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Abstract

Deep semi-supervised learning (SSL) has been
recently shown very effectively. However, its
performance is seriously decreased when the
class distribution is mismatched, among which
a common situation is that unlabeled data con-
tains some classes not seen in the labeled data.
Efforts on this issue remain to be limited. This
paper proposes a simple and effective safe deep
SSL method to alleviate the harm caused by it. In
theory, the result learned from the new method is
never worse than learning from merely labeled
data, and it is theoretically guaranteed that its
generalization approaches the optimal in the or-
der O(

√
d ln(n)/n), even faster than the conver-

gence rate in supervised learning associated with
massive parameters. In the experiment of bench-
mark data, unlike the existing deep SSL methods
which are no longer as good as supervised learn-
ing in 40% of unseen-class unlabeled data, the
new method can still achieve performance gain
in more than 60% of unseen-class unlabeled data.
Moreover, the proposal is suitable for many deep
SSL algorithms and can be easily extended to
handle other cases of class distribution mismatch.

1. Introduction
Deep neural networks have been reported to achieve com-
petitive or even better performance than human beings
in certain supervised learning tasks (LeCun et al., 2015).
These tasks, however, all meet a basic condition, that is,
have a large number of labeled training data. In many prac-
tical tasks, such condition is difficult to meet, as the acqui-
sition of labeled data comes at a cost, which requires huge
human and financial costs (Zhou, 2017; Oliver et al., 2018),
limiting deep neural network in a broader field.
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Figure 1. One example of class distribution mismatch. Unlabeled
data contains classes that are not seen in the labeled data (indi-
cated with red bounding boxes).

Deep semi-supervised learning (SSL) is proposed to uti-
lize a large number of cheap unlabeled data to help deep
neural networks improve performance, reducing the de-
mand for labeled data. Deep SSL has been reported that
it achieves highly competitive performance to the super-
vised learning model, which saves a lot of labeling costs,
by exploring the structure of unlabeled data, such as intro-
ducing entropy minimization (Grandvalet & Bengio, 2005;
Lee, 2013), consistency regularization (Sajjadi et al., 2016;
Laine & Aila, 2017; Tarvainen & Valpola, 2017), adver-
sarial training (Miyato et al., 2018) and other interesting
techniques (Berthelot et al., 2019).

All of the above positive results, however, are based on a
basic assumption that labeled data and unlabeled data come
from the same distribution. Such an assumption is diffi-
cult to hold in many practical applications, among which
one common case is that unlabeled data contains classes
that are not seen in the labeled data. For example, in web
page classification (Yang et al., 2011), unlabeled web pages
crawled from the Internet according to keywords usually
contain many categories that have not been seen before. In
medical diagnosis (Yang et al., 2015), unlabeled medical
images often contain different foci from the diseases to be
diagnosed. In image classification, as shown in Figure 1,
unlabeled images crawled from Internet/social networking
sites according to keywords usually contain broader cate-
gory concepts than labeled data. Faced with this type of
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Figure 2. The performance of deep SSL decreases significantly as
class mismatches between labeled and unlabeled data increase.

real data, deep SSL no longer works well and may even
be accompanied by severe performance degradation (Oliver
et al., 2018; Chen et al., 2020). That is, deep SSL is even
worse than a simple supervised learning model, as illus-
trated in Figure 2. Such phenomena undoubtedly go against
the expectation of deep SSL and limit its effectiveness in
a large number of practical tasks. However, to our best
knowledge, the efforts on this aspect remain to be limited.

Building a safe SSL, that is to say, SSL using extra un-
labeled data will not be inferior to a simple supervised
learning model, is the Holy Grail of SSL (Chapelle et al.,
2006; Li & Zhou, 2015; Zhou, 2017). Since the problem
was mentioned in (Cozman et al., 2003), there are some
attempts (Singh et al., 2009; Li & Zhou, 2015; Loog,
2015; Li et al., 2017; Krijthe & Loog, 2017; Guo & Li,
2018). For example, (Li & Zhou, 2015) builds safe semi-
supervised SVMs through optimizing the worst-case per-
formance gain given a set of candidate low-density sepa-
rators. (Loog, 2015) proposes to maximize the likelihood
gain over a supervised model in the worst-case for gener-
ative models. (Balsubramani & Freund, 2015) proposes to
learn a robust prediction given that the ground-truth label
assignment is restricted to a specific candidate set. More
introductions to safe SSL can be found in some recent sum-
maries (Li & Liang, 2019; Mey & Loog, 2019; Li et al.,
2019). The existing safe SSL, however, is unsuitable to
the problem studied in the paper, because i) current safe
SSL studies typically assume that labeled data and unla-
beled data share the same distribution; ii) it works on shal-
low models such as SVM, Logistic Regression. In order to
alleviate the performance degradation of deep SSL caused
by class distribution mismatch, new proposals are desired.

To this end, this paper proposes a simple and effective safe
deep SSL framework DS3L (Deep Safe Semi-Supervised
Learning). Unlike the existing deep SSL, DS3L does not
directly use all unlabeled data, but uses it selectively, and
tracks the effect of the supervised learning model to pre-

vent performance hazards. Specifically, on the one hand,
DS3L weakens unlabeled data with unseen classes, so as to
improve the distribution matching to maintain strong gen-
eralization ability; on the other hand, it strengthens the la-
beled data to prevent performance degradation. The above
considerations are cast as a whole into bi-level optimiza-
tion (Bard, 2013) with efficient algorithms. The effective-
ness of our proposal is demonstrated both theoretically and
empirically. In theory, the result learned from the new
method is never worse than learning from merely labeled
data, and it is theoretically guaranteed that its generaliza-
tion approaches the optimal in the order O(

√
d ln(n)/n),

even faster than the convergence rate in supervised learning
associated with massive parameters. In the experiment of
benchmark data, while the existing deep SSL methods are
no longer as good as supervised learning in 40% of unseen-
class unlabeled data, the new method can still achieve per-
formance gain in more than 60% of unseen-class unlabeled
data. Moreover, the proposal is suitable for any deep SSL
algorithm and can be easily extended to handle other cases
of data distribution mismatch.

2. Brief Introduction to Deep SSL
We first give a brief review to the standard deep SSL in
this section. In the deep SSL task, we are given a set of
training data from an unknown distribution, which includes
n labeled instances Dl = {(x1,y1), · · · , (xn,yn)} and m
unlabeled instances Du = {xn+1, · · · ,xn+m}. Usually,
m � n, x ∈ X ∈ RD, y ∈ Y = {1, · · · , C} where D
is the number of input dimension and C is the number of
output class in labeled data. The goal of deep SSL is to
learn a model h(x; θ) : {X ; Θ} → Y parameterized by
θ ∈ Θ from training data to minimize the generalization
risk R(h) = E(X,Y )[`(h(X; θ), Y )], where ` : Y×Y → R
refers to certain loss function, e.g., mean squared error or
cross entropy loss.

Generalization risk is hard to compute as the data dis-
tribution is unknown. The most classical approach is
to approximate the generalization risk by minimizing the
empirical risk on labeled data, i.e., minθ∈Θ R̂(h) =∑n
i=1 `(h(xi; θ),yi), however, obviously this way ignores

the useful structure of unlabeled data. The way deep SSL
utilizes unlabeled data structures is usually through the in-
troduction of regularization, which is typically formulated
as the following objective.

min
θ∈Θ

n∑
i=1

`(h(xi; θ),yi) + Ω(x; θ) s.t. x ∈ Dl ∪ Du. (1)

where Ω(x; θ) refers to the regularization term.

The design of the regularization term is the key (Oliver
et al., 2018). Early SSL studies mainly used large mar-
gin regularization, Laplacian regularization, etc (Chapelle
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et al., 2006). As the data augmentation continued to ob-
tain practical effects, the adjustment of hyperparameters
and network structure became increasingly critical, con-
sistency regularization that forces the predictive results to
have consistency under various disturbances, became more
and more popular, acting as one of the most important reg-
ularization items in deep SSL. Generally, consistency reg-
ularization is characterized as

Ω(x; θ) = ‖h(perturb(x); θ)− h(x; θ)‖22 (2)

perturb(x) refers to certain stochastic operation. The im-
plementation includes various domain-specific data pertur-
bation strategies, such as rotation, shearing, and Gaussian
noise, as well as various model-specific operations, such as
dropout (Laine & Aila, 2017). To facilitate the computation
and enhance the robustness, Mean-Teacher (Tarvainen &
Valpola, 2017) replaces Eq.(2) with the output of an ensem-
ble model using an exponential moving average of model
parameters. VAT (Miyato et al., 2018) further improves it
by computing an adversarial perturbation that maximally
changes the output class distribution to the input.

On the other hand, as the predictive results are required to
be closer to a priori, much attention has been paid to the
minimum entropy regularization (Grandvalet & Bengio,
2005; Lee, 2013), which aims to prevent the class distri-
bution of predictive results from being too flat and has no
tendency. Formally, it is cast as following

Ω(x; θ) = −
C∑
c=1

h(x; θ)c log(h(x; θ)c) (3)

Obviously, minimum entropy regularization and consistent
regularization could be further combined, and larger per-
formance gain might be expected (Miyato et al., 2018).

Under the same distribution, that is, the unlabeled data and
labeled data share the same distribution, deep SSL methods
obtain significant performance gains for many benchmark
tasks, reducing considerable labeling overhead. However,
once the data distribution turns out to be different, such as
the class distribution does not match as illustrated in Fig-
ure 1, deep SSL can easily fail and even severe performance
degradation may occur. Its effect may be even worse than
a simple supervised learning model (Oliver et al., 2018).

3. The Proposed DS3L Framework
To alleviate the performance degradation caused by class
distribution mismatch, we propose an effective safe deep
SSL framework DS3L. Different from the existing deep
SSL which uses all unlabeled data, DS3L uses it selec-
tively and keeps tracking the effect of the supervised learn-
ing model to prevent performance hazards. Meanwhile,
DS3L uses beneficial unlabeled data as much as possible

to improve generalization performance, preventing perfor-
mance gains from being too conservative. In this section,
we first give the DS3L framework with an efficient algo-
rithm and its complexity analysis, then the effectiveness of
our proposal is demonstrated theoretically.

3.1. Framework Formulation

On one hand, DS3L uses the unlabeled selectively. The
main methodology is to design a weighting function w :
RD → R parameterized by α ∈ Bd that maps an instance
to a weight. Then, DS3L tries to find the optimal θ̂(α) that
minimizes the corresponding weighted empirical risk,

θ̂(α) = min
θ∈Θ

n∑
i=1

`(h(xi; θ),yi) +

n+m∑
i=n+1

w(xi;α)Ω(xi; θ)

(4)
where θ̂(α) is denoted as the model trained with the weight
function parameterized by α.

On the other hand, DS3L keeps tracking supervised perfor-
mance to prevent performance degradation. Specifically,
DS3L requires that the model returned by the weighted
empirical risk process should maximize the generalization
performance, i.e.,

α∗ = argmin
α∈Bd

E(X,Y )[`(h(X; θ̂(α)), Y )] (5)

In real practice the distribution is unknown, similar to the
empirical risk minimization, DS3L tries to find the optimal
parameters α̂ such that the model returned by optimizing
the weighted instance loss, should also have good perfor-
mance on the labeled data which acts as a unbiased and
reliable estimation of the underlying distribution, i.e.,

α̂ = argmin
α∈Bd

n∑
i=1

`(h(xi; θ̂(α)),yi) (6)

To simplify the notation, we denote θ̂(α) as θ̂. Taking both
the Eq.(4) and Eq.(6) into consideration, the objective of
our framework can be formulated as the following bi-level
optimization problem,

min
α∈Bd

n∑
i=1

`(h(xi; θ̂),yi) (7)

s.t.

θ̂ = argmin
θ∈Θ

n∑
i=1

`(h(xi; θ),yi) +

n+m∑
i=n+1

w(xi;α)Ω(xi; θ)

Eq.(7) can be understood by two stages: first, DS3L seeks
the optimal model parameter θ̂ via the weighted empirical
risk minimization, then evaluates it on n labeled instances
and optimizes the weight function parameter α to make the
learned θ̂ to achieve a better reliable performance. Figure 3
illustrates the DS3L framework.
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Figure 3. Illustration of the DS3L framework.

3.2. Optimization Algorithm and Complexity Analysis

Eq.(7) is a bi-level optimization problem (Bard, 2013),
where one optimization problem is nested within another
problem. The inner-level optimization is to find a weighted
empirical risk minimizer model given the training set
whereas the outer-level optimization is to minimize the su-
pervised loss given the learned model. For the sake of sim-
plicity, we denote the outer-level objective asLouter(θ) and
the inner-level objective as Linner(θ, α).

Indeed, in general, there is no closed-form expression of
θ, so it is not possible to directly optimize the upper-level
objective function. The classical approaches for solving bi-
level optimization problems can be categorized as single-
level reduction methods, descent methods and evolutionary
methods (Sinha et al., 2018). However, these methods are
usually inefficient to handle the big data and complex learn-
ing models. To meet the efficiency requirement of the deep
model, we adopt the online approximation based optimiza-
tion method proposed in (Ren et al., 2018). We further give
a more general analysis based on a general weight learning
function instead of directly optimizing the instance weight.

In general cases, we adopt gradient descent methods (or
one of its variants like momentum, RMSProp, Adam, etc.)
to solve the optimal θ̂ approximately. Specifically, the
training procedure can be written as:

θt+1 = θt − ηθ∇θLinner(θt, α) (8)

ηθ is the learning rate for θ, and t indicates the t-th iteration.

After learned the optimal model θ̂, we compute the super-
vised loss and then update the weight parameter α:

αt+1 = αt − ηα∇αLouter(θ̂) (9)

However, calculating the optimal α requires two nested
loops of optimization, i.e., we need to compute the optimal
parameter θ̂ for each αt which needs T×T round iterations.
This is time inefficient and can not handle large-scale data
sets and deep models. To further accelerate the optimiza-
tion, we propose an approximate alternating optimization
method by updating α and θ iteratively.

Updating θ. Once given the parameter αt of weight func-
tion w, the updated θt+1 can be simply optimized as the
common single-level optimization

θt+1 = θt − ηθ∇θLinner(θt, αt) (10)

Updating α. After receiving the parameter θt+1 (an ap-
proximation of θ̂), we can calculate the outer objective, and
update α through

αt+1 = αt − ηα∇αLouter(θt+1) (11)

The main difficulty in Eq.(11) is to solve the bi-level gra-
dient ∇αLouter(θt+1) as α is explicitly beyond the outer
objective. According to the chain rule, we have,

∇αLouter(θt+1) (12)
= ∇αLouter(θt − ηθ∇θLinner(θt, αt))
= ∇θLouter(θt)(−ηθ∇α∇θLinner(θt, αt))

In real practice, we can leverage automatic differentiation
techniques to compute the gradient of Louter(θt+1) w.r.t.
αt. The optimization can be easily implemented using pop-
ular deep learning frameworks such as Pytorch 1 or Tensor-
flow 2. The overall algorithm is summarized in Algorithm 1
and the main computation flowchart is plotted in Figure 4.

1https://pytorch.org/
2www.tensorflow.org

https://pytorch.org/
www.tensorflow.org
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Figure 4. Main flowchart of the proposed DS3L.

Complexity Compared with regular optimization on a
single-level problem, the new method can be regarded as
requiring an extra forward and backward passes of the clas-
sifier network and an extra forward and backward passes
of the weight function to compute the bi-level gradient.
Therefore, compared with the regular training procedures
of deep SSL, DS3L needs approximately 3× training time.

We further analyze the convergence of optimization pro-
cess in DS3L and derive the follow theorem,
Theorem 1. (Convergence.) Suppose the supervised loss
function is Lipschitz-smooth with constant L ≤ 2, and the
supervised loss and unsupervised loss have ρ-bounded gra-
dients, then by following our optimization algorithm, the
labeled loss always monotonically decreases along with the
iteration t, i.e.,

Louter(θt+1) ≤ Louter(θt) (13)

Furthermore, the equality in Eq.(13) holds only when the
gradient of the outer objective respect to α becomes 0 at
some iteration t, i.e.,

Louter(θt+1) = Louter(θt)

if and only if
∇αLouter(θt) = 0

Moreover, we can prove the convergence rate of our opti-
mization method to be O(1/ε2).
Theorem 2. (Convergence Rate.) Suppose the aforemen-
tioned conditions hold, and let the step size ηθ satisfy
ηθ = min{1, kT } for some constant k > 0, such that kT < 1

and ηα = min{ 1
L ,

C√
T
} for some constantC > 0, such that

√
T
C ≤ L. Then, the approximation algorithm can achieve
E[‖∇αLouter(θt)‖22] ≤ ε in O(1/ε2). More specifically,

min
0≤t≤T

E[‖∇αLouter(θt)‖22] ≤ O(
C√
T

)

where C is some constant independent to the convergence
process.

Compared with the analysis procedure in (Ren et al., 2018),
we obtain the same convergence results with a more general
function class.

Algorithm 1 The DS3L Learning Framework
Input: Labeled dataDl = {(x1,y1), · · · , (xn,yn)}, unla-
beled data Du = {xn+1, · · · ,xn+m}, max iterations T .
Output: Learned weight function parameter αT and model
parameter θT .

1: Initialize weights function parameter α0 and model pa-
rameter θ0,

2: for t = 0 to T − 1 do
3: {x,y} ← SampleBatchLabeledData(Dl).
4: {x} ← SampleBatchUnlabeledData(Du).
5: Compute training loss: Linner(θt, αt).
6: Update model: θt+1 = θt − ηθ∇θLinner(θt, αt).
7: Compute supervised loss: Louter(θt+1).
8: Compute gradient: ∇αLouter(θt+1).
9: Update weight: αt+1 = αt − ηα∇αLouter(θt+1).

10: end for

3.3. Theoretical Studies

We first describe the superiority of DS3L over supervised
learning method and previous SSL methods intuitively,

Compared with supervised methods. Supervised meth-
ods that simply optimize θ on labeled data can lead to un-
satisfactory performance as the labeled data is too few to
learn the high-dimensional θ well, whereas, in DS3L, la-
beled data is sufficient to learn a good α which can be con-
structed to be low-dimensional.

Compared with previous SSL methods. Previous SSL
methods that treat all unlabeled instances equally can lead
to performance degradation as unlabeled instances with un-
seen classes could hurt performance, whereas, in DS3L,
the unlabeled data is used selectively according to labeled
data performance that can help achieve safe performance.

Then, in order to show the safeness of DS3L, we analyze
the empirical risk of DS3L compared with simple super-
vised method and obtain the following theorem,

Theorem 3. (Safeness.) Let θSL be the supervised model,
i.e., θSL = arg minθ∈Θ

∑n
i=1 `(h(xi; θ),yi). Define the

empirical risk as:

R̂(θ) =
1

n

n∑
i=1

[`(h(xi; θ),yi)]

Then we have the empirical risk of θ̂ returned by DS3L
to be never worse than θSL that is learned from merely
labeled data, i.e., R̂(θ̂) ≤ R̂(θSL).

Theorem 3 reveals that compared with previous deep SSL
methods, DS3L can achieve safeness in terms of empirical
risk, i.e., the performance is not worse than its supervised
counterpart, with the learned α.
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We further analyze the generalization risk of DS3L based
on (Zhao et al., 2019) to better understand the effect of the
parameter dimension and the size of labeled data to α and
drive the following theorem,

Theorem 4. (Generalization.) Assume that the loss func-
tion is λ-Lipschitz continuous w.r.t. α. Let α ∈ Bd be
the parameter of example weighting function w in a d-
dimensional unit ball. Let n be the labeled data size. Define
the generalization risk as:

R(θ) = E(X,Y )[`(h(X; θ), Y )]

Let α∗ = arg maxα∈Bd R(θ̂(α)) be the optimal parameter
in the unit ball, and α̂ = arg maxα∈A R̂(θ̂(α)) be the em-
pirically optima among a candidate setA. With probability
at least 1− δ we have,

R(θ̂(α∗)) ≤ R(θ̂(α̂)) +
(3λ+

√
4d ln(n) + 8 ln(2/δ))√

n

Theorem 4 establishes that DS3L approaches the opti-
mal weight in the order O(

√
d ln(n)/n). It is noteworthy

that as stated in Theorem 20.6 in (Shalev-Shwartz & Ben-
David, 2014), training an optimal deep supervised model
θ on labeled data is in the order O(

√
D ln(D) ln(n)/n)

(here D denotes the number of parameters in θ). Note that
the dimension d (usually in hundreds) is much smaller than
D (usually in millions for deep neural networks), which
concludes that DS3L enjoys a faster convergence rate than
supervised deep learning based on massive parameters.

In summary, based on theorem 3 and theorem 4, from
both the safeness and generalization, it is reasonable to ex-
pect that DS3L achieves better generalization performance
compared with baseline supervised learning methods.

4. Experiments
To validate the effectiveness of the proposed method, we
conduct experiments on two standard MNIST and CIFAR
benchmarks for semi-supervised image classification using
deep convolutional neural networks (CNNs).

4.1. MNIST Handwritten Digit Recognition Task

MNIST is a standard dataset for handwritten digit classifi-
cation tasks which includes 60, 000 training images of size
28 × 28 and 10, 000 test images. The data set contains 10
classes: digit “1” to digit “10”. Specifically, we select 10
images per class from classes 1-6 to construct the labeled
data set, i.e., 60 labeled data in total, and 30, 000 images
from classes 110 as unlabeled data. We vary the ratio of un-
labeled images from 1-6 to modulate class distribution mis-
match. For example, when the extent of labeled/unlabeled
class mismatch ratio is 0%, all unlabeled data comes from

classes 1-6 while the extent is 50% means half of the un-
labeled data comes from classes 1-6 and the others come
from 7-10.

DS3L is compared with the following state-of-the-art deep
SSL methods,

• Pesudo-Labeling (Lee, 2013): Pseudo-labeling pro-
ceeds by producing “pseudo-labels” for the unla-
beled data using the prediction function itself over the
course of training. Pseudo labels with a class proba-
bility greater than a predefined threshold are used as
the target labels, for the unlabeled data in the standard
supervised loss function.

• Π-Model (Laine & Aila, 2017; Sajjadi et al., 2016):
Π-Model adopts the consistency regularization and
adds a loss term that encourages the distance be-
tween the prediction for an unlabeled instance and its
stochastic perturbation (e.g., data augmentation, ran-
dom noise) to be small.

• Temporal Ensembling (Laine & Aila, 2017): Instead
of the stochastic perturbation in Π-Model, Temporal
ensembling adopts the ensemble of predictions as the
target for the unlabeled instances during the training
process to produce a more stable performance.

• Mean Teacher (Tarvainen & Valpola, 2017): Mean
teacher further improves the target quality for unla-
beled instances by setting the target via an exponential
moving average of parameters from previous training
steps.

• Virtual Adversarial Training (VAT) (Miyato et al.,
2018): Instead of relying on the stochastic perturba-
tion of unlabeled instances, VAT aims to find adver-
sarial disturbances that most affect the output of the
prediction function.

Moreover, we also compare with the supervised learning
method that simply trains a deep neural network on the
small labeled data set as the baseline method.

We adopt a two-layer CNN model as our classifier net-
work which contains two conv2ds with size 1 × 16 × 3
and 16 × 32 × 3, and two MaxPool2ds with size 3, stride
2 and padding 1, and adopt ReLU as the activate func-
tion (Goodfellow et al., 2016). The networks are trained
using stochastic gradient descent (SGD) methods with a
learning rate 1e−3. We train the model for 200,000 updates
with a batch size of 100. The unsupervised loss adopted
in our method is the mean square loss between the pre-
diction of the original image and its noisy version. The
experiments show that our proposal has already achieved
performance gains over compared methods in a clear mar-
gin when the class mismatch ratio is high. It is worth
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Figure 5. Classification accuracy of compared deep SSL tech-
niques and DS3L on MNIST data set (class 1 − 6) with varying
class mismatch ratio between labeled and unlabeled data. Shaded
regions indicate standard deviation over five runs.

noting that the performance of our method can be further
improved by incorporating more advanced deep SSL algo-
rithms and more refined parameter optimization.

The averaged accuracy of deep SSL methods over 5 runs
v.s. the extent of labeled/unlabeled class mismatch is plot-
ted in Figure 5. From Figure 5, we can find that all the
methods are clearly better than the baseline supervised
learning method with the same class distribution. How-
ever, with the aggravation of class distribution mismatch,
the performance of the existing deep SSL method decreases
rapidly. Many deep SSL techniques are even inferior to the
baseline supervised learning method when 40% of the un-
labeled instances come from unseen classes, whereas our
DS3L can still maintain clear performance improvement
in presence of more than 60% of unseen-class unlabeled
instances, i.e., the irrelevant unlabeled instances are even
more than the relevant ones. These empirical results in line
with the theoretical analysis and demonstrate the effective-
ness of DS3L.

4.2. CIFAR Image Classification Task

CIFAR-10 is a benchmark for image classification tasks
which consists of 60, 000 natural images of size of 32× 32
as the training data and 10, 000 as test data. The data
set contains 10 categories: “airline”, “automobile”, “bird”,
“cat”, “deer”, “dog”, “frog”, “horse”, “ship”, “trunk”. In
our experiments, we perform a 6-class classification task
on animal classes (bird, cat, deer, dog, frog, horse) and se-
lect 400 images per class to construct the labeled data set,
i.e., 2,400 labeled examples. Meantime, 20,000 images are
randomly selected from all the 10 classes as the unlabeled
data set. Again we vary the ratio of unlabeled images from
the other four classes to modulate class distribution mis-
match, following the experimental setup on MNIST.

Figure 6. Classification accuracy of compared deep SSL tech-
niques and DS3L on CIFAR-10 data set with varying class mis-
match ratio between labeled and unlabeled data. Shaded regions
indicate standard deviation over five runs.

For CIFAR-10, we adopt a Wide ResNet-28-10 (Zagoruyko
& Komodakis, 2016) as our classifier network. In ad-
dition, we apply global contrast normalization and ZCA-
normalized the inputs using statistics calculated on the
CIFAR-10 training set. ZCA normalization is a widely-
used preprocessing step for CIFAR-10. We also adopt data
augmentation techniques including random horizontal flip-
ping, random translation by up to 2 pixels, and Gaussian
input noise with a standard deviation 0.15. Like the exper-
iment on MNIST, we adopt the mean square loss between
the prediction of original image and its noisy version as
the unsupervised loss. We train the network for 500,000
updates with a batch size of 100. We adopt Adam as the
optimization algorithm with the initial learning rate 3e−4

and weight decay factor 0.2 after 400,000 iterations.

The experimental results are shown in Figure 6. We can ob-
serve a similar result, that is, our method achieves satisfac-
tory performance under different degrees of class distribu-
tion mismatch. Unlike many deep SSL techniques that are
inferior to baseline supervised learning method with 40%
unseen-class unlabeled data, DS3L achieves the best per-
formance with the simple unsupervised regularization term
even in more than 60% class mismatch ratio. All these re-
sults demonstrate that our proposed DS3L is very effective
against the harm caused by class distribution mismatch.

4.3. Universality for Various Deep SSL

Previous results reveal that the proposed DS3L conducted
on one simple deep SSL model achieves promising perfor-
mance with varying class mismatch ratio between labeled
and unlabeled data. To further demonstrate the flexibility
of DS3L that can be used for any deep SSL model, we re-
port the results of DS3L incorporated with four kinds of
deep SSL methods (i.e., Π-Model, Temporal Ensembling,
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Figure 7. Classification accuracy of DS3L incorporated with four
deep SSL methods on MNIST data set.

Mean Teacher and VAT) in Figure 7 and Figure 8. The
experimental setup is the same as we previously describe.
We further verify that the DS3L achieves safe performance
with all kinds of deep SSL methods, that is, performs supe-
rior to the baseline supervised learning method in all cases.
This result demonstrates the flexibility of DS3L.

4.4. Unseen-Class Unlabeled Data Identification

To further quantify the identification ability of our method
in unseen-class unlabeled data, our proposal is compared
with the probability estimation method on MNIST and
CIFAR-10 data sets. Similar to Pseudo-Label, the proba-
bility estimation method (Hendrycks & Gimpel, 2017) uses
the labeled data to get the class distribution of each unla-
beled data, and then calculates the probability of belonging
to the known classes through softmax. Examples with low
predicted probability can be treated as unseen-class unla-
beled examples. The AUC value can be used to measure
the identification ability, by treating the unseen-class unla-
beled data as a negative class and the others as a positive
one. Table 1 shows the experimental results under different
class mismatch ratios. It can be seen that compared with
the probabilities based method our proposal consistently
reduces the misclassification rate in unseen-class unlabeled
data identification.

5. Conclusion
In this paper we tackle an important problem of deep SSL,
that is, performance degradation in the presence of unseen-
class in the unlabeled data. We propose a novel safe deep
SSL framework DS3L. The effectiveness of our proposal is
demonstrated both theoretically and empirically. In theory,
the new model is never worse than learning from merely
labeled data in term of the empirical risk, and the conver-
gence rate to its optimal generalization is faster than su-

Figure 8. Classification accuracy of DS3L incorporated with four
deep SSL methods on CIFAR-10 data set.

Table 1. (1-AUC)% for unseen-class data identification.

Data set Ratio Probabilities DS3L
0.1 4.33 ± 0.29 1.67 ± 0.04

MNIST
0.2 4.78 ± 0.41 0.53 ± 0.23
0.3 4.57 ± 0.33 1.19 ± 0.19
0.4 4.73 ± 0.35 1.50 ± 0.20
0.5 5.67 ± 0.43 2.31 ± 0.13
0.6 7.32 ± 0.51 3.57 ± 0.32
0.1 7.69 ± 0.67 4.37 ± 0.48

CIFAR-10
0.2 7.99 ± 0.63 5.34 ± 0.41
0.3 7.67 ± 0.72 5.33 ± 0.43
0.4 8.37 ± 0.75 5.19 ± 0.47
0.5 9.77 ± 0.88 6.51 ± 0.39
0.6 15.03 ± 1.03 10.47 ± 0.78

pervised learning with a large number of parameters. Em-
pirical studies show that, unlike many deep SSL meth-
ods which are inferior to supervised learning in 40% of
the unseen-class unlabeled data, the new method can still
achieve performance gain in more than 60% of the unseen-
class unlabeled data, which is in line with the theoretical
results. The proposal is flexible to various deep SSL algo-
rithms and other cases of class distribution mismatch.

There may be many possible studies in the future, for ex-
amples, new data types such as tabular data (Shavitt & Se-
gal, 2018) and new deep models such as deep forest (Zhou
& Feng, 2017). Beyond this work, it is also worthwhile
to build a more complete theoretical and methodological
framework for weakly supervised learning (Zhou, 2017).
In addition, the integration of this research with the open
environment is also very interesting, consist of many re-
search problems.

The code for the work is readily available and freely down-
loaded at https://www.lamda.nju.edu.cn/code DS3L.ashx.

www.lamda.nju.edu.cn/code_DS3L.ashx
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