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Abstract
Open-set learning deals with the testing distribution where there exist samples from the 
classes that are unseen during training. They aim to classify the seen classes and recog-
nize the unseen classes. Previous studies typically assume that the marginal distribution 
of the seen classes is fixed across the training and testing distributions. In many real-world 
applications, however, there may exist covariate shift between them, i.e., the marginal 
distribution of seen classes may shift. We call this kind of problem as open-set learning 
under covariate shift, aim to robustly classify the seen classes under covariate shift and be 
aware of the unseen classes.We present a new open-set learning framework with covari-
ate generalization based on supervised contrastive learning, called SC–OSG, inspired by 
the latent connection between contrastive learning and representation invariance. Specifi-
cally, we theoretically justify supervised contrastive learning that could promote the con-
ditional invariance of representations, a critical condition for covariate generalization. SC–
OSG generates multi-source samples to promote the representation invariance and improve 
the covariate generalization. Based on this, we propose a detection score that is specific 
to the proposed training scheme. We evaluate the effectiveness of our method on several 
real-world datasets, on all of which we achieve competitive results with state-of-the-art 
methods.
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1 Introduction

Supervised learning has achieved competitive or even better performance than human 
beings in a variety of tasks, like image understanding and language processing (LeCun 
et al., 2015). However, they typically rely on the basic assumption, i.e., testing distribu-
tion is the same as training distribution. When a model is deployed in the open world, 
such a condition is difficult to satisfy, as the testing samples may arise from unseen 
classes (Geng et al., 2021). For example, in document classification (Fei and Liu, 2016), 
irrelevant documents may appear in the testing data and lead to a misprediction. Simi-
lar cases commonly appear in other applications, such as self-driving  (Wong et  al., 
2019) and activity recognition (Yang et al., 2019). In such applications, misprediction 
of unseen class may lead to risk, like traffic accidents in self-driving scenarios. In order 
to deal with this kind of problem, open-set learning has been proposed and attracted 
considerable attention, which has consequently resulted in a large number of open-set 
learning methods  (Da et  al., 2014; Bendale and Boult, 2016; Yoshihashi et  al., 2019; 
Tack et al., 2020; Vaze et al., 2022).

Open-set learning is proposed to not only classify seen classes but also recognize the 
unseen classes.  They attempt to detect samples that do not belong to the training distri-
bution, by exploring different strategies, such as open-space risk  (Da et  al., 2014; Zhou 
et  al., 2021a), extreme value theory  (Bendale and Boult, 2016; Yoshihashi et  al., 2019), 
representation learning methods (Tack et al., 2020; Winkens et al., 2020), and other inter-
esting techniques (Geng et al., 2021). Recently, some works (Tack et al., 2020; Vaze et al., 
2022) indicated that whether representations have sufficient discrimination on closed-set is 
critical for open-set performance. All of the above positive results, however, are based on a 
basic assumption that the marginal distribution of known class is fixed in the training and 
testing distribution. Such an assumption is difficult to hold in many real-world applications 
where testing distribution may shift from the training distribution, such as self-driving (Yu 
et  al., 2020), influenza detection  (Rejmanek et  al., 2015), and speech recognition  (Liao, 
2013). These methods which designed for detecting samples that do not belong to the seen 
distribution, become unreliable when the marginal distributions of seen classes shifts.

Out-of-distribution generalization (domain generalization) aims at generalizing the 
model to covariate shift where the marginal distribution shifts from the training to the 
testing phase. Most of them attempted to mine the stable relationship across multiple 
sources, like marginal distribution alignment (Ganin and Lempitsky, 2015; Kim et al., 
2021) or conditional distribution alignment (Arjovsky et al., 2019; Ahuja et al., 2020). 
However, they typically assume there are multiple training sources. It can hardly be sat-
isfied, where modern datasets are frequently assembled without explicit source labels. 
Recently, some works have considered the general setting where prior division is not 
available. They divided the training samples into some subsets to mine the latent hetero-
geneity (Liu et al., 2021; Creager et al., 2021; Zhang et al., 2021). Nevertheless, we find 
they still perform poorly for open-set learning.

To summarize, we consider the open-set learning under covariate shift problem. More 
formally, given features X and labels Y, we observe training distribution Ptr(Xtr, Ytr) , 
and deploy the model in the testing distribution Pte(Xte, Yte) . 1) There may exist sample 
(x, y) ∼ Pte , where unseen class y ∈ Yte has not appeared in the training yi ∉ Ytr . 2) The 
marginal distribution of seen class may shift Pte(x|y) ≠ Ptr(x|y), y ∈ Ytr ⊂ Yte . In this 
paper, we call them semantic shift and covariate shift respectively. Figure 1 has illus-
trated this problem setting.
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In this work, we present a new open-set learning framework with covariate generali-
zation based on supervised contrastive learning, called SC–OSG, inspired by the latent 
connection between contrastive learning and representation invariance. We first indicate 
that supervised contrastive learning, which has achieved empirical success in i.i.d. repre-
sentation learning scenarios, could promote the conditional invariance of representations. 
Moreover, we propose a theoretically grounded framework to learn invariant representation 
by synthetic multi-source samples. We next take a feature attribution method to decom-
pose and re-generate samples as an implementation of our framework. Based on this, we 
propose a detection score that is specific to the proposed training scheme. We demonstrate 
the effectiveness of our method on several real-world datasets, on all of which we achieve 
competitive results with state-of-the-art methods.

2  Related work

2.1  Open‑set learning

Open-Set Learning has been studied for a long history to handle the semantic shift. 
Recently, deep learning-based methods have attracted much attention due to their powerful 
representations. They could be mainly divided into three schemes. The first assumes there 
are unlabeled data from testing distribution available, which contains both known classes 
and unknown classes (Da et al., 2014; Liu et al., 2018; Yu and Aizawa, 2019; Zhou et al., 
2021). They detect the outliers from the unlabeled data and utilize them to build an open-
set classifier. The second assumes the samples from unknown classes are unavailable and 
anticipates the novel classes via generative models  (Neal et  al., 2018; Fang et  al., 2021; 
Chen et al., 2021). The third considers representation learning and improving separation 
between known classes (Hendrycks et al., 2019; Winkens et al., 2020; Tack et al., 2020; 
Vaze et al., 2022).

Training Distribution Testing Distribution

dogs in water cats in grass

seen classes unseen classes

bicycle, boat...cats in waterdogs in grass

Fig. 1  Open-set learning under covariate shift. There are both covariate shift (blue) and semantic shift (red) 
in the testning distribution
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Recently, there are some work introduce open-set unlabeled data (Huang et al. 2021, 2022) 
and utilize representation transfer to boost the performance. Nevertheless, all of these promis-
ing results assume the distribution of known classes is fixed across training and testing distri-
butions or the open-set shift is available at training.

2.2  Out‑of‑distribution generalization

Out-of-distribution generalization has recently attracted much attention in handling the covari-
ate shift. They mainly mine the stable relationship across multiple sources, like marginal dis-
tribution alignment (Ganin and Lempitsky, 2015; Kim et al., 2021) or conditional distribution 
alignment  (Arjovsky et al., 2019; Ahuja et al., 2020). Ganin and Lempitsky (2015) build a 
domain discriminator to adversarially align the cross-source marginal distribution. Kim et al. 
(2021) introduces contrastive loss and designs a class-specific domain perturbation layer to 
extract the domain-invariant representations. Arjovsky et al. (2019) and Ahuja et al. (2020) 
learn the invariant conditional relationship to obtain a stable learner. However, they typically 
assume there is a prior division of multiple sources which can hardly be satisfied, modern 
datasets are frequently assembled by merging data from multiple sources without explicit 
source labels. Recently, some work attempted to mine the latent heterogeneity without prior 
source division  (Liu et  al., 2021; Creager et  al., 2021; Zhang et  al., 2021). In contrast, we 
consider enerating auxiliary distributions to enrich the diversity rather than dividing the raw 
samples into sub-sources.

There are some previous works focused on both semantic shift and covariate shift, like 
open-set domain adaptation (Busto and Gall, 2017; Baktashmotlagh et al., 2019; Luo et al., 
2020) and Open-Set Domain Generalization (Shu et al., 2021). Open-Set Domain Adaptation 
assumes the unlabeled data from the target testing distribution is available. The existing Open-
Set Domain Generalization work (Shu et al., 2021) assumes there is a prior domain division. 
This condition is different from ours which exploits the training data without domain labels.

Their solutions have not well addressed the problem we studied.

2.3  Contrastive learning

Contrastive learning has shown remarkable success in visual representation learn-
ing (Bachman et al., 2019; Hjelm et al., 2019; Chen et al., 2020; Tian et al., 2020; Hend-
rycks et al., 2019; Tack et al., 2020), which encourages closer representations for augmen-
tations (views) of the same natural data than for randomly sampled pairs of data. Inspire 
by these findings, we introduce the deviation of contrastive learning when supervised sig-
nals are available, supervised contrastive learning (SCL) (Khosla et al., 2020), to learn the 
invariant representations. In this paper, we theoretically find the connection between SCL 
and covariate generalization. Furthermore, we build an efficient framework SC–OSG for 
the open-set learning under covariate shift problem.

3  SCL on representation invariance

3.1  Problem formulation

Following structural causal model  (Arjovsky et  al., 2019; Ahuja et  al., 2020; Cre-
ager et al., 2021), let us consider the data generation process epicted in Fig. 2. In this 
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graphical model, the label Y and environment E are generated first from their prior dis-
tribution P(Y) and P(E).

The input features X are the observation of semantic and environmental variables 
(Y,  E). This generation process can be exploited in many classification applications. 
Taking the images as examples, Y is the semantic factor (e.g., the shape of an object) 
and E is the environmental factor (e.g., background, object position). Due to the correla-
tion Ptr(Y ,E) from training data (e.g., cars often appear in a road background and cats 
on the grass), the model learned on training distribution may rely on the E for predic-
tion via this correlation. Note such a correlation is not stable in different distributions 
Pe(X, Y) and is just a training-specific property. In unknown testing distributions, such 
a correlation is not reliable. As the graphical model indicated, in an arbitrary testing 
distribution, P(Y ,E) = P(Y)P(E) , i.e., the semantic factors and environmental factors are 
independent.

Take the example of Fig. 1, we could find cats (Y) always appeared in the grass (E) in 
the training data. Such a training-specific correlation P(Y, E) will lead the model to cut 
corners, i.e., make a prediction “cat" when it observes the grass background. It brings 
challenges for both seen class classification and unseen class detection, e.g., the model 
tends to predict a cat label when it encounters a dog or a bicycle on the grass. Here we 
give the formal assumption on different distributions under the covariate shift condition.

Assumption 1 The feature X is generated by an unknown process G(E, Y) of two inde-
pendent factors, semantics Y and environments E. We assume there are optimal representa-
tions Z = g∗(X) such that the following properties hold: 

1) Invariance property: we have the conditional correlation Pe(Y|Z) = Pe� (Y|Z) holds, 
∀e, e� ∈ E.

2) Sufficiency property: Y = h(Z) across distributions Pe(X, Y).

the training and testing distribution arise from the joint distribution 
Ptr(X, Y),Pte(X, Y) ∼ X × Y  . There are semantic shift Ptr(y) = 0 < Pte(y),∃y ∈ Y  and 
marginal shift Ptr(x|y) ≠ Pte(x|y),∀y ∈ Ytr ⊂ Yte.

Assumption  1 indicates invariance and sufficiency for identifying semantic differ-
ences using representation Z which has stable relationships with Y across different dis-
tributions Pe(X, Y),∀e ∈ E.

Here, we first introduce the definition and properties of conditional invariance and 
then show that SCL, an empirically successful framework in the i.i.d. scenario, could 
decouple the correlation between semantics Y and environments E, promoting represen-
tations to conditional invariance.

Fig. 2  Graphical model. Pe(X,Y) 
is the data distribution for 
environment e. Our goal is to 
learn representations Z from X 
which can be generalized across 
distributions
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3.2  Representation invariance

There is a branch of work on out-of-distribution generalization that attempts to learn 
the invariant representation, decoupling the spurious correlation between environments 
and semantics to improve the robustness of unseen testing distribution. In this paper, we 
focus on the conditional invariance:

Definition 1 Let Z = g(X) be the representation distribution via learning module g. If we 
have Pe(Z|Y) = Pe� (Z|Y),∀e, e� ∈ E , the representation Z has achieved conditional invari-
ance for environments E.

Remark 1 Under Assumption  1, if representations Z satisfy the conditional invari-
ance on environments E, and classifier h achieves ideal risk on environment e, i.e., 
�
e[R(h(Z),Y)] → 0,∃e ∈ E . We have �e� [R(h(Z),Y)] → 0,∀e� ∈ E.

Intuitively, in different distributions, Pe(X, Y), e ∈ E , the conditional invariant repre-
sentation Z could embed samples Pe(X|Y) from any class Y to the same representation 
distribution, and excluding the influence of environmental-related spurious correlation. 
It indicates that we can guarantee the generalization to different environments as long as 
the conditional invariance of the representation holds.

As we discussed above, most of the existing works need to collect multiple training 
sources and learn the invariant representation, which limits their applications on open-
set learning. When we do not have multiple training sources, how to improve the gener-
alization has been a quite challenging problem.

We find supervised contrastive learning (SCL) is a potential solution to address 
it. SCL is a variant version of contrast learning when supervised signals are avail-
able (Khosla et al., 2020). It consists of two parts, data augmentation A (e.g. rotation, 
flipping, grey-scaling for images), and contrastive loss optimization. Formally, the 
supervised contrastive learning SC(g;P,A(P)) could be formulated as:

where P(yi) is the set of samples from the class yi , and A represents the specific data 
augmentation. Following (Zimmermann et al., 2021; HaoChen et al., 2021; Wen and Li, 
2021), we assume the augmentation operation does not change the semantic factors from 
raw input distribution X, and regard A(X) as an auxiliary distribution. We then theoretically 
justify that the learning of SCL (Eq. 1) aligns the conditional distribution of representation 
Z.

Theorem 1 When data augmentation A does not change the semantic causes of inputs, we 
regrad the raw distribution Praw(X, Y) and the augmented distribution Paug(A(X), Y) as two 
distributions. Then, the supervised contrastive learning (as Eq. 1) maximizes the mutual 
information between Praw(Z|Y) and Paug(Z|Y) and promotes the conditional invariance.

Proof provided in the appendix.   ◻

(1)min
g

�

(xi,yi)∼P(X,Y)

−1

�P(yi)�
�

xj∈P(yi)

log
exp(g(xi) ⋅ g(A(xj))∕�)∑

xk∈X
exp(g(xi) ⋅ g(A(xk))∕�)
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Taking the Theorem  1 and the benefit from conditional invariance, we could justify 
that SCL is generalizable to testing distribution under marginal shift A . Specifically, the 
learned model is robust to specific style transformation (e.g., change of object position, 
lighting). Such a finding also explains why SCL achieves an empirical improvement over 
cross-entropy-based methods in the i.i.d. scenario (Khosla et al., 2020; Chuang et al., 2020; 
Tian et al., 2020a).

We could find the generalization of SCL relies on the construction of the auxiliary 
domain, i.e. the design of data augmentation. The ideal data augmentation should enable 
as many environmental changes as possible without changing the semantic information. 
Inspired by the data generation process, we have the following proposition:

Proposition 1 Through augmenting synthetic samples from different environments, super-
vised contrastive learning could promote the representation invariance under different 
environments. Formally, it alleviates the training-specific correlation Ptr(Y ,E) and simu-
late a distribution where P(Y ,E) = P(Y)P(E).

Remark 2 When representations Z = g(X) satisfy the conditional invariance between the 
raw domain and the ideal synthetic domains Ptr(Z|X) = Pe(Z|X),∀e ∈ E , and there exists 
h with low risk on raw distribution Rraw(h(Z),Y) → 0 , for any e ∈ E they could achieve the 
consistent low risk Re(h(Z),Y) → 0.

It indicates that, if we can build the functions that disentangle the semantic and envi-
ronmental factors, and re-generate the distribution P(Y ,E) = P(Y)P(E) , we could promote 
the conditional invariance between the raw domain and the augmented domain via SCL. 
Then the learned model could be generalizable to any distribution Pe . Take the case of 
Fig. 1 again, we attempt to sample "cats with water" and "dogs with grass". Then, we could 
embed the same semantic samples from different environments to the same representation 
distributions, and improve the generalization through the conditional alignment frame-
work. The overall framework becomes:

where the first term represents a classification risk measure and the second term imple-
ments the conditional invariance between Praw and Pe via the SCL, i.e., the specific data 
augmentation Ae transforms the raw distribution to Pe.

As discussed above, we would like to build such an auxiliary environment for our invar-
iant representation learning framework. In the next section, we show how one can incorpo-
rate this idea into real-world generalization problems by constructing an auxiliary environ-
ment with feature attribution.

4  The proposed framework

4.1  Training phase

In the training phase, we consider constructing auxiliary environments and learning the 
environmental-invariant representations via data augmentation and SCL respectively. As we 
discussed above, an ideal implementation is to decompose the semantic and environmental 

(2)min
g,h

R(h◦g;Praw(X, Y)) +
∑

e∈E

SC(g;Praw,Pe), s.t. Pe = A
e(Praw)
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factors from training data Ptr(X, Y) . Unfortunately, such a disentanglement is difficult to 
achieve without external assumptions about the data structure, especially for high-dimensional 
inputs like images.

In our implementation, we take the feature attribution of model inference in replacement of 
the latent causal factor. Feature attribution (Ribeiro et al., 2016; Lundberg & Lee, 2017; Selva-
raju et al., 2020) is a class of methods that focuses on finding which feature results in the spe-
cific model inference. Generally, given a sample (x, y), feature attribution attempts to estimate 
the influence of each [x1, x2,… xd] on model inference f (x) = y , where d is the dimension of 
input x. More formally, they would obtain scores {s(xk

i
)}d

k=1
∈ [0, 1] for each pixel xk

i
 of input 

xi , which measure their influence on the model inference f (xi) = yi . Specifically, we take the 
Grad-CAM (Selvaraju et al., 2020), a well-known feature attribution technique, to catch the 
cause justification from the model. Grad-CAM uses the gradients of any target concept (say 
“dog” in the classification model) flowing to produce a localization map on x highlighting the 
important regions in the image. As shown in Fig. 3, we could obtain the pixel-level feature 
attribution s(xi) ∈ ℝ

d via Grad-CAM. Although there are different feature attribution methods 
to calculate scores. In this paper, we mainly focus on the Grad-CAM, because it is model-
architecture-independent and easy to implement.

Then we remix these semantics factors with environmental factors from different samples. 
Inspired by mixup (Zhang et al., 2018), we generate the diverse environmental part via a con-
vex combination.

Given two samples (xi, yi), (xj, yj) , we could generate an auxiliary sample 
x̂i,j = EnvMix(xi, xj) which is composed with the semantic part from xi and environmental 
part from xj , as the following: 

 We first obtain the attribution score via Grad-CAM and then split the image xi into the 
class-dependent part ci and the environmental part ei on pixel-level, as Eqs. 3a, 3b and 3c. 

(3a){s(xk
i
)}d

k=1
= Grad-CAM(xi, yi)

(3b)ci = [ck
i
], ck

i
= xk

i
⋅ �(s(xk

i
) > 𝛾)]

(3c)ei = [ek
i
], ek

i
= xk

i
⋅ �(s(xk

i
) ≤ 𝛾) +N(𝜇i, 𝜎i) ⋅ �(s(x

k
i
) > 𝛾)]

(3d)êi,j = 𝜆ei + (1 − 𝜆)ej

(3e)x̂i,j = ci + êi,j

Fig. 3  EnvMix. We decompose the factors via Grad-CAM and generate synthetic samples
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In Eq. 3c, we use Gaussian noise to fill in the gaps caused by stripping the semantic part, 
where �i and �i represent the mean and standard deviation of raw xi . After the same pro-
cess, we can get the environmental part ej of the sample xj . In Eq. 3d, we generate a new 
background via a convex combination of ei and ej , where � ∼ Beta(1, 1) is a mixing param-
eter. Finally, we combine the ci and the generated êi,j , which samples the semantics ci from 
the synthetic environment. The Fig. 3 has demonstrated a case from our generation process.

Through such a data generalization process, we sample the semantic samples Y from each 
e ∈ E , which are extracted from the training data via the feature attribution of model inference.

Although such a generation scheme could obtain sufficient samples from various envi-
ronments, it costs much on data and computational complexity. Let the N be the size of the 
raw data, we would have N2 samples from N environments. This is not affordable for the 
contrastive framework as the Eq. 2, in practice. Thus, we generate the synthetic samples in 
a batch mode, i.e., for a data batch Q ∶ Q[i] = xi with size n, we get its random permutation 
Q′ , and then generate n samples via EnvMix(Q[i],Q�[i] ). Then we take the generated sam-
ples as a comprehensive auxiliary domain. The pairwise mode of Eq. 2 could be reduced to 
the raw 2-view mode, like Eq. 1. Overall, we could execute the model training via a 3-for-
ward process, which is more efficient in practice.

4.2  Testing phase

In the testing phase, we would like to identify if a sample arises from unseen classes and 
classify the seen classes. Following Bendale and Boult (2016), we first obtain the probabil-
ity of the seen classes and reject the unseen classes based on a threshold � . Especially, we 
estimate the class probability of xi:

where Pj = 1∕�P(j)�
∑

x∈P(j) g(x) is the expected representation of class j from training sam-
ples. In words, the Eq.  4 consists of two parts, a classification score, and a conditional 
representation distance, being consistent with our training scheme. The overall SC–OSG is 
summarized in Algorithm  1.

(4)P̂(y = j�xi) =
1

2

�
P(y = j;xi, h◦g) +

exp(g(xi) ⋅ Pj∕𝜏)∑
k exp(g(xi) ⋅ Pk∕𝜏)

�
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5  Empirical study

5.1  Experimental setup

To evaluate our method, we conduct experiments on three datasets that are commonly used 
in the literature for out-of-distribution generalization.

ImageCLEF-DA (Caputo et al., 2014) is a benchmark for ImageCLEF 2014 challenge 
which is widely used in domain adaptation and domain generalization. It contains four 
environments (collecting sources): Caltech256 (C), ImageNet ILSVRC2012 (I), Pascal 
VOC 2012 (P) and Bing (B). For each environment, there are totally 600 images and 12 
classes. We split the first 8 categories of environment C and B are divided as training set. 
The testing data consists of environments I and P, 4 out of its 12 classes did not appear in 
the training set.

NICO  (He et  al., 2021) dataset contains 19 classes, 188 environments, and nearly 
250,000 images. Compared with the traditional benchmark as ImageCLEF-DA, there is no 
consistent source division, i.e., different classes of samples come from different sources, 
which are more frequent with real-world tasks and bring greater challenges to performance 
generalization. In this task, we split 10 animal classes (e.g., dog, cat, bird) to construct an 
animal recognition task, the rest 9 classes (bicycle, boat, bus, and so on) are regarded as the 
unknown classes. Each animal contains 10 environments like in forest or on grass. Three 
environments for each category are randomly split as training data, while others as testing 
data.

WILDS-FMoW  (Christie et al., 2018) is a recently proposed out-of-distribution gen-
eralization benchmark for global-scale monitoring tasks, which consists of over 1 million 
images from 200 countries. These images are collected from 2002 to 2017, with distri-
bution shifts over time. There are 80 environments and 63 categories in this dataset. As 
officially recommended, we divide the samples collected before 2013 into training environ-
ments and those after 2016 as test environments. We further split the half categories (31) as 
known classes, and the others will only appear in the testing data.

Competing methods We firstly consider the previous open-set learning methods: includ-
ing three baselines Softmax  (Hendrycks and Gimpel, 2017), OpenMax  (Bendale and 
Boult, 2016), ODIN (Liang, et al., 2018) and 4 SOTA methods: ARPL (Chen et al., 2021), 
ARPL+CS (Chen et al., 2021), PROSER (Zhou et al., 2021a) and CTooD (Winkens et al., 
2020). We also consider the previous out-of-distribution generalization methods, including 
2 traditional methods: DANN (Ganin and Lempitsky, 2015) and MixupDG (Wang et al., 
2020), which rely on the prior environmental divisions, and 2 SOTA division-free gener-
alization methods: SelfReg (Kim et al., 2021; Zhang et al., 2021). We add a post-process-
ing module, as a baseline solution to help them detect unknown classes  (Hendrycks and 
Gimpel, 2017). Moreover, we compare with the DAML  (Shu et  al., 2021), the open-set 
domain generalization work, which is mostly related to us, although it needs a prior divi-
sion for multiple training sources. To show the effectiveness of our proposal, we also con-
duct the experiments about the Mixup Zhang et al. (2018) and CutMix (Yun et al., 2019), 
two popular data augmentation methods, which are related to our EnvMix. To make an 
ablation comparison, we drop the two sub-modules, EnvMix and score function respec-
tively. Specifically, SC–OSG† consists of basic SCL and the proposed score function, 
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SC–OSG‡ consists of SCL with EnvMix and a soft-max score function. We also compare 
with the SCL, the most basic implementation for our framework.

Evaluation metrics We first consider the robustness under covariate shift. We use accu-
racy (ACC) on seen classes to evaluate if the model could recognize them when the mar-
ginal distribution shifts. We then consider the semantic shift. Following  (Liang, et  al., 
2018; Chen et al., 2021), we evaluate the detection of unseen classes via a threshold-free 
metric: the area under the receiver operating characteristic curve (AUROC). Furthermore, 
we consider a comprehensive metric: open set classification rate  (Dhamija et  al., 2018) 
(OSCR) to measure performance on both seen and unseen classes. A high OSCR score 
indicates that classification and novelty detection receive excellent performance simulta-
neously. We provide its calculation in the appendix, a more in-depth discussion could be 
found in (Dhamija et al., 2018).

Implementation details For all of these methods, we use ResNet-18 (He et al., 2016) as 
the base model, which has been pre-trained on the ImageNet (Deng et al., 2009). Moreo-
ver, we employ SGD as the optimizer for all methods and we take the results when their 
losses converge. For our methods, we set � of Env-Mix (Eqs. 3b 3c) to be the median of 
Grad-CAM scores by default. In words, it chose half of the input as the environment part 
while the other half as the semantic part. We then set a coordination coefficient to bal-
ance the classification loss and supervised contrastive loss, which makes the proportion 
of supervised contrastive loss increase linearly with the first few epochs and then fixed. In 
our experiment, we set the final coefficient as 0.1 both in the training and testing phases. 
Besides, all of the methods are implemented based on Pytorch and we train them on an 
NVIDIA RTX 3090.

5.2  Results analysis

In Table 1, we report the results on ImageCLEF-DA and NICO. In Table 2, we report 
the results on WILDS-FMoW. All of these results are obtained via three random repeats.
From the results, we could find that out-of-distribution generalization methods provide 
a strong baseline for open-set learning under covariate shift, which even outperforms 
the SOTA open-set methods. Note that DANN, MixupDG, and DAML need prior divi-
sion for multiple sources, so they cannot be used for datasets like NICO that do not have 
a consistent source division. An interesting finding is SelfReg which utilizes contras-
tive learning without the need for prior division, showing a strong performance. This is 
consistent with our finding that SCL is beneficial for distribution generalization. Never-
theless, our framework SC–OSG with EnvMix has shown a clear performance improve-
ment, verifying its effectiveness.

5.3  Invariance comparison for SCL

In this work, we theoretically justify the effectiveness of SCL on covariate generaliza-
tion. Here, we empirically compare the previous invariant representation learning meth-
ods, like DANN (Ganin and Lempitsky, 2015) and cross-entropy-based learning (CE). 
Specifically, we regard the raw data and the augmented data as two domains and learn 
the invariant representation of them.
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From the results shown in Table 3, we could first find that invariant representation 
learning could outperform the CE baseline, which ignores the diversity among envi-
ronments. Moreover, we could find our proposed SC–OSG could achieve a signifi-
cant improvement, which verifies SCL as an effective framework for representation 
invariance.

Table 1  ACC, AUROC, and OSCR (%, mean ± std) on ImageCLEF-DA and NICO

ImageCLEF-DA NICO

Method ACC AUROC OSCR ACC AUROC OSCR

Softmax 82.1±0.5 70.5±0.7 62.8±0.6 77.9±0.3 74.0±1.1 63.7±1.2
Openmax 82.1±0.5 68.8±0.6 50.8±1.4 77.9±0.3 74.3±1.7 61.4±0.8
ODIN 82.1±0.5 71.9±0.8 62.9±0.9 77.9±0.3 82.1±2.2 67.6±1.7
ARPL 74.5±0.8 72.7±2.7 59.5±2.3 74.9±1.0 80.7±1.7 65.5±0.5
ARPL+CS 63.3±1.2 62.9±1.5 45.3±1.9 71.3±1.4 74.7±2.0 59.1±1.7
PROSER 77.5±0.9 67.6±0.3 57.6±0.3 65.2±0.8 75.3±2.7 49.9±1.1
CTooD 79.5±0.4 69.8±0.9 60.9±0.3 73.3±0.4 72.8±0.9 59.4±0.7
DANN 82.5±0.6 69.6±1.1 62.1±1.0 - - -
MixupDG 81.6±0.4 70.9±0.7 62.3±0.6 - - -
DAML 81.3±0.8 69.0±0.5 61.0±0.5 - - -
SelfReg 82.2±0.3 72.4±0.1 64.1±0.5 80.1±0.4 80.0±1.2 69.3± 0.9
StableNet 80.6±1.1 69.7±1.5 61.8±1.3 74.2±0.4 70.8±1.4 59.2±1.3
Mixup 79.0±0.6 68.1±2.7 59.1±2.5 71.3±0.8 63.7±1.9 51.2±1.9
CutMix 79.5±0.9 64.2±2.2 55.5±2.2 67.6±0.8 68.3±2.6 52.4±2.2
SCL 82.2±0.6 72.2±0.8 64.1±0.8 79.8±0.5 76.7±0.8 66.7±0.6
SC–OSG† 84.1±0.6 77.7±0.9 68.2±0.7 79.3±0.5 87.4±0.3 74.3±0.5
SC–OSG‡ 83.2±1.2 72.9±1.1 65.1±1.5 79.2±0.7 77.5±2.5 66.7±1.9
SC–OSG 84.2±0.6 78.4±0.6 68.8±0.6 78.9±0.6 88.0±1.2 74.2±0.6

Table 2  ACC, AUROC and OSCR (%, mean ± std ) on WILDS-FMoW

Method ACC AUROC OSCR Method ACC AUROC OSCR

Softmax 53.8±0.3 63.3±0.6 41.2±0.4 ARPL+CS 53.6±0.2 63.5±0.5 40.6±0.3
Openmax 53.8±0.3 63.2±0.5 40.4±0.4 PROSER 39.4±1.1 57.6±0.1 28.9±1.0
ODIN 53.8±0.3 64.2±0.7 40.0±0.6 CTooD 51.4±0.8 62.5±0.7 39.0±1.0
ARPL 51.1±0.8 63.2±0.9 38.6±1.2
DANN 50.2±0.5 63.2±0.5 38.8±0.3 SelfReg 53.2±0.3 64.1±0.3 41.7±0.3
MixupDG 50.6±0.7 62.7±0.2 39.0±0.6 StableNet 54.1±0.2 64.2±0.2 41.9±0.3
Mixup 50.9±0.8 62.5±0.3 39.0±0.3 CutMix 50.9±1.2 63.1±0.6 38.5±0.9
SCL 52.0±0.5 62.6±0.9 39.9±0.7 SC–OSG‡ 53.1±0.3 63.1±0.5 40.7±0.5
SC–OSG† 53.2±0.5 65.1±0.4 40.3±0.5 SC–OSG 53.7±0.2 65.8±0.7 42.3±0.5
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5.4  Comparison with OSL without covariate shift

In this section, we consider the general open-set setting, where the marginal distribution 
of known classes is fixed. In Table 4, we compare with the previous open-set methods. 
An interesting finding is that our framework still outperforms the SOTA methods with-
out covariate shift. It indicates our framework effectively learns the discriminative rep-
resentation to semantic shift.

6  Conclusion

In this paper, we study the open-set learning under covariate shift problem, to reject 
the unseen classes and recognize the seen classes under covariate shift. We first find 
the connection between SCL and performance generalization. We theoretically justify 
SCL could promote the conditional invariance. Furthermore, we propose a theoretically 
grounded framework, SC–OSG, to learn invariant representation by synthetic multi-
source samples. The effectiveness of the proposed framework is clearly verified on real-
world datasets.

Table 3  Performance comparison 
for different representation 
learning with EnvMix

Method ACC AUROC OSCR

EnvMix+CE 81.3±0.8 69.5±2.3 61.9±2.1
EnvMix+DANN 82.3±0.1 71.4±1.2 63.5±1.1
SC–OSG 83.2±1.2 72.9±1.1 65.1±1.5

Table 4  ACC, AUROC, and OSCR (%, mean ± std) in traditional open-set setting

ImageCLEF-DA NICO

Method ACC AUROC OSCR ACC AUROC OSCR

Softmax 86.3±0.6 77.2±0.4 71.8±0.6 93.3±0.5 87.2±0.6 83.9±0.5
Openmax 86.3±0.6 74.8±0.2 63.4±0.9 93.3±0.5 87.8±1.0 81.3±0.5
ODIN 86.3±0.6 77.2±1.0 71.2±1.1 93.3±0.5 92.6±1.2 87.4±0.7
ARPL 82.8±1.4 78.5±1.2 71.5±1.5 91.9±1.1 91.7±1.3 85.9±0.9
ARPL+CS 77.5±2.0 73.3±2.0 62.9±2.0 89.6±0.4 87.5±1.3 80.8±1.3
PROSER 81.5±1.3 67.7±0.9 66.6±0.4 83.3±0.8 83.9±1.8 71.4±1.2
CTooD 84.3±0.8 77.0±0.4 70.5±0.6 91.2±0.3 86.2±0.5 81.6±0.3
SCL 85.8±0.6 78.8±0.8 73.2±0.7 93.4±0.4 88.5±0.4 85.0±0.4
SC–OSG† 86.0±0.5 83.1±0.3 76.8±0.3 93.6±0.1 95.6±0.2 92.0±1.3
SC–OSG‡ 86.3±0.6 78.6±1.0 73.2±1.1 92.8±0.5 89.0±2.3 85.2±2.3
SC–OSG 86.2±0.3 83.4±0.3 76.9±0.5 93.3±0.5 95.9±0.8 91.2±0.8



 Machine Learning

1 3

Appendix

A Proof of Theorem 2

Proof For similarity, we define V1 = Praw(Z|Y),V2 = Paug(Z|Y) . In words, the joint distri-
bution p(V1,V2) means they derive from the same semantic y ∈ Y  . The data augmentation 
A does not change the semantic causes. Thus, we have positive pairs (arise from the same 
label y). The loss in the Eq. 1 is the categorical cross-entropy of classifying the positive 
pair correctly.

Formally, we consider the joint distribution p(V1,V2) and the product p(V1)p(V2) . Let 
us define a distribution q with latent variable C which decides whether a tuple (g(v1), g(v2)) 
was drawn from the joint ( C = 1 , the same semantic Y) or product of marginals (C = 0) ∶

Given Nc positive pair (drawn from the joint distribution, i.e., the same label provided to V1 
and V2 ) for every N negative pairs (drawn from the product of marginals) independent ran-
domly drawn inputs provided to V1 and V2 . The priors on the latent C are: 
q(C = 1) =

Nc

N+Nc

, q(C = 0) =
Nc

N+Nc

. By Bayes’s rule, the posterior for class C = 1 is given 
by:

We could find minimize the supervised contrastive loss (Equation  1) is proportional to 
maximizing the posterior q(C = 1|V1,V2) . Moreover, we have:

Thus maximizating �q(V1,V2|C=1) log q(C = 1|V1,V2) , increases a lower bound on 
mutual information I(V1,V2) . Through the supervised singal Y, we could regrad the 
�q(V1,V2|C=1) log q(C = 1|V1,V2) as a binary classification problem, i.e., whether the sam-
ples xi, xj from the same semantic Y. And the Eq. 1 could address it.

For the ideal representation Z which maximizes the I(V1;V2) , we would have 
P(V1) = P(V2) . It means that we align the representation distribution between the raw dis-
tribution and augmented distribution.

  ◻

(A 1)q(V1,V2|C = 1) = p(V1,V2), q(V1,V2|C = 0) = p(V1)p(V2)

(A 2)
q(C = 1|V1,V2) =

q(V1,V2|C = 1)q(C = 1)

q(V1,V2|C = 1)q(C = 1) + q(V1,V2|C = 0)q(C = 0)

=
Ncp(V1,V2)

Ncp(V1,V2) + Np(V1)p(V2)

log q(C = 1|V1,V2) = log
p(V1,V2)

p(V1,V2) + N∕Ncp(V1)p(V2)

= − log(1 + N∕Nc

p(V1)p(V2)

p(V1)p(V2)
) ≤ − log(N∕Nc) + log

p(V1,V2)

p(V1)p(V2)

I(V1,V2) ≥ log(N∕Nc) + �q(V1,V2|C=1) log q(C = 1|V1,V2)
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B Open‑set classification rate

We split testing data into seen classes Ds and unseen class Du . When given threshold � , we 
can define Correct Classification Rate(CCR) and False Positive Rate(FPR) under open set 
learning.

Varying the threshold � from small one to large one, we plot CCR versus FPR. OSCR can 
be computed from the area under the curve.
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