-
known. Therefore, in the case of STL-10, the labeled and
unlabeled dataset may not have the same class distribution,
i.e., γl ̸= γu. Table 2 summarizes the learning perfor-
mance on SVHN and STL-10 datasets. Since the simple
class-imbalanced learning methods perform significantly
worse than SOTA SSL methods and class-imbalanced SSL
methods, we omit the results of these methods. From the
results, we can see that our proposal consistently improves
the performance on both SVHN and STL-10 datasets.
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5.3. Detailed Analyses

Quality of pseudo-labels. We evaluate Adsh by measuring
the confusion matrix on unlabeled data to show that our
Adsh can improve the quality of pseudo-labels. Figure 3(a)
and Figure 3(b) visualize the confusion matrix of pseudo-
labels using the model trained on CIFAR-10 with γl =
γu = 100, N1 = 1500,M1 = 3000. The results show that
the raw pseudo-labels generated by FixMatch are biased
towards majority classes, for example, there are more than
30% examples that belong to class 9 are predicted wrongly
as class 1. On the contrary, our proposal can achieve a more
unbiased confusion matrix. These results indicate that the
quality of pseudo-labels is actually improved, which can
help to improve the generalization performance.

Hyper-Parameter Sensitivity. We also study the perfor-
mance sensitivity of Adsh to different values of hyper-
parameter τ1. The results of model trained on CIFAR-10
dataset with N1 = 1500,M1 = 3000, γl = γu = 100
are presented in Figure 3(c). When τ1 is set as 0.96, the
model achieves the best performance while changing it
to others did not hurt much. These results show that our
proposal Adsh is robust to the hyper-parameter selection.
Based on the results, to use the Adsh approach, we sug-
gest setting τ1 as 0.96 first, and further optimize it from
{0.95, 0.96, 0.97, 0.98, 0.99}.

6. Conclusions
In this paper, we tackle an important problem of SSL, that
is, SSL in the presence of class imbalanced distribution.
We propose a novel Adsh approach that adaptively selects
pseudo-labels to train models based on a class-dependent
threshold. We formulate the pseudo-label selection into an
optimization objective by explicitly considering the number
of pseudo-labels to be selected for each class and derive a
highly efficient closed-form solution. The proposed Adsh
method is a generic scheme that can be easily integrated with
existing SSL methods. We demonstrate the use of adaptively
class-dependent thresholding can help to the performance of
the SOTA SSL method FixMatch in extensive experiments,
indicating the importance of adaptive threshold in class-
imbalanced SSL.

How to construct robust SSL models in realistic scenar-
ios has attracted great attention in recent years. Class-
imbalanced SSL is a representative problem that brings
robustness threats to SSL while is still understudied. Our
work puts a promising scheme in this direction. One
limitation of our scheme is it does not have theoretical
guarantees. We will put efforts into this direction in fu-
ture work, such as giving convergence analysis of SSL
algorithms that use fixed thresholds and adaptive thresh-
olds. The code of this paper has been released on http:

//www.lamda.nju.edu.cn/code_ADSH.ashx.
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A. Theorem Proof
Theorem A.1. The objective formulation

minimizeŷ Lu =
1

M

M∑
i=1

K∑
k=1

[−ŷi,k log(f(y = k|α(xu
i ); θ))− skŷi,k] (13)

subject to ŷi = [ŷi,1, · · · , ŷi,K ] ∈ {0, 1}K , 0 ≤ 1⊤ŷi ≤ 1

sk > 0, ∀1 ≤ k ≤ K

has the closed-form solution:

ŷi,k =


1, if k = argmax

f(y = k|α(xu
i ); θ)

exp(−sk)
,

f(y = k|α(xu
i ); θ)

exp(−sk)
≥ 1.

0, otherwise.

(14)

Proof. To select pseudo-label ŷi,k = 1 for xu
i , two conditions need to be satisfied, first

− log(f(y = k|α(xu
i ); θ))− sk < − log(f(y = k′|α(xu

i ); θ))− sk′

From the above inequality, we can derive that

f(y = k|α(xu
i ); θ)

exp(−sk)
>

f(y = k′|α(xu
i ); θ))

exp(−sk′)

for all other class k′.

Then, the second condition is,
− log(f(y = k|α(xu

i ); θ))− sk ≤ 0

and we can obtain that,
f(y = k|α(xu

i ); θ))

exp(−sk)
≥ 1

Therefore, the closed-formed solution for our objective function is Eq.(14).

B. Implementation Details
In all experiments, we adopt the Wide ResNet-28-2 as the backbone. We train the model with batch size 64 for 218 training
iterations. For training with semi-supervised learning algorithms, we adopt Adam optimizer with a learning rate of 2× 10−3.
For the hyper-parameters of Adam, we use β1 = 0.9, β2 = 0.999 and ϵ = 10−8 which is the default choice. The exponential
moving average (EMA) technique is applied with a decay rate of 0.999. For training with re-balancing algorithms, we use
SGD with a learning rate of 0.1, momentum 0.9, and weight decay 5× 10−4. The learning rate of SGD decays by 0.01 at
the time step 80% and 90% iterations. For all algorithms, we evaluate the model on the test dataset every 512 iterations and
record the average test accuracy of the last 20 evaluations. Mean ± std accuracy over five random runs is reported. All
experiments are conducted on Tesla V100 GPUs.

For Mean-Teacher, the consistency coefficient λu is set to 50 and the EMA model used for the evaluation is reused for the
consistency regularization. We ramped up the consistency coefficient starting from 0 to λu using a sigmoid schedule so
that it achieves the maximum value at 1.0 × 105 iterations. For MixMatch, we set temperature T as 0.5, the number of
augmentation K as 2, the parameter for beta distribution α as 0.75, and the consistency coefficient λu as 75. The consistency
coefficient is linearly increased to λu started from 0. For ReMixMatch, we set K = 2 for the number of augmentations to
balance the improvement from an augmentation anchoring and a computational cost, suggested by (Kim et al., 2020). We
use RandAugment as a strong augmentation. Other hyper-parameters are as same as the original paper. For FixMatch, we
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use µ = 2 to determine the ratio of unlabeled data and set λu = 1, τ = 0.95 as the original paper. For DARP, we adopt the
the official code and recommended parameters1. For cReST, we set the hyper-parameter as the original paper. FixMatch is
adopted as the backbone SSL algorithm for DARP and cReST. For our Adsh we set τ1 = 0.95 as FixMatch and update s
every 512 iterations.

C. Combination of Class-Imbalanced Learning and SSL
We also conduct experiments by combining the class-imbalanced learning method and SSL methods. Specifically, we
examine Adsh and FixMatch by combining with the classifier re-training (cRT) algorithm (Kang et al., 2020), which is a
recently introduced state-of-the-art re-balancing algorithm for the class-imbalanced dataset. These algorithms are denoted by
"FixMatch + cRT" and "Adsh+ cRT", respectively. Table 3 summarized the performance of FixMatch and Adsh with/without
cRT. From the results, we can observe that combining with cRT can further the performance of Adsh. Moreover, with cRT,
our proposal Adsh still achieves better performance than FixMatch.

Table 3. Comparison of classification performance (Accuracy (%)) on imbalanced CIFAR-10 dataset under three different class-imbalance
ratio γ = γl = γu. The best results are indicated in bold.

Imbalanced CIFAR-10
Algorithm γ = 50 γl = 100 γl = 150
Supervised 65.23 ± 0.05 58.94 ± 0.13 55.63 ± 0.38

cRT 67.82 ± 0.14 63.43 ± 0.45 59.56 ± 0.44
FixMatch 79.10 ± 0.14 71.50 ± 0.31 68.47 ± 0.15

Adsh 83.38 ± 0.06 76.52 ± 0.35 71.49 ± 0.30
FixMatch + cRT 84.32 ± 0.40 78.39 ± 0.45 73.26 ± 0.23

Adsh + cRT 86.21 ± 0.24 79.82 ± 0.24 75.48 ± 0.31

1https://github.com/bbuing9/DARP

https://github.com/bbuing9/DARP

