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ABSTRACT

In multi-label tasks, sufficient and class-balanced label is usually
hard to obtain, which makes it challenging to train a good classifier.
In this paper, we consider the problem of learning from imbalanced
and incomplete supervision, where only a small subset of labeled
data is available and the label distribution is highly imbalanced.
This setting is of importance and commonly appears in a variety
of real applications. For instance, considering the ride-sharing lia-
bility judgment task, liability disputes usually due to a variety of
reasons, however, it is expensive to manually annotate the reasons,
meanwhile, the distribution of reason is often seriously imbalanced.
In this paper, we present a systemic framework Limi consisting of
three sub-steps, that is, Label Separating, Correlation Mining and La-
bel Completion. Specifically, we propose an effective two-classifier
strategy to separately tackle head and tail labels so as to alleviate
the performance degradation on tail labels while maintaining high
performance on head labels. Then, a novel label correlation network
is adopted to explore the label relation knowledge with flexible ag-
gregators. Moreover, the Limi framework completes the label on
unlabeled instances in a semi-supervised fashion. The framework
is general, flexible, and effective. Extensive experiments on diverse
applications, such as the ride-sharing liability judgment task from
DiDi and various benchmark tasks, demonstrate that our solution
is clearly better than many competitive methods.
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1 INTRODUCTION

Learning from multi-label data (multi-label learning) [33], where
each training instance is associatedwithmultiple labels, has achieved
great success in many real-world applications. These successful
techniques typically require training data with sufficient and class-
balanced supervised information. However, it is often the case that
such strong supervision is hard to obtain due to the expensive cost
of the labeling process. Therefore, it is desired to facilitate the learn-
ing system with the capability of multi-label learning from weak
supervision.

We consider the problem of learning from imbalanced and incom-
plete supervision. Specifically, only a small subset of training data
is observed with labels while the others remain unlabeled. Mean-
while, the given labels might be class-imbalanced. This setting is
crucial since it commonly occurs in many real-world applications.
For example, in DiDi ride-sharing liability judgment task [9], when
liability disputes occur, the platform needs to decide whether the dri-
ver is responsible and predict all related decidendi reasons to make
the decision convincing. As there are a large number of disputes
that occur, it is not possible to label all data, and meanwhile, there is
a severe class-imbalance problem since some decidendi reasons are
more often encountered than others. Similar situations also occur in
the image classification task, where the frequency distribution of vi-
sual categories in our daily life is inherently long-tailed [18, 26] and
we usually lack the resources to create a sufficiently large images
dataset [11, 19]. We illustrate the problem in Figure 1.

These two issues have been studied separately in the area of
Class-Imbalanced Multi-Label Learning (CIMLL) [21, 26, 32] and
Semi-Supervised Multi-Label Learning (SSMLL) [6, 23, 24]. For im-
balanced supervision, CIMLL approaches manage to re-weight the
loss function or re-sample the classes in order to resist the im-
balance problem. However, they need sufficient labeled data and
cannot utilize numerous unlabeled data. For incomplete supervi-
sion, SSMLL approaches leverage unlabeled data and limited labeled
data to construct the multi-label predictor. However, when the label
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Figure 1: A simple 2-dimensional multi-label dataset with a

small number of labeled data (left) and a large number of un-

labeled data (right). The dataset concerns points in a plane

characterized by three labels, namely the shape of the points

(triangles, circles) and the color of the points (green, red). At

the bottom,we see the four different label combinations that

exist in the dataset. The dataset is also class imbalanced be-

cause the numbers of relevant instances for the three labels

are 13, 7, 2 respectively.

distribution is imbalanced, these approaches suffer severe perfor-
mance degradation problems. Therefore, it is much appreciated
for approaches that are able to deal with the class-imbalanced and
unlabeled data simultaneously.

There lack of relevant studies for the problem of learningwith im-
balanced and incomplete supervision simultaneously, where there
are a vast number of unlabeled data and a limited number of class-
imbalanced labeled data. This problem turns out quite challenging
and it is not trivial to combines the advantages of CIMLL and
SSMLL approaches to address this problem. For traditional CIMLL
approaches, on one hand, labeled data are insufficient to estimate
the underlying class-imbalance ratio which is essential for these
approaches. On the other hand, these approaches are not able to
access label information from unlabeled data, and thus cannot lever-
age the incomplete supervision to alleviate the class imbalance. For
traditional SSMLL approaches, to handle a vast number of unla-
beled data, an underlying assumption is that the label distribution
should be balanced. Otherwise, the imbalanced label distribution
can significantly mislead the learning system. For instance, we
present the results of state-of-the-art CIMLL approach DBL [26],
SSMLL approach DRML [23] and a simple combination of these
two approaches DRML+DBL in Figure 2. We can see that all these
methods suffer from performance degradation issues compared to
the simple baseline method that directly trains a fully connected
neural network by minimizing the binary cross-entropy (BCE) loss.

To address this challenging yet realistic problem, we propose a
novel framework Limi (Learning IMbalanced and Incomplete super-
vision) in this paper. Limi is consisted of three sub-modules: label
separating, correlation mining and label completion. Specifically, we
deploy two models to deal with head labels (frequently occurring
labels) and tail labels (infrequently occurring labels) separately in
order to alleviate the performance degradation on tail labels while
maintaining high performance on head labels. Then, after obtain-
ing the separate prediction results, a novel label correlation net-
work is proposed to explore the label correlation knowledge which

is of paramount importance for multi-label data. Meanwhile, the
framework can incorporate different semi-supervised assumptions
flexibly to exploit the unlabeled instances. Extensive experimental
results on diverse real applications, such as the ride-sharing liability
judgment tasks from DiDi and various benchmark tasks, clearly
demonstrate the effectiveness of our framework.

We summarize our main contributions as following:
(1) We study the problem of learning from imbalanced and in-

complete supervision simultaneously, which occurs in many
real-world applications but has rarely studied.

(2) We propose a novel systemic multi-label learning framework
Limi, which is able to address the class imbalance effectively,
explore label correlation generically and utilize unlabeled
instances flexibly.

(3) We conduct extensive empirical studies on both real-world
applications and benchmark datasets to show the superiority
of our proposed framework.

In the following, we first review several relatedworks in section 2,
then present the technical details of the proposed Limi framework in
section 3. Next, we report the empirical results in section 4. Finally,
we conclude this paper.

Figure 2: Experiments on DiDi liability judgment data set

with 2,000 labeled data and 18,000 unlabeled data. The data

set is highly class imbalanced. Two representative multi-

label metrics hamming loss and ranking loss are reported.

2 RELATEDWORK

Our paper is related to two branches of studies, that is, class-
imbalanced multi-label learning and semi-supervised multi-label
learning.

Class-imbalanced learning solves the problemwhere the training
data has a high skewed label distribution [15]. Existing methods
for dealing with the class imbalance problem in multi-label data
can be separated into two lines: multi-label re-sampling and label
re-weighting. The first line tries to reduce the imbalance level of
multi-label data via under-sampling or over-sampling techniques as
a pre-processing step. For example, MLRUS [3] omits instances with
head labels randomly to alleviate the imbalance in each individual
label. As a twin method of MLRUS, MLROS [3] increases the fre-
quency of tail labels by replicating instances relevant to tail labels



Figure 3: The proposed Limi framework. 𝐶ℎ (·) and 𝐶𝑡 (·) are two models to address head and tail labels separately. The two

separate predictions from 𝐶ℎ (·) and 𝐶𝑡 (·) are forwarded to the label correlation network 𝐶𝑅 (·) to further explore the label

relations and we provide two aggregation choices for label correlationmining. After getting the final prediction, unsupervised

regularization based on different semi-supervised assumptions is adopted to exploit unlabeled instances.

in each label. MLeNN [2] is an undersampling algorithm based on
the ENN (Edited Nearest Neighbor) rule. To reduce the risk of over-
fitting caused by replicating instances, MLSMOTE [4] generates the
classical SMOTE algorithm to multi-label data by randomly select
instances containing tail labels, along with its neighbors, to gener-
ate synthetic instances. The second line focuses on the multi-label
learning algorithm handling different classes by different weights.
For example, COCOA [32] converts the original multi-label data to
several multi-class datasets for each label and builds imbalance clas-
sifiers with the assistance of weighting for each dataset. SOSHF [5]
transforms the multi-label data to an imbalanced single label classi-
fication assignment via cost-sensitive clustering and the new task
is addressed by oblique structured Hellinger decision trees. [26]
proposed a modified distribution balance BCE loss that takes the
label co-occurrence into consideration and achieved SOTA perfor-
mance in long-tailed multi-label datasets. However, these methods
need a large number of labeled data to estimate the class imbalance
ratio and could not perform well in the semi-supervised scenario.

Semi-supervised learning aims to improve the learning perfor-
mance by utilizing labeled as well as unlabeled data simultaneously.
[17] formulated the semi-supervised multi-label learning problem
as a constrained non-negative matrix factorization problem by as-
suming that similar instances should have similar predicted labels.
[25] took advantage of label correlation in labeled instances and of
maximum-margin regularization over unlabeled instances to opti-
mize linear predictors. [22] introduced the SMILE method which
uses a graph to embody both labeled and unlabeled instances and
trains a graph-regularized semi-supervised linear classifier. [28, 31]
adapted the co-training approach to multi-label data which opti-
mize two disjoint feature views by maximizing the diversity and
iteratively communicates the pairwise ranking predictions of either
classifier o unlabeled instances. [23] introduced a DRML approach
that jointly explores the feature distribution and the label relation
simultaneously by adopting a domain adaptation strategy and gen-
erating pseudo labels for unlabeled data. However, these methods
ignore the inherent class imbalance problem and could suffer severe
performance degradation problem.

Table 1: Summary of Notations.

Notation Meaning
𝑛 Number of labeled instances
𝑚 Number of unlabeled instances
𝑘 Number of labels
x ∈ X = R𝑑 Feature vector of instances
y ∈ Y = {0, 1}𝑘 Ground-truth label of instances
ŷ ∈ Y Predicted label of instances
𝑅𝑖 Aggregated result of 𝐶ℎ (x𝑖 ) and 𝐶𝑡 (x𝑖 )
𝑓 : X → Y Learned function
𝐶ℎ (x) ∈ [0, 1]𝑘 Predicted probabilities of head model
𝐶𝑡 (x) ∈ [0, 1]𝑘 Predicted probabilities of tail model
𝑓 (x) ∈ [0, 1]𝑘 Predicted probabilities of Limi framework

3 LEARNING FROM IMBALANCED AND

INCOMPLETE SUPERVISION

In this section, we propose a systemic framework Limi to deal
with multi-label data with imbalanced and incomplete supervision.
Three major challenges to the class-imbalanced semi-supervised
multi-label data are i) The tail labels with insufficient instances are
difficult to learn reliably. How to avoid performance degradation
on tail labels? ii) The label correlation is essential for the perfor-
mance of multi-label learning algorithms. How to explore the label
correlation knowledge effectively? iii) The labeled instances are
insufficient to learn a good model. How to make use of unlabeled
data to improve performance? Limi provides a systemic solution
consisting three main modules, label separating, correlation mining
and label completion. We first present some notations used in the
following and then describe the detail of the main techniques.

3.1 Preliminaries

LetX = R𝑑 be a 𝑑-dimensional input feature space andY = {0, 1}𝑘
a 𝑘-dimensional label space. Given D𝑙 = {X𝑙 ,Y𝑙 } = {(x𝑖 , y𝑖 ) |1 ≤
𝑖 ≤ 𝑛} be the labeled training data containing 𝑛 instances. X𝑙 ∈



R𝑛×𝑑 is the feature matrix and Y𝑙 ∈ {0, 1}𝑛×𝑘 is the label matrix.
Each instance (x𝑖 , y𝑖 ) consists of a feature vector x𝑖 ∈ X and a
label vector y𝑖 ∈ Y. 𝑦 𝑗

𝑖
= 1(0) indicates that 𝑗-th label is (not)

relevant with the 𝑖-th instance. Meanwhile, we have unlabeled
dataset D𝑢 = {X𝑢 } = {x𝑖 |𝑛 + 1 ≤ 𝑖 ≤ 𝑛 +𝑚} that contains 𝑚
unlabeled instances andX𝑢 ∈ R𝑚×𝑑 . The goal is to learn a mapping
function 𝑓 : X → Y such that for an unseen instance x ∈ X, one
predicts its label vector ŷ ∈ Y correctly.

3.2 Label Separating

For the class-imbalanced problem, simply train a model on all data
is sub-optimal as the model under-fits for tail labels, leading to low
performance. Re-sampling or re-weighting on the whole dataset can
alleviate the performance degradation to a certain extent. However,
these methods need a large number of labeled instances to estimate
the class imbalance ratio and therefore could not perform well with
incomplete supervision. To alleviate the discrepancy between head
and tail labels, we design a two-classifier strategy that treats head
and tail labels with different techniques for the reason that it is
difficult to maintain satisfying performance on all labels with a
single model when the labeled data is scarce.

Specifically, for head labels, we can simply train a neural network
𝐶ℎ (·) by minimizing the standard BCE loss, for the reason that
the model trained with original imbalanced label distribution will
naturally lead to good performance for head labels. The objective
can be written as:

min
𝐶ℎ

ℓℎ (𝐶ℎ (X𝑙 ),Y𝑙 ) = 𝐵𝐶𝐸 (𝐶ℎ (X𝑙 ),Y𝑙 ) (1)

ℓℎ indicates the loss function for head model and

𝐵𝐶𝐸 (𝐶ℎ (x𝑖 ), y𝑖 ) =
1
𝑘

𝑘∑
𝑗=1

[𝑦 𝑗
𝑖
log(𝐶ℎ (x𝑖 ) 𝑗 )+(1−𝑦

𝑗
𝑖
) log(1−𝐶ℎ (x𝑖 ) 𝑗 )]

(2)
where 𝐶ℎ (x𝑖 ) ∈ [0, 1]𝑘 is the predicted label vector for instance x
of head model, and 𝐶ℎ (x𝑖 ) 𝑗 indicates the predicted probability that
whether x𝑖 is relevant with label 𝑗 , 𝑦 𝑗

𝑖
is the true label of instance

x𝑖 on label 𝑗 .
For tail labels, we propose to re-weight the loss function to

improve their performance. It is noteworthy that it is much easier
to achieve good performance only on tail labels by re-weighting
method comparedwith performingwell on all labels simultaneously.
Without taking label co-occurrence into consideration, for each
instance 𝑖 and class 𝑗 with 𝑦

𝑗
𝑖
= 1, the expectation of class-level

sampling frequency can be calculated as:

𝑃𝐶𝑗 (𝑥𝑖 ) =
1
𝑘

1
𝑛 𝑗

(3)

where 𝑛 𝑗 denote the number of training instances that relevant
with label 𝑗 .

However, in the multi-label scenario, simply re-weighting strate-
gies based on the label frequency could not work well because an
instance usually contains several ground-truth labels and makes the
re-weighting strategy for labels no longer independent. Therefore,
in addition to the class-level sampling frequency, we also consider
the instance-level sampling frequency. For an instance 𝑥𝑖 and it

corresponding label vector 𝑦𝑖 , it is supposed to be repeatedly sam-
pled by each positive label 𝑗 it contains, thus the expectation of
instance-level sampling frequency can be estimated as:

𝑃 𝐼 (𝑥𝑖 ) =
1
𝑘

∑
𝑦
𝑗

𝑖
=1

1
𝑛 𝑗

(4)

Correspondingly, we can calculate a re-balancing weight 𝑟 𝑗
𝑖
to

close the gap between expected sampling times and actual sampling
times:

r𝑗
𝑖
=
𝑃𝐶
𝑗
(x𝑖 )

𝑃 𝐼 (x𝑖 )
(5)

Therefore, the tail model can be trained by minimizing the fol-
lowing re-weighted BCE loss:

ℓ𝑡 (𝐶𝑡 (X𝑙 ), 𝑌𝑙 ) =
1
𝑛𝑘

𝑛∑
𝑖=1

𝑘∑
𝑗=1

𝐵𝐶𝐸 (x𝑖 , 𝑦 𝑗𝑖 ) · 𝑟
𝑗
𝑖

(6)

In this way, the separate predicted results of the head-model
𝐶ℎ (·) and the tail-model 𝐶𝑡 (·) could be obtained by optimizing the
following objective:

min
𝐶ℎ,𝐶𝑡

ℓℎ (𝐶ℎ (𝑋𝑙 ), 𝑌𝑙 ) + ℓ𝑡 (𝐶𝑡 (𝑋𝑙 ), 𝑌𝑙 ) (7)

3.3 Correlation Mining

Averaging these two outputs from classifier 𝐶ℎ (·) and 𝐶𝑡 (·) is a
straightforward to obtain the final prediction. However, it is well-
known that label correlation is crucial to further improve the learn-
ing performance for multi-label problems [33]. To this end, we
further propose a novel and effective label-level correlation net-
work, 𝐶𝑅 (·) with two flexible aggregators to automatically explore
the label correlation knowledge:
Addition Aggregator. Our first candidate aggregator function is
the addition aggregator, where we take a weighted sum of the two
prediction results 𝐶ℎ (x) and 𝐶𝑡 (x) and obtain

𝑅𝑖 = wℎ𝐶ℎ (x𝑖 ) +w𝑡𝐶𝑡 (x𝑖 ) (8)

The obtained 𝑅𝑖 ∈ R1×𝑘 is then transformed into a new label
space to obtain the final prediction result 𝐶𝑅 (𝑤ℎ𝐶ℎ (x) +𝑤𝑡𝐶𝑡 (x)).
And the weight𝑤 and parameter of 𝐶𝑅 (·) can be optimized simul-
taneously.

The label correlation network𝐶𝑅 (·) with the addition aggregator
can be regarded as a label projection that projects the label vector
into a new label space and allows us to compute label difference in
the new space.
Multiplication Aggregator. We also examine a more complex
aggregator by multiplying the transposition of 𝐶ℎ (x) and C𝑡 (x)
and obtain

𝑅𝑖 = 𝐶ℎ (x𝑖 )⊤ ×𝐶𝑡 (x𝑖 ) (9)
where 𝑅𝑖 ∈ R𝑘×𝑘 is the correlation matrix.

The obtained 𝑅𝑖 is reshaped to a R1×𝑘
2
vector and forwarded to

a fully connected relation network 𝐶𝑅 (·). 𝐶𝑅 (·) further returns the
final multi-label prediction result based on 𝑅𝑖 .

The multiplication aggregator can be considered as a dot-product
similarity metric of the pairwise labels [23]. Thus, 𝐶𝑅 (·) explores
the latent correlation knowledge residing inside the training data
based on the obtained similarities and further refine the predicted
results from 𝐶ℎ (·) and 𝐶𝑡 (·) to improve the performance.



After obtaining the predicted result, the objective of the correla-
tion network can be written as:

min
𝐶𝑅

ℓ𝑅 (𝐶𝑅 (X𝑙 ,Y𝑙 )) = 𝐵𝐶𝐸 (𝐶𝑅 (𝑅𝑖 ),Y𝑙 ) (10)

In the training procedure, 𝐶𝑅 (·) is trained simultaneously with
𝐶ℎ (·) and 𝐶𝑡 (·), i.e.,

min
𝐶𝑅 ,𝐶ℎ,𝐶𝑡

ℓℎ + ℓ𝑡 + ℓ𝑅 (11)

Empirical evidences show that for extreme multi-label data (i.e.,
multi-label classification with many labels), the addition aggregator
can achieve better performance while multiplication aggregator
can explore the label correlation more effectively when the label
dimension is not very high.

3.4 Label Completion

The above framework can be easily deployed for labeled samples.
Meanwhile, how to exploit a large number of unlabeled instances
is also an essential part in our setting. To utilize the information
behind unlabeled data safely, we should adopt suitable assump-
tions for different data set structures, otherwise, semi-supervised
algorithms could suffer performance degradation problem [16]. We
consider two commonly used semi-supervised regularizations based
on different assumptions:
Consistency Regularization: The most commonly used regular-
ization for unlabeled instances is the consistency regularization,
which is derived from the manifold assumption that two instances
tend to have a large overlap in their assigned label memberships if
they share high similarity in their input patterns [17].

Specifically, let the instance similarity matrix be S that can be
defined with RBF kernel, i.e., 𝑆𝑖 𝑗 = exp −∥x𝑖−x𝑗 ∥2

2𝜎2 . Denote the final
predicted probability of our framework for instance x is 𝑓 (x), i.e.,
𝑓 (x) = 𝐶𝑅 (𝐶ℎ (x),𝐶𝑡 (x)), the unsupervised regularization term
can be written as:

ℓ𝑢 (X) =
1
2

𝑛+𝑚∑
𝑖=1

𝑛+𝑚∑
𝑗=1

(S𝑖 𝑗 ) (𝑓 (x𝑖 ) − 𝑓 (x𝑗 ))2 (12)

= 𝑓 (X)⊤L𝑓 (X)

where X = [X𝑙 ,X𝑢 ], L = D− S is the Laplacian matrix of S and D is
a diagonal matrix with elements 𝐷𝑖𝑖 =

∑𝑛+𝑚
𝑗=1 𝑆𝑖 𝑗 , 𝑖 = 1, · · · , 𝑛 +𝑚.

LargeMargin Principle: According to the No Free Lunch Theorem,
we know that there is no algorithm suitable for all data sets. For
some data set that does not satisfy manifold assumption, large
margin principle is another common choice. Large margin principle
is based on the underlying assumption that the classifier’s decision
boundary should not pass through high-density regions of the
marginal data distribution [1, 10].

Specifically, we adopt the hinge loss function𝐻 (𝑡) = max(0, 1−𝑡)
to evaluate the loss on unlabeled instances. Different from binary
classification task, we need to compute the hinge loss on every
single label as following:

ℓ𝑢 (X) =
𝑛+𝑚∑
𝑖=1

𝑘∑
𝑗=1

𝐻 (2 ∗ |𝑓 (x𝑖 ) 𝑗 − 0.5|) (13)

Table 2: Definition of 9 Multi-Label Performance Metrics

Measure Formulation

Hamming loss 1
𝑁𝐾

∑𝑁
𝑖=1

∑𝐾
𝑗=1 I(𝑦𝑖 𝑗 ≠ 𝑦𝑖 𝑗 )

Ranking Loss 1
𝑁

∑𝑁
𝑖=1

|S𝑖
𝑟𝑎𝑛𝑘

|
|𝑌 +
𝑖 · | |𝑌−

𝑖 · |

One Error 1
𝑁

∑𝑁
𝑖=1 I(argmax 𝑓 (𝑥𝑖 ) ∉ 𝑌+

𝑖 · )

Coverage 1
𝑁

∑𝑁
𝑖=1 I(max𝑗 ∈𝑌 +

𝑖 ·
𝑟𝑎𝑛𝑘𝑓 (x𝑖 , 𝑗) − 1)

Average Precision 1
𝑁

∑𝑁
𝑖=1

1
|𝑌 +
𝑖 · |

∑
𝑗 ∈𝑌 +

𝑖 ·

|S𝑖 𝑗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

|
𝑟𝑎𝑛𝑘𝑓 (x𝑖 , 𝑗)

Macro AUC 1
𝐾

∑𝐾
𝑗=1

|S 𝑗𝑚𝑎𝑐𝑟𝑜 |
|𝑌 +

·𝑗 | |𝑌−
·𝑗 |

Micro AUC |S𝑚𝑖𝑐𝑟𝑜 |
(∑𝑁𝑖=1 |𝑌 +

𝑖 · |) · (
∑𝑁
𝑖=1 |𝑌−

𝑖 · |)

Macro F1 1
𝐾

∑𝐾
𝑗=1

2
∑𝑁
𝑖=1 𝑦𝑖 𝑗 𝑦̂𝑖 𝑗∑𝑁

𝑖=1 y𝑖 𝑗+
∑𝑁
𝑖=1 ŷ𝑖 𝑗

Micro F1
2
∑𝐾
𝑗=1

∑𝑁
𝑖=1 𝑦𝑖 𝑗 𝑦̂𝑖 𝑗∑𝐾

𝑗=1
∑𝑁
𝑖=1 𝑦𝑖 𝑗+

∑𝐾
𝑗=1

∑𝑁
𝑖=1 𝑦̂𝑖 𝑗

S𝑖
𝑟𝑎𝑛𝑘

= {(𝑢, 𝑣) |𝑓 (x𝑖 )𝑢 ≤ 𝑓 (x𝑖 )𝑣, (𝑢, 𝑣) ∈ 𝑌+
𝑖 · × 𝑌−

𝑖 · }

S𝑖 𝑗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= {𝑘 ∈ 𝑌+
𝑖 · |𝑟𝑎𝑛𝑘𝑓 (x𝑖 , 𝑘) ≤ 𝑟𝑎𝑛𝑘𝑓 (x𝑖 , 𝑗)}

S 𝑗𝑚𝑎𝑐𝑟𝑜 = {(𝑎, 𝑏) ∈ 𝑌+
· 𝑗 × 𝑌−

· 𝑗 |𝑓 (𝑥𝑎) 𝑗 ≥ 𝑓 (𝑥𝑏 ) 𝑗 }

S𝑚𝑖𝑐𝑟𝑜 = {(𝑎, 𝑏, 𝑖, 𝑗) | (𝑎, 𝑏) ∈ 𝑌+
·𝑖 × 𝑌−

· 𝑗 , 𝑓 (x𝑎)𝑖 ≥ 𝑓 (x𝑏 ) 𝑗 }

By optimizing the above unsupervised regularization term, the
decision boundary is pushed to less dense areas and result in a large
margin classifier.

Overall, our framework Limi contains three modules𝐶ℎ (·),𝐶𝑡 (·)
and𝐶𝑅 (·), which are jointly optimized by minimizing the following
objective:

min
𝐶ℎ,𝐶𝑡 ,𝐶𝑅

ℓℎ + ℓ𝑡 + ℓ𝑅 + 𝜆ℓ𝑢 (14)

where 𝜆 is a trade-off hyper-parameter that balances the contri-
bution of supervised and unsupervised loss functions. The overall
framework is illustrated in Figure 2.

4 EXPERIMENTS

In this section, we conduct extensive experiments on a real-word
industrial applications and various benchmark tests to evaluate the
effectiveness of the proposal Limi approach.

4.1 Experimental Setup

Compared Methods. The proposed approach is compared with
a number of methods. First, we conduct a baseline FCN method,
which directly train a Fully Connected Network by minimizing the
standard BCE loss. Then, we evaluate a representative SOTA multi-
label learning method CAMEL [8], which is a novel multi-label
learning approach that first learn the label correlations via sparse
reconstruction in the label space, and then integrate the learned
label correlations into model training. We also compare with two
SOTA class-imbalanced multi-label learning methods: a) DBL [26],
which tries to re-balance the weight of each label and takes into
account the impact caused by label co-occurrence in multi-label
data; b) DBL+NT [26], which further proposed a negative tolerant



Table 3: Experimental results (mean±std) on DiDi Liability Judgment dataset. ↑ (↓) indicates the larger (smaller) the better. The

best performance and its comparable performances are bolded.

5% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.160±0.008 0.100±0.001 0.237±0.001 0.121±0.001 0.839±0.001 0.588±0.012 0.885±0.004 0.239±0.014 0.584±0.016
CAMEL 0.159±0.006 0.115±0.003 0.243±0.002 0.135±0.002 0.831±0.001 0.593±0.006 0.878±0.002 0.239±0.006 0.585±0.017
DBL 0.160±0.008 0.100±0.001 0.236±0.001 0.121±0.001 0.840±0.001 0.586±0.017 0.885±0.005 0.237±0.017 0.583±0.015
DBL+NT 0.157±0.006 0.100±0.001 0.237±0.002 0.121±0.001 0.839±0.001 0.592±0.009 0.884±0.003 0.243±0.007 0.591±0.013
PL 0.160±0.008 0.100±0.001 0.237±0.002 0.121±0.001 0.839±0.001 0.586±0.012 0.886±0.003 0.237±0.010 0.584±0.016
DRML 0.161±0.013 0.108±0.002 0.264±0.003 0.127±0.002 0.825±0.002 0.524±0.016 0.870±0.005 0.217±0.007 0.579±0.026
DRML+DBL 0.164±0.009 0.116±0.008 0.276±0.019 0.135±0.006 0.816±0.011 0.533±0.011 0.858±0.010 0.221±0.005 0.574±0.022
Proposal 0.152±0.010 0.099±0.001 0.236±0.002 0.120±0.001 0.840±0.001 0.589±0.025 0.889±0.004 0.232±0.014 0.597±0.019

10% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.155± 0.006 0.098±0.001 0.237±0.002 0.120±0.001 0.841±0.001 0.607±0.016 0.889±0.004 0.249±0.015 0.596±0.013
CAMEL 0.156±0.003 0.112±0.001 0.240±0.002 0.132±0.001 0.834±0.001 0.606±0.005 0.882±0.001 0.248±0.007 0.593±0.009
DBL 0.156±0.006 0.098±0.002 0.236±0.001 0.120±0.001 0.841±0.001 0.604±0.019 0.889±0.004 0.249±0.013 0.596±0.014
DBL+NT 0.154±0.006 0.098±0.001 0.236±0.001 0.120±0.001 0.841±0.001 0.601±0.018 0.889±0.004 0.245±0.013 0.599±0.012
PL 0.154±0.005 0.098±0.001 0.237±0.002 0.120±0.001 0.840±0.001 0.613±0.007 0.891±0.002 0.255±0.007 0.600±0.009
DRML 0.160±0.006 0.103±0.002 0.255±0.011 0.123±0.001 0.832±0.005 0.530±0.011 0.876±0.004 0.223±0.005 0.584±0.012
DRML+DBL 0.160±0.008 0.105±0.002 0.252±0.011 0.125±0.002 0.831±0.005 0.533±0.013 0.871±0.004 0.222±0.005 0.585±0.017
Proposal 0.150±0.005 0.096±0.002 0.234±0.001 0.115±0.002 0.843±0.002 0.614±0.023 0.892±0.010 0.260±0.010 0.599±0.012

Table 4: Experimental results (mean±std) on CUB dataset. ↑ (↓) indicates the larger (smaller) the better. The best performance

and its comparable performances are bolded.

5% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.123±0.004 0.142±0.002 0.191±0.016 0.597±0.007 0.503±0.005 0.679±0.005 0.852±0.002 0.225±0.007 0.413±0.011
CAMEL 0.114±0.001 0.158±0.001 0.186±0.011 0.786±0.007 0.496±0.003 0.682±0.006 0.842±0.001 0.245±0.003 0.430±0.006
DBL 0.121±0.004 0.140±0.003 0.178±0.021 0.587±0.007 0.504±0.006 0.684±0.007 0.856±0.003 0.230±0.011 0.414±0.013
DBL+NT 0.123±0.003 0.142±0.003 0.150±0.008 0.589±0.007 0.503±0.006 0.680±0.008 0.854±0.003 0.225±0.009 0.410±0.010
PL 0.118±0.002 0.138±0.002 0.201±0.014 0.590±0.007 0.508±0.005 0.683±0.004 0.852±0.003 0.239±0.003 0.424±0.008
DRML 0.121±0.004 0.166±0.002 0.265±0.034 0.706±0.013 0.464±0.007 0.621±0.003 0.831±0.003 0.193±0.005 0.395±0.008
DRML+DBL 0.121±0.002 0.156±0.002 0.161±0.017 0.625±0.008 0.484±0.003 0.645±0.006 0.841±0.002 0.200±0.004 0.399±0.005
Proposal 0.114±0.002 0.134±0.002 0.165±0.018 0.585±0.007 0.512±0.007 0.688±0.004 0.858±0.004 0.240±0.004 0.436±0.009

10% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.115±0.002 0.131±0.003 0.183±0.013 0.562±0.007 0.525±0.007 0.708±0.007 0.865±0.002 0.254±0.009 0.440±0.007
CAMEL 0.112±0.001 0.151±0.002 0.174±0.004 0.767±0.005 0.510±0.003 0.691±0.005 0.849±0.002 0.256±0.005 0.444±0.004
DBL 0.115±0.002 0.130±0.002 0.160±0.013 0.552±0.006 0.525±0.005 0.707±0.006 0.867±0.003 0.255±0.005 0.438±0.004
DBL+NT 0.117±0.002 0.132±0.002 0.144±0.010 0.558±0.006 0.523±0.006 0.703±0.005 0.866±0.002 0.249±0.006 0.431±0.004
PL 0.114±0.002 0.129±0.002 0.178±0.014 0.556±0.006 0.526±0.005 0.710±0.006 0.865±0.002 0.258±0.004 0.441±0.003
DRML 0.116±0.001 0.157±0.004 0.277±0.032 0.676±0.014 0.475±0.006 0.641±0.008 0.840±0.003 0.214±0.009 0.418±0.003
DRML+DBL 0.117±0.002 0.148±0.003 0.185±0.033 0.609±0.007 0.493±0.009 0.670±0.010 0.849±0.003 0.221±0.009 0.420±0.004
Proposal 0.102±0.002 0.129±0.002 0.151±0.016 0.551±0.008 0.527±0.006 0.710±0.004 0.869±0.002 0.255±0.006 0.445±0.003

regularization along with the DBL to mitigate the over-suppression
of negative labels. For semi-supervised learning, we compare with

two methods: a) PL [14], which is a simple and efficient method
by assigning high confidence pseudo-labels to unlabeled instances



Table 5: Experimental results (mean±std) on BibTex dataset. ↑ (↓) indicates the larger (smaller) the better. The best performance

and its comparable performances are bolded.

5% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.025±0.001 0.163±0.006 0.572±0.012 0.263±0.008 0.379±0.009 0.686±0.016 0.727±0.015 0.113±0.013 0.203±0.017
CAMEL 0.024±0.001 0.176±0.005 0.587±0.015 0.290±0.008 0.366±0.008 0.803±0.006 0.825±0.005 0.210±0.008 0.284±0.009
DBL 0.025±0.001 0.163±0.006 0.568±0.011 0.264±0.008 0.382±0.009 0.680±0.016 0.723±0.016 0.115±0.013 0.204±0.016
DBL+NT 0.024±0.001 0.164±0.005 0.563±0.013 0.267±0.008 0.386±0.008 0.693±0.017 0.735±0.016 0.133±0.013 0.224±0.017
PL 0.027±0.001 0.182±0.006 0.594±0.021 0.291±0.008 0.354±0.013 0.594±0.033 0.635±0.033 0.079±0.013 0.153±0.017
DRML 0.024±0.002 0.343±0.009 0.802±0.042 0.490±0.012 0.161±0.029 0.571±0.035 0.618±0.018 0.060±0.019 0.144±0.033
DRML+DBL 0.028±0.002 0.289±0.011 0.747±0.021 0.426±0.012 0.211±0.016 0.585±0.014 0.635±0.011 0.044±0.008 0.102±0.015
Proposal 0.024±0.001 0.160±0.007 0.563±0.014 0.262±0.009 0.387±0.011 0.696±0.013 0.737±0.013 0.130±0.013 0.206±0.014

10% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.021±0.001 0.127±0.003 0.508±0.008 0.210±0.004 0.438±0.006 0.755±0.009 0.795±0.008 0.156±0.009 0.264±0.014
CAMEL 0.021±0.001 0.144±0.003 0.508±0.006 0.248±0.007 0.436±0.004 0.833±0.006 0.856±0.005 0.256±0.008 0.334±0.008
DBL 0.021±0.001 0.127±0.003 0.508±0.009 0.210±0.004 0.440±0.006 0.751±0.009 0.791±0.008 0.155±0.010 0.263±0.015
DBL+NT 0.021±0.001 0.128±0.003 0.507±0.008 0.214±0.005 0.444±0.006 0.757±0.010 0.797±0.009 0.173±0.010 0.280±0.014
PL 0.022±0.001 0.133±0.004 0.519±0.008 0.218±0.008 0.428±0.006 0.705±0.017 0.747±0.016 0.125±0.014 0.228±0.018
DRML 0.022±0.004 0.310±0.008 0.731±0.018 0.450±0.010 0.214±0.010 0.658±0.021 0.676±0.010 0.105±0.012 0.219±0.013
DRML+DBL 0.024±0.002 0.237±0.011 0.671±0.017 0.352±0.013 0.272±0.013 0.665±0.023 0.713±0.015 0.088±0.016 0.181±0.027
Proposal 0.021±0.001 0.124±0.002 0.506±0.006 0.206±0.204 0.446±0.006 0.785±0.010 0.821± 0.010 0.178±0.008 0.277±0.011

based on the predicted probabilities; b) DRML [23]: which adopts
two dual classifiers to align feature distributions and an label re-
lation network to explore the label relations. Moreover, we try to
improve the DRML method by replacing the standard BCE loss
of DRML with the distribution balance loss, which we denote as
DRML+DBL.

Performance Metrics. We measure the classification results
in terms of various multi-label evaluation criteria that are both
instance-wise and label-wise effective [27], including Hamming
Loss, Ranking Loss, One Error, Coverage, Average Precision, Macro
AUC, Micro AUC, Macro F1, Micro F1. The formulation of these
metrics is shown in Table 2. For more details about the evaluation
metrics please refer to [33].

Implementation Details. For each dataset, we randomly split
the train, validation, and test set based on the ratio 7:1:2. We con-
sider the ratio of labeled data by randomly select 5% and 10% train-
ing instances and the rest are unlabeled data. We train our frame-
work for a maximum of 500 epochs using Adamwith a learning rate
of 0.001 and early stopping with a window size of 30. The parameter
𝜆 is set as 1. For head and tail model 𝐶ℎ (·), 𝐶𝑡 (·), we adopt neural
networks with structure [𝑑, 1024, 800, 512, 𝑘] for CUB dataset and
[𝑑, 256, 64, 𝑘] for other datasets. The module of correlation mining
aggregator and semi-supervised regularization are selected accord-
ing to the validation performance. For multiplication aggregator,
𝐶𝑅 (·) is a network with [𝑘2, 𝑘] and for addition aggregator, 𝐶𝑅 (·)
is [2 × 𝑘, 𝑘]. For all compared methods, we also conduct parameter
selection by performing evaluation metrics on the validation set.
To reduce statistical variability, all reported results are averaged
over 10 independent runs.

4.2 DiDi Liability Judgment Task

We apply our approach to a real-world industrial application, i.e.,
the liability judgment task from DiDi, one of the largest mobility
technology platforms that offer peer-to-peer ride-sharing services
in the world. Once passengers enter start location and destination,
the platform will match a driver nearby to pick up the passenger.
If the passenger complains about the driver to the platform after
the order is finished, in order to protect the rights of drivers and
passengers, the platform needs to judge whether the driver is really
responsible and predicts all related decidendi reasons to make the
decision convincing.

The DiDi ride-sharing liability judgment dataset contains 25,108
instances constructed from the real ride-sharing orders in Mainland
China within the period from November 5th, 2020 to November
23rd, 2020. Each instance in the data set is described with hundreds
of features which can be divided into two parts: tabular features
and text features. For tabular features, we select 85 top related
features using the XGBoost model and then normalized these fea-
tures into zero mean and unit variance. For text features, we adapt
TextCNN [13] to process the after-ride text into 192-dimension fea-
ture vectors and a HAN [29] model to process the conversation text
into 200-dimension feature vectors. Overall, we got 477-dimension
features for each instance. Meanwhile, 6 main decidendi reasons
are adopted as the labels for each instance. We adopt the class-
imbalance ratio [32], while is defined as the averaged binary class
imbalance ratio on each label, to evaluate the skewness of the label
distribution. The class-imbalance ratio of DiDi liability dataset is
16.90. It is noteworthy that a dataset is regraded as imbalanced as



Table 6: Experimental results (mean±std) on Yeast dataset. ↑ (↓) indicates the larger (smaller) the better. The best performance

and its comparable performances are bolded.

5% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.282±0.014 0.203±0.007 0.266±0.014 0.492±0.012 0.721±0.009 0.601±0.020 0.793±0.010 0.370±0.017 0.536±0.022
CAMEL 0.281±0.012 0.220±0.011 0.291±0.023 0.519±0.012 0.709±0.013 0.602±0.017 0.781±0.011 0.381±0.012 0.539±0.018
DBL 0.282±0.013 0.205±0.009 0.291±0.053 0.486±0.012 0.713±0.018 0.600±0.023 0.789±0.015 0.370±0.018 0.535±0.021
DBL+NT 0.281±0.013 0.206±0.007 0.281±0.032 0.491±0.010 0.717±0.012 0.601±0.020 0.789±0.012 0.373±0.016 0.537±0.021
PL 0.281±0.012 0.201±0.006 0.267±0.018 0.487±0.010 0.722±0.007 0.601±0.018 0.794±0.009 0.372±0.012 0.537±0.017
DRML 0.298±0.014 0.215±0.009 0.301±0.022 0.507±0.014 0.708±0.012 0.596±0.012 0.779±0.009 0.387±0.013 0.529±0.015
DRML+DBL 0.298±0.017 0.220±0.010 0.308±0.024 0.512±0.013 0.706±0.012 0.603±0.012 0.775±0.010 0.388±0.013 0.525±0.019
Proposal 0.280±0.014 0.197±0.006 0.258±0.006 0.477±0.012 0.726±0.008 0.600±0.018 0.797±0.007 0.371±0.017 0.540±0.021

10% Labeled Instances

Methods Hamming
Loss

y Ranking
Loss

y One
Error

y Coverage y Ave.
Precision

x Macro
AUC

x Micro
AUC

x Macro
F1

x Micro
F1

x
FCN 0.264±0.009 0.192±0.004 0.259±0.010 0.477±0.004 0.734±0.004 0.626±0.007 0.809±0.005 0.396±0.013 0.562±0.015
CAMEL 0.264±0.008 0.207±0.005 0.280±0.015 0.505±0.007 0.722±0.008 0.627±0.015 0.796±0.005 0.405±0.012 0.564±0.013
DBL 0.264±0.007 0.192±0.004 0.268±0.018 0.471±0.007 0.734±0.005 0.627±0.010 0.807±0.004 0.394±0.011 0.561±0.013
DBL+NT 0.263±0.008 0.192±0.005 0.266±0.017 0.471±0.006 0.733±0.005 0.625±0.010 0.807±0.004 0.396±0.011 0.562±0.014
PL 0.263±0.008 0.191±0.004 0.260±0.011 0.475±0.005 0.734±0.005 0.626±0.009 0.809±0.004 0.394±0.009 0.561±0.013
DRML 0.301±0.014 0.210±0.010 0.297±0.021 0.499±0.012 0.716±0.013 0.622±0.014 0.791±0.010 0.410±0.015 0.537±0.016
DRML+DBL 0.286±0.014 0.214±0.007 0.303±0.015 0.505±0.007 0.713±0.010 0.625±0.011 0.786±0.008 0.402±0.012 0.539±0.019
Proposal 0.261±0.007 0.186±0.003 0.249±0.003 0.462±0.006 0.739±0.003 0.629±0.007 0.811±0.003 0.396±0.006 0.564±0.010

long as the ratio is grater than 2, therefore, DiDi liability dataset is
a highly class imbalanced dataset.

Experimental results are reported in Table 3. It can be seen that
the SOTA multi-label learning method CAMEL does not achieve
performance improvement over the baseline FCNmethod. The class
imbalanced multi-label learning methods, e.g., DBL, also perform
even worse than the baseline method. The main reason is these
methods rely on a sufficient number of labeled data and could not
work well in the semi-supervised scenario. The semi-supervised
multi-label learning methods, e.g., DRML, perform badly on mul-
tiple metrics. The main reason is they can not handle the class-
imbalance problem. Moreover, simply combines the advantages
of semi-supervised and class-imbalanced methods also could not
work well. In contrast, our proposal Limi achieves clearly better
performance than compared methods on almost every performance
metric. These demonstrate the effectiveness of our proposal on
real-world industrial tasks.

4.3 Image Annotation Task

We also conducted experiments on various benchmark tasks, the
first we conducted is the image annotation task. We use the CUB
data set1, which is the benchmark data set for multi-label image
annotation. The CUB dataset contains 10,240 images. The dataset
contains 200 birds and the label information can be described by a
312-dimensional vector. The imbalance ratio is 57.72. A pre-trained
VGG Networks [20] based on ImageNet is adopted as the feature
extractor.

1http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

Results are shown in Table 4. From the results, we can see that
other compared SOTA methods, e.g., DBL, DRML, suffer perfor-
mance degradation problems compared with the baseline FCN
method. While our proposal achieves good performance that im-
proves clearly over compared methods. These results verify the
effectiveness of our proposal.

4.4 Text Categorization Task

Text categorization is another important machine learning task. For
Text categorization, we adopt the BibTex data set2 which is collected
from a social bookmarking and publication-sharing system [12].
The recommender should efficiently propose a relevant set of tags to
the user when the user submits a new item (BibTeX) into the system.
The Bibtex data set includes 7,395 instances and each instance is
expressed with 1,836 features. The label information is described
by a 159-dimensional vector. The imbalance ratio is 32.25.

Results for BibTex dataset are shown in Table 5. From the results,
we can see that the SOTA multi-label learning method CAMEL per-
formswell onmultiple performancemetrics, especially onmacro/micro
F1 score and macro/micro AUC. Meanwhile, our proposal still
achieves the best performance on more than a half of metrics. These
also demonstrate the effectiveness of our proposal Limi framework.

4.5 Gene Function Analysis Task

The last task is to predict the gene function classes of the Yeast Sac-
charomyces3, which is one of the best-studied organisms. The Yeast
data set [7] is a gene function classification with 2,417 instances
2http://mulan.sourceforge.net/datasets-mlc.html
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

http://mulan.sourceforge.net/datasets-mlc.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html


and 14 class labels. Each gene is expressed with 103 microarray
expression features. The imbalance ratio of Yeast dataset is 2.78.

Results presented in Table 6 show that our proposal Limi could
achieve highly competitively performance with compared methods.
Overall, these empirical results clearly show that the advantage of
our proposal which is able to address the imbalanced label distribu-
tion, explore the label correlation and exploit the unlabeled data to
enhance the performance.

5 CONCLUSION

In this paper, we study the problem of learning from imbalanced
and incomplete supervision, which accommodates many real-world
applications and has rarely been studied before. We have proposed a
systemic framework Limi that addresses the imbalanced supervision
by separating the multiple labels into head labels and tail labels. The
prediction results obtained by the head and tail model then input
into a novel correlation network to explore the label correlation
knowledge. Moreover, the proposed framework can be flexibly
incorporated with different semi-supervised learning strategies to
further exploit the unlabeled instances. Extensive empirical results
on real-world DiDi liability judgment tasks and various benchmark
datasets demonstrate that Limi perform clearly better than many
competitive methods. Overall, the proposal is flexible, general, and
effective to learn from imbalanced and incomplete supervision.

In some applications, it may be difficult to tune the modules
in Limi. We will consider extending this work with Automated
Machine Learning (AutoML) [30] to automatically choose the best
sub-modules for different tasks in the future.
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