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Abstract In this paper we study multi-label learning with weakly labeled data, i.e., labels
of training examples are incomplete, which commonly occurs in real applications, e.g.,
image classification, document categorization. This setting includes, e.g., (i) semi-supervised
multi-label learning where completely labeled examples are partially known; (ii) weak label
learning where relevant labels of examples are partially known; (iii) extended weak label
learningwhere relevant and irrelevant labels of examples are partially known. Previous stud-
ies often expect that the learning method with the use of weakly labeled data will improve the
performance, as more data are employed. This, however, is not always the cases in reality,
i.e., weakly labeled data may sometimes degenerate the learning performance. It is desir-
able to learn safe multi-label prediction that will not hurt performance when weakly labeled
data is involved in the learning procedure. In this work we optimize multi-label evaluation
metrics (F1 score and Top-k precision) given that the ground-truth label assignment is real-
ized by a convex combination of base multi-label learners. To cope with the infinite number
of possible ground-truth label assignments, cutting-plane strategy is adopted to iteratively
generate the most helpful label assignments. The whole optimization is cast as a series of
simple linear programs in an efficient manner. Extensive experiments on three weakly labeled
learning tasks, namely, (i) semi-supervised multi-label learning; (ii) weak label learning and
(iii) extended weak label learning, clearly show that our proposal improves the safeness of
using weakly labeled data compared with many state-of-the-art methods.
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1 Introduction

In many real applications, learning objects are associated with multiple labels. For example,
in image classification (Carneiro et al. 2007), one image can be associated with many concept
labels such as ‘sky’, ‘cloud’, ‘flower’, etc; in document categorization (Srivastava and Zane-
Ulman 2005), one document could be related to multiple topics such as ‘sport’, ‘football’,
‘lottery’, etc. Multi-label learning (Zhang and Zhou 2014) is now one hot research area
in dealing with learning examples related to multiple labels. Due to its wide suitability,
multi-label learning techniques have been adopted for many applications, and a number of
multi-label learning algorithms have been developed (Tsoumakas et al. 2009; Zhang and
Zhou 2014).

Although multi-label representation provides a better characterization than single-label
one, in real applications the acquisition of labels suffers from various difficulties, and weakly
labeled data, i.e., labels of training examples are incomplete, commonly occurs. For example,
human labelers may only give labels for a few training examples. In this case, completely
labeled examples are partially available and many training examples are unlabeled, which
is realized as semi-supervised multi-label learning problem (Liu et al. 2006; Kong et al.
2013); human labelers may only give partial relevant labels for training examples. In this
case, relevant labels of training examples are partially known and many relevant labels are
missing, which is realized as weak label learning problem (Sun et al. 2010); human labelers
may only give partial relevant and irrelevant labels for training examples. In this case, relevant
and irrelevant labels of training examples are partially known, we refer it to extended weak
label learning problem. Figure 1 illustrates three weakly label assignments for multi-label
training data. Over the past decade, multi-label learning with weakly labeled data attracts
increasing attentions and a large number of algorithms have been presented (Liu et al. 2006;
Sun et al. 2010; Chen et al. 2008; Kong et al. 2013; Wang et al. 2013; Yu et al. 2014; Zhao
and Guo 2015).

In previous studies, it is often expected that multi-label learning methods with the use
of weakly labeled data are better than counterpart approaches, i.e., supervised multi-label
learning methods using only labeled data, as more data are employed. This, however, is not
always the cases in reality. As reported in quite many empirical studies (Chen et al. 2008;
Wang et al. 2013; Zhao and Guo 2015), using more weakly labeled data may sometimes
degenerate learning performance. This hinders multi-label learning to play roles in more
applications. It is important to have safe multi-label learning methods which could always
improve the learning performance with weakly labeled data, and in the worst case scenario,
they will not degenerate performance. Figure 2 illustrates the motivation of the paper.

To overcome this issue, in this work we propose SafeML (SAFE Multi-Label prediction
for weakly labeled data). It directly optimizes multi-label evaluation metrics (F1 score and
Top-k precision) via formulating a distribution of ground-truth label assignments. Specifi-
cally, we assume that ground-truth label assignments are realized by a convex combination
of multiple basic multi-label learners, inspired by Li et al. (2017). To cope with the infinite
number of possible ground-truth label assignments in optimization, cutting-plane strategy is
adopted, which iteratively generates the most helpful label assignments. The optimization is
then cast as a series of simple linear programs in an efficient manner. Extensive experiments
on three weakly labeled tasks, namely, i) semi-supervised multi-label learning; ii) weak label
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Fig. 1 Illustration for weakly labeled data. + 1 and − 1 represent relevant and irrelevant labels. Red cells
represent missing labels. In this paper three kinds of weakly labeled data are considered, namely, semi-
supervised multi-label, weak label and extended weak label learning (Color figure online)

Fig. 2 Motivation of the paper. Inmany cases, traditionalmulti-label learning algorithms usingweakly labeled
data may degenerate the learning performance, which is not in line with our expectation

learning and iii) extended weak label learning, show that our proposal clearly improves the
safeness for the use of weakly labeled data, in comparison to many state-of-the-art methods.

The rest of the paper is organized as follows. We first introduce some related works and
then present the proposed method. This is then followed by extensive experimental results,
and finally we give conclusive remarks.

2 Related work

Thiswork is related to twobranches of studies. Thefirst one ismulti-label learning approaches
for weakly labeled data. As for semi-supervisedmulti-label learning problem, one early work
is proposed by Liu et al. (2006). They assumed that the similarity in the label space is closely
related to that in the feature space, and thus employed the similarity in feature space to guide
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the learning of missing label assignments, which leads to a constrained nonnegative matrix
factorization (CNMF) optimization. Later, Chen et al. (2008), inspired by the idea of label
propagation, inferred the label assignments for unlabeled data via two graphs on instance-
level and label-level respectively. Similarly, Wang et al. (2013) proposed to propagate from
labeled data to unlabeled data via a dynamic graph. Zhao and Guo (2015) aimed to improve
multi-label prediction performance by integrating label correlation andmulti-label prediction
in a mutually beneficial manner.

As forweak label learning problem, there are someapproaches.One earlywork is proposed
by Sun et al. (2010). They employed label propagation idea to learnmissing label assignments
and controlled the quality of learned relevant labels through sparsity regularizer. Bucak et al.
(2011) formulated the problem via standard statistical learning framework and introduced
group lasso loss function that enforced the learned relevant labels to be sparse. Chen et al.
(2013) first attempted to reconstruct the (unknown) complete label set from a few label
assignments, and then learned amapping from the input features to the reconstructed label set.
Yu et al. (2014) first initialized the label assignments via trainingmodel on the labels observed
and then performed label completion based on visual similarity and label co-occurrence of
learning objects (Wu et al. 2013; Zhu et al. 2010).

As for extended weak label learning problem, to our best knowledge, it has not been
studied yet and this paper is the first work on this new setting. Generally, previous multi-
label learning methods on weakly labeled data typically work on improving the performance
based on some assumptions/conditions, no study has been proposed on using weakly labeled
data safely.

The second branch of studies is safe machine learning techniques for weakly labeled
data, which are now generally focused on semi-supervised learning scenario. S4VM (Safe
Semi-Supervised SVM) (Li and Zhou 2015) is one early work to build safe semi-supervised
SVMs. They optimized the worst-case performance gain given a set of candidate low-density
separators, showing that the proposed S4VM is provably safe given that low-density assump-
tion (Chapelle et al. 2006) holds. UMVP (Li et al. 2016) concerns to build a generic safe
SSC framework for variants of performance measures, e.g., AUC, F1 score, Top-k precision.
Krijthe and Loog (2015) developed a robust semi-supervised classifier, which learns a pro-
jection of a supervised least square classifier from all possible semi-supervised least square
classifiers. Most recently, Li et al. (2017) explicitly considers to maximize the performance
gain and learns a safe prediction from multiple semi-supervised regressors, which is not
worse than a direct supervised learner with only labeled data. However, all these works focus
on binary classification or regression cases, which are not sufficient to cope with multi-label
learning problems (will be verified in our empirical studies), as they fail to take rich label
correlations into account.

3 Proposed SAFEML method

In this section, we first present some backgrounds of multi-label learning, including problem
notations and popular evaluation metrics for multi-label learning. We then present problem
formulation for safe multi-label learning with weakly labeled data, followed by its optimiza-
tion and analysis.
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Table 1 Summary of notation

Notation Meaning

N Number of instances

L Number of labels

d Number of features

x ∈ R
d Instance feature vector

X = [x1; . . . ; xn ] ∈ R
n×d Instance feature matrix representation

y ∈ {−1, 1}L Label vector of multi-label data

Y ∈ {−1, 1}N×L Label matrix of multi-label data

Ȳ ∈ {−1, 0, 1}N×L Label matrix of weakly labeled data, where ‘0’ means missing label

b Number of base learners

{Pi }bi=1 ∈ {−1, 1}N×L Pseudo label matrices generated by base learners

v = [v1, v2, . . . , vb] Weight vector of base learners

Ŷ ∈ {−1, 1}N×L Our predictive label matrix

3.1 Background

Notation In traditional supervised multi-label learning, the training data set is represented
as {(x1, y1), . . . , (xN , yN )}, where xi ∈ R

d is the feature vector of the i-th instance, and
yi ∈ {−1, 1}L is the corresponding label vector. N and L are the number of instances and
labels, respectively. The feature matrix is denoted as X = [x1; . . . ; xN ] ∈ R

N×d and the
label matrix Y = [y1; . . . ; yN ] ∈ {−1, 1}N×L . If instance xi is associated to the j-th label,
then Yi j = 1; otherwise, Yi j = −1. Given X and Y, the goal of multi-label learning is to
learn a hypothesis f : Rd → {−1, 1}L that accurately predicts the label vector for a given
instance.

However, when weakly labeled data occurs, the label assignments in Y is not complete
and some parts of the label assignments in Y are missing. In this case, what we have is
an incomplete label matrix Ȳ ∈ {−1, 0,+1}N×L where ‘0’ indicates the cases that the
corresponding label assignments are missing.

As previously mentioned, our goal in the paper is to derive safe multi-label prediction
for weakly labeled data. Specifically, given Y0 be the predictive label matrix based on direct
supervisedmulti-label learning algorithms, e.g., binary relevance (Read et al. 2011),wewould
like to learn a safe multi-label prediction Ŷ from {X, Ȳ} such that Ŷ is often better than Y0

w.r.t. multi-label evaluation metrics. All the notations and their meanings are summarised in
Table 1. In the following, we introduce two popular multi-label evaluation metrics.
Multi-label evaluation metrics The first one is F1 score. F1 score is a widely used evaluation
for multi-label learning, which trades off precision and recall (Zhang and Zhou 2014). It takes
both precision and recall into consideration with equal importance. Traditional F1 score is
computed for binary classification problem. When F1 meets multi-label learning, it can be
obtained in the following two modes.

– MacroF1 :

MacroF1 = 1

L

L∑

j=1

F1
(
T Pj , FPj , T N j , FN j

)
(1)
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– MicroF1 :

MicroF1 = F1

⎛

⎝
L∑

j=1

T Pj ,

L∑

j=1

FPj ,

L∑

j=1

T N j ,

L∑

j=1

FN j

⎞

⎠ (2)

where T Pj , FPj , T N j , FN j represent the number of true posi tive, f alse posi tive, true
negative, and f alse negative test examples with respect to label assignments of the j-th
label, and

F1(T P, FP, T N , FN ) = 2T P

2T P + FN + FP
.

As can be seen, MacroF1 characterizes the average of F1 scores over all the labels, while
MicroF1 characterizes the F1 score w.r.t. the sum of T P, FP, T N , FN over all the labels.
They both characterize the tradeoff between precision and recall, from different aspects.

The second one is Top-k precision. Top-k precision is also popularly used in multi-label
learning applications (Zhang and Zhou 2014), especially for those in information retrieval or
search areas. In Top-k precision, only a few top predictions of an instance will be considered.
For each instance xi , the Top-k precision is defined for a predicted score vector ŷi ∈ RL and
ground truth label vector yi ∈ {−1, 1}L as

Pre@k(yi , ŷi ) = 1

k

∑

l∈rankk (ŷi )
(yi,l + 1)/2 (3)

where rankk(ŷi ) returns the indices of k largest value in ŷi ranked in descending order.
Therefore, the Top-k precision for a set of training instances is derived as

Pre@k(Y, Ŷ) = 1

N

N∑

i=1

1

k

∑

l∈rankk (ŷi )
(yi,l + 1)/2 (4)

3.2 Problem formulation

We now describe our prediction problem, and formulate it as a zero-sum game between two
players: a predictor and an adversary which is similar to the method mentioned in Balsubra-
mani and Freund (2015). In this game, the predictor is the first player, who plays Ŷ, a label
matrix for training instances {xi }Ni=1. The adversary then plays Y, setting the ground-truth
label matrix Y ∈ {−1, 1}N×L under the constraints that Y could be reconstructed by a set
of base learners. The predictor’s goal is to maximize (and the adversary is to minimize) the
expected learning performance on the test data. The SafeMLmethod formulates this as the
following maximin optimization framework:

max
Ŷ

min
Y∈Ω

perf(Ŷ,Y)

s.t. Ω =
{
Y

∣∣∣Y =
b∑

i=1

viPi

}
(5)

where perf represents the target performance measure (e.g., F1 score, Top-k precision) and
{P1, . . . ,Pb} are pseudo label matrices generated by base learners, v = [v1, . . . , vb] captures
the relative importance of the b base learners. Without loss of generality, we assume that v

is in the simplex M = {v
∣∣∣
∑b

i=1 vi = 1, vi ≥ 0}. Equation (5) leads to robust and accurate
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multi-label predictions, as it maximizes the learning performance w.r.t. ground-truth label
assignment, meanwhile considers the risk that ground-truth label matrix is uncertain and
from a distribution. In the sequel we present the optimization of Eq. (5) w.r.t. multi-label
evaluation metrics, i.e., F1 score and Top-k precision.

3.3 Optimize Eq. (5) with F1 Score

When F1 score is considered, given Y and Ŷ, we have

L∑

j=1

T Pj =
L∑

j=1

N∑

i=1

I(Yi, j = 1 ∧ Ŷi, j = 1) (6)

L∑

j=1

FPj =
L∑

j=1

N∑

i=1

I(Yi, j �= 1 ∧ Ŷi, j = 1) (7)

L∑

j=1

T N j =
L∑

j=1

N∑

i=1

I(Yi, j �= 1 ∧ Ŷi, j �= 1) (8)

L∑

j=1

FN j =
L∑

j=1

N∑

i=1

I(Yi, j = 1 ∧ Ŷi, j �= 1) (9)

Equation (6) shows that
∑L

j=1 T Pj equals to tr
(
( Ŷ+1

2 )�(Y+1
2 )

)
. From Eqs. (6, 7, 9), we

notice that 2T P + FN + FP is equal to the number of +1 in Y and Ŷ. Thus Eq. (5) can be
rewritten as following:

max
Ŷ

min
Y∈Ω

tr

((
Ŷ+1
2

)� (
Y+1
2

))

∑
i, j I(Yi, j = 1) + ∑

i, j I(Ŷi, j = 1)
(10)

where I(·) is the indicator function that returns 1 when the argument holds and 0 otherwise.∑
i, j I(Yi, j = 1) is the number of +1 in Y and

∑
i, j I(Ŷi, j = 1) is the number of +1 in Ŷ.

To simplify this problem,we consider that the ratio of relevant labels for ground-truth label

assignments are approximately closely related to a constant, i.e.,
∣∣∣
∑

i, j I(Yi, j = 1) − γ0

∣∣∣ ≤
ε and we set γ0 according to the average number of +1 on training data. Therefore, the
denominator of the object function in Eq. (10) can be approximated as a constant and thus
Eq. (10) can be written as

max
Ŷ

min
Y∈Ω

tr

⎛

⎝
(
Ŷ + 1

2

)� (
Y + 1

2

)⎞

⎠

s.t.
∣∣∣
∑

i, j

I(Yi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L

∣∣∣
∑

i, j

I(Ŷi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L (11)
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Consequently, Eq. (11) can be rewritten as the following version:

max
Ŷ,θ

θ

s.t. θ ≤ tr

⎛

⎝
(
Ŷ + 1

2

)� (
Y + 1

2

)⎞

⎠ ,∀ Y ∈ Ω

∣∣∣
∑

i, j

I(Yi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L

∣∣∣
∑

i, j

I(Ŷi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L (12)

Note that there can be an exponential number of constraints in Eq. (12), and so a direct
optimization is computationally intractable. Hence we employ the cutting-plane algorithm
to solve this problem. Instead of using all the constraints in Ω to construct the optimization
problem in Eq. (12), we only use an active set of constraints, which contains a limited number
of constraints in Ω . Cutting-plane algorithm iteratively adds a cutting plane to shrink the
feasible region. Specifically, let C be an active constraint set. With a fixed Ŷ, the cutting-
plane algorithm needs to find the most violated constraint for the current Ŷ by solving

Ynew = argmin
Y∈Ω

tr

⎛

⎝
(
Ŷ + 1

2

)� (
Y + 1

2

)⎞

⎠ , s.t.
∣∣∣
∑

i, j

I(Yi, j = 1) − γ0

∣∣∣ ≤ ε (13)

and add Ynew to the active constraint set C. To simplify this equation, we construct vector

z1×b, where zi = tr(P�
i

Ŷ+1
2 ) and then tr

(
( Ŷ+1

2 )�(Y+1
2 )

)
equals to vz�. Similarly, construct

matrix Z̄b×N , where Z̄i = (Pi1L×1)
� and 1L×1 is a column vector with all L values set to

be 1, then vZ̄1N×1 equals to the number of +1 in Y. Hence, the problem can be rewritten as

min
v∈M vz�

s.t.
∣∣∣vZ̄1N×1 − γ0

∣∣∣ ≤ ε (14)

Equation (14) is a simple linear programming that is readily to solve globally and efficiently.
Given active constraint set C, which is a subset of Ω , we can replace the Ω in Eq. (12) with
C and obtain

max
Ŷ,θ

θ

s.t. θ ≤ tr

⎛

⎝
(
Ŷ + 1

2

)� (
Y + 1

2

)⎞

⎠ , ∀ Y ∈ C
∣∣∣
∑

i, j

I(Ŷi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L (15)

Both the objective function and constraints in Eq. (15) are linear in Y and θ . Hence, we can
solve the Eq. (15) with a linear programming efficiently.

Algorithm 1 summarizes the pseudo code of the cutting plane algorithm. In most cases
of our experiment, the algorithm converged within a maximum number of iterations (100
iterations in our experiments). The update of Y and Ŷ [i.e., Eqs. (14) and (15)] are solved by
a convex and simple linear programming problem, Eq. (12) is then addressed efficiently.
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Algorithm 1 Cutting-plane algorithm for Eq. (12)

Input: label matrices {Pi }bi=1 and parameter γ0

Output: predictive label matrix Ŷ
1: Initialize Y0 = 1

b

∑b
i=1 Pi , working set C = {Y0} and t = 1

2: while not converge do
3: Obtain Ŷt by solving Eq. (15)
4: Obtain v by solving Eq. (14)

5: Obtain Ynew according to Ynew =
∑b

i=1
viPi

6: Set C = C ⋃
Ynew; t = t + 1

7: end while
8: return Ŷ = Ŷt

3.4 Optimize Eq. (5) with top-k precision

According to Eq. (4), given Y and Ŷ, Top-k precision can be formulated as

Pre@k(Y, Ŷ) = 1

Nk

N∑

i=1

L∑

j=1

I(Yi j = 1)I
(
π
Ŷi
j > L − k

)
(16)

where π Ŷi is the ranking vector of Ŷi , where π
Ŷi
p > π

Ŷi
q if Ŷi p > Ŷiq (with ties broken

arbitrarily). Similarly, considering that the ratio of relevant labels for ground-truth label

assignments are approximately closely related to a constant, i.e.,
∣∣∣
∑

i, j I(Yi, j = 1)−γ0

∣∣∣ ≤ ε

and each instance is constrained to be associated with exactly k positive labels, then the
optimization objective becomes

max
Ŷ

min
Y∈Ω

Pre@k(Y, Ŷ)

s.t.
∣∣∣
∑

i, j

I(Yi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L

∑

j

I(Ŷi, j = 1) = k, i = 1 . . . N (17)

Equation (17) can be rewritten as

max
Ŷ,θ

θ

s.t. θ ≤ Pre@k(Y, Ŷ),∀ Y ∈ Ω
∣∣∣
∑

i, j

I(Yi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L

∑

j

I(Ŷi, j = 1) = k, i = 1 . . . N (18)

Instead of using all the constraints inΩ to construct the optimization problem in Eq. (18), we
only use an active set of constraints, which contains a limited number of constraints inΩ . The
proposed cutting-plane algorithm iteratively adds a cutting plane to shrink the feasible region.
Specifically, let C be an active constraint set.With a fixed Ŷ, the cutting-plane algorithm needs
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Algorithm 2 Cutting-plane algorithm for Eq. (18)

Input: label matrices {Pi }bi=1 and parameter γ0

Output: predictive label matrix Ŷ
1: Initialize Y0 = 1

b

∑b
i=1 Pi , working set C = {Y0} and t = 1

2: while not converge do
3: Obtain Ŷt by solving Eq. (22)
4: Obtain v by solving Eq. (21)

5: Obtain Ynew according to Ynew =
∑b

i=1
viPi

6: Set C = C ⋃
Ynew; t = t + 1

7: end while
8: return Ŷ = Ŷt

to find the most violated constraint by solving

Ynew = argmin
Y∈Ω

Pre@k(Y, Ŷ), s.t.
∣∣∣
∑

i, j

I(Yi, j = 1) − γ0

∣∣∣ ≤ ε (19)

It can be proved that the value of Pre@k(Y, Ŷ) equals to tr
(
( Ŷ+1

2 )�(Y+1
2 )

)
(Li et al. 2016).

Hence, Eq. (19) can be transformed into

Ynew = argmin
Y∈Ω

tr

⎛

⎝
(
Ŷ + 1

2

)� (
Y + 1

2

)⎞

⎠ , s.t.
∣∣∣
∑

i, j

I(Yi, j = 1) − γ0

∣∣∣ ≤ ε (20)

Similar to the case in F1 score, the optimization problem can be rewritten as following:

min
v∈M vz�

s.t.
∣∣∣vZ̄1N×1 − γ0

∣∣∣ ≤ ε (21)

Equation (21) is a simple linear programming that is readily to solve globally and efficiently.
Given an active constraints set C, which is a subset of Ω , we can replace the Ω in Eq. (18)
with C and obtain

max
Ŷ,θ

θ

s.t. θ ≤ tr

⎛

⎝
(
Ŷ + 1

2

)� (
Y + 1

2

)⎞

⎠ , ∀ Y ∈ C
∣∣∣
∑

i, j

I(Ŷi, j = 1) − γ0

∣∣∣ ≤ ε, i = 1 . . . N , j = 1 . . . L (22)

Both the objective function and constraints in Eq. (22) are linear in Y and θ . Hence, we can
solve the Eq. (22) with a linear programming efficiently. Algorithm 2 summarizes the pseudo
code of the cutting plane algorithm. The algorithm converged within a maximum number
of iterations (100 iterations in our experiments). The update of Y and Ŷ [i.e., Eqs. (21) and
(22)] is solved with convex and simple linear programming problems, Eq. (18) is addressed
efficiently.

123



Mach Learn (2018) 107:703–725 713

3.5 How the proposal works

Except for efficient algorithms, it is also important to study how the proposal works. In the
following, we show that the performance of our proposal is closely related to the correlation
of base learners.

Theorem 1 Let YGT be the ground-truth label matrix and Ŷ
∗
be the prediction of SafeML,

i.e., the optimal solution to Eq. (5). The performance of our proposal perf(Ŷ∗, YGT ) w.r.t.
F1 score and Top-k precision is lower bounded by max

i=1,...,b
min

j=1,...,b
perf(Pi ,P j ) as long as

YGT ∈ Ω .

Proof Let f (Ŷ) = min
Y∈Ω

perf(Ŷ,Y). Since Ŷ
∗
is the optimal solution to Eq. (5), the following

inequality holds:

f (Ŷ
∗
) ≥ f (Pi ), i = 1, . . . , b (23)

which implies that

f (Ŷ
∗
) ≥ max

1≤i≤b
f (Pi ) (24)

According to the definition of function f , for any i (1 ≤ i ≤ b) we have

f (Pi ) = min
Y∈Ω

perf(Pi ,Y) where Ω =
{
Y

∣∣∣Y =
b∑

i=1

viPi

}
(25)

Since the Top-k Precision, F1 score are used as performance measures, Eq. (25) can be
reduced to

f (Pi ) = min
v

b∑

j=1

v j perf(Pi ,P j ) s.t.
b∑

i= j

v j = 1, vi ≥ 0 (26)

which naturally becomes,

f (Pi ) = min
1≤ j≤b

perf(Pi ,P j ) (27)

According to Eq. (24), we then have,

f (Ŷ
∗
) ≥ max

1≤i≤b
min

1≤ j≤b
perf(Pi ,P j ) (28)

Further note that f (Ŷ
∗
) = min

Y∈Ω
perf(Ŷ

∗
,Y) and YGT ∈ Ω , we have

perf(Y∗,YGT ) ≥ f (Ŷ
∗
) (29)

Integrating inequations (28), (29), we then derive

perf(Y∗,YGT ) ≥ max
1≤i≤b

min
1≤ j≤b

perf(Pi ,P j ) (30)

��
Theorem 1 implies that the performance of SafeML is related to the maximin correlation

of base learners. In practice, as shown in Table 9, it is oftenmuch better than direct supervised
multi-label learning with only labeled data, which thus justifies the safeness of our proposal.
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Table 2 Benchmark multi-label
data sets

Data set # inst # feat # label # card-label

emotions 593 72 6 1.869

enron 1702 1001 53 3.378

image 2000 294 5 1.236

scene 2407 294 6 1.074

yeast 2417 103 14 4.237

arts 5000 462 26 1.636

bibtex 7395 1836 159 2.400

tmc2007 28,596 981 22 2.158

delicious 13,903 500 983 19.030

4 Experiments

To evaluate the effectiveness of our proposal, we conduct experimental comparisons with
state-of-the-art methods on a number of benchmark multi-label data sets. We report our
experimental setting and results in this section.

4.1 Setup

Data setsWe evaluate the proposed method on nine multi-label data sets: emotions, enron,
image, scene, yeast , arts, bibtex , tmc2007 and delicious. A summary of the statistics
of data sets is shown in Table 2. #inst is the number of instance in the data set; #feat is
the number of features; #label is the number of labels; #card-label is the average number
of labels per example. The sample size ranges from 593 to more than 28,000. The feature
dimensionality ranges from 72 to more than 1800. The label size ranges from 5 to 983. These
data sets cover a broad range of properties.

Compared methods We compare the performance of the proposed algorithm with the
following methods.

– BR (Binary Relevance) (Tsoumakas et al. 2009): the baseline method. A binary SVM
classifier is trained on only labeled instances for each label.

– S4VM (Safe Semi-Supervised SVM) (Li and Zhou 2015): A binary S4VM classifier is
trained on both labeled and unlabeled instances for each label.

– ML-kNN (Zhang and Zhou 2007) is a kNN style multi-label classification algorithm
which often outperforms other existing multi-label algorithms.

– ECC (Ensemble Classifier Chain): state-of-the-art supervised ensemble multi-label
method proposed in (Read et al. 2011).

– CNMF (semi-supervised multi-label learning by Constrained Non-negative Matrix
Factorization) (Liu et al. 2006) is a semi-supervised multi-label classification algorithm
via constrained non-negative matrix factorization.

– LEML (Low rank Empirical risk minimization for Multi-Label Learning) (Yu et al.
2014): recent state-of-the-art multi-label method for weakly labeled data by formulating
the problem as an empirical risk minimization.

– TRAM (TRAsductive Multilabel Classification) (Kong et al. 2013) is a transductive
multi-label classification algorithm via label set propagation.

– WELL (WEak Label multi-Label method) (Sun et al. 2010) deals with missing labels
via label propagation and controls the sparsity of label assignments.
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Evaluation metrics Three criteria are used to evaluate the methods: Top-k precision (perfor-
mance on a few top predictions) and F1 score (including Macro F1 and Micro F1). In all
cases, the experimental results of test data are computed based on the complete label matrix.

Each experiment is repeated for 30 times, and the average Top-k precision, Macro F1 and
Micro F1 score on the unlabeled data are reported. We used libsvm (Chang and Lin 2011)
as implementation for BR. For ML-kNN method, the distance metric used to find nearest
neighbors is set as the Euclidean distance and the parameter k is set to 10. For ECC method,
the number of base classifiers chains is set to 10. For the CNMF method, all parameters are
set to the recommended ones in the paper. Parameters in LEML method are set as default
value implemented by the author. For our SafeML method, the number of base learners b
is set to 5 for all the experiments in this paper. The kernel type of SVM classifiers trained
by all methods are set as RBF kernel on all data sets except enron, bibtex and tmc2007
for the number of features are large enough and standard linear SVM classifiers are trained.
In the SafeML method, we generate pseudo label matrices P by training b base learners on
labeled data for each class. In order to construct diverse base learners, a subset of labeled
data is sampled randomly for each base learner. Parameter γ0 is set to the average number of
relevant labels for each example in training set multiplied by the number of testing instances.

4.2 Results on semi-supervised multi-label learning

For each data set, we split 15% examples randomly as labeled data and other as unlabeled
data. For BR method, a binary SVM classifier is trained for each class using only labeled
data. For S4VMmethod, we train a S4VM classifier for each class with labeled and unlabeled
data together.

The resultsmeasured inMacro F1,Micro F1 and Top-k precision are presented in Tables 3,
4 and Fig. 3. We can have the following observations.

– In terms of win counts, SafeML and ECC and TRAM perform the best onMacro F1 and
Micro F1. SafeML and TRAM perform the best on Top-k precision. The other methods
do not perform very well.

– In terms of average performance, SafeML obtains highly competitive performance with
state-of-the-art methods on all the three multi-label evaluation metrics. SafeML obtains
the best performance on Macro F1 and Micro F1.

– Importantly, in terms of loss counts, only SafeML does not degenerate performance
significantly on three multi-label evaluation metrics, while the other methods all cause
performance degeneration significantly in some cases.

– In both Macro F1 and Micro F1, S4VM degenerates performance seriously in some
cases, pointing out that pure safe semi-supervised learning does not lead to safe multi-
label predictions.

– Overall SafeML obtains highly competitive performance with state-of-the-art methods,
while unlike compared methods that degenerate learning performance significantly in
many cases, SafeML does not significantly hurt performance.

We have conducted experiments on a larger data set delicious which contains more than
900 labels. Similar to the behavior on the other data sets, the results (as shown in Fig. 3)
in terms of five performance criteria (i.e., top-1 precision, top-3 precision, top-5 precision,
macro F1 andmicro F1) show that our proposal achieves highly competitive performancewith
state-of-the-art multi-label learning algorithms; more importantly, unlike previous methods
which degenerate the performance in many cases, compared with direct supervised multi-
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Table 3 Macro F1 andMicro F1 score for the compared methods and our SafeMLmethod with 15% labeled
examples

Data set BR S4VM ECC ML-kNN CNMF LEML TRAM SafeML

Macro-F1 score

emotions 0.539 0.608 0.589 0.489 0.330 0.417 0.586 0.624

enron 0.076 0.082 0.083 0.067 0.092 0.098 0.123 0.113

image 0.105 0.509 0.280 0.401 0.271 0.511 0.532 0.516

scene 0.422 0.702 0.596 0.617 0.315 0.567 0.684 0.657

yeast 0.318 0.405 0.346 0.307 0.257 0.183 0.355 0.408

arts 0.075 0.093 0.107 0.068 0.129 0.131 0.168 0.136

bibtex 0.185 0.204 0.247 0.031 0.179 0.112 0.229 0.272

tmc2007 0.443 0.452 0.474 0.220 0.138 0.274 0.384 0.475

Ave. Perf. 0.279 0.381 0.340 0.275 0.214 0.286 0.383 0.408

win/tie/loss against BR 6/2/0 7/1/0 2/2/4 3/1/4 4/0/4 7/0/1 8/0/0

Micro F1 score

emotions 0.592 0.619 0.632 0.535 0.332 0.412 0.612 0.648

enron 0.477 0.509 0.529 0.434 0.351 0.485 0.528 0.538

image 0.130 0.506 0.367 0.425 0.275 0.509 0.531 0.521

scene 0.458 0.690 0.603 0.622 0.315 0.555 0.693 0.635

yeast 0.620 0.607 0.643 0.604 0.299 0.256 0.638 0.656

arts 0.186 0.308 0.331 0.160 0.235 0.317 0.356 0.365

bibtex 0.372 0.398 0.449 0.147 0.376 0.237 0.229 0.509

tmc2007 0.561 0.557 0.604 0.513 0.178 0.580 0.624 0.562

Ave. Perf. 0.424 0.525 0.520 0.430 0.295 0.419 0.527 0.556

win/tie/loss against BR 6/1/1 8/0/0 2/0/6 2/1/5 4/1/3 7/0/1 7/1/0

For allmethods, if the performance is significantly better/worse than the baselineBRmethod, the corresponding
entries are bolded/italicized (paired t tests at 95% significance level). The average performance on all data sets
is listed for comparison. The win/tie/loss counts are summarized and the method with the smallest number of
losses against BR is bolded

label learning algorithm using only labeled data, our proposal does not suffer from this issue
and achieves safe performance.

4.3 Results on weak label learning

For each data set, we create training data sets with varying portions of labels, ranging from
20% (i.e., 80% of the whole training label matrix is missing) to 95% (i.e., 5% of the whole
training label matrix is missing). In each case, the missing labels are randomly chosen among
positive examples of each class.

The results measured in Micro F1 and Macro F1 are presented in Tables 5 and 6. We can
have the following observations.

– As the number ofmissing relevant labels decreases, allmethods generally clearly improve
the learning performance.

– Although WELL generally improves performance significantly (30 cases in Table 5 and
34 cases in Table 6), it significantly decreases the learning performance in 9 cases in
Table 5 and 3 cases in Table 6, where most cases happen on few missing relevant labels.
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Table 4 Top-k precision for the compared methods and our proposed method with 15% labeled examples

Data set BR ECC ML-kNN CNMF LEML TRAM SafeML

emotions P@1 0.601 0.661 0.643 0.346 0.617 0.671 0.657

P@3 0.465 0.492 0.497 0.326 0.470 0.515 0.508

enron P@1 0.116 0.682 0.067 0.546 0.702 0.687 0.646

P@3 0.047 0.567 0.068 0.421 0.549 0.537 0.572

image P@1 0.577 0.509 0.581 0.304 0.583 0.589 0.628

P@3 0.355 0.295 0.348 0.257 0.361 0.353 0.357

scene P@1 0.624 0.596 0.695 0.400 0.607 0.709 0.651

P@3 0.309 0.107 0.335 0.239 0.321 0.342 0.313

yeast P@1 0.733 0.744 0.745 0.273 0.538 0.740 0.747

P@3 0.703 0.696 0.697 0.288 0.471 0.696 0.711

arts P@1 0.198 0.392 0.392 0.286 0.440 0.430 0.438

P@3 0.103 0.237 0.255 0.203 0.265 0.269 0.238

bibtex P@1 0.424 0.247 0.318 0.365 0.407 0.461 0.430

P@3 0.286 0.223 0.177 0.190 0.230 0.257 0.297

tmc2007 P@1 0.657 0.711 0.654 0.307 0.738 0.740 0.704

P@3 0.482 0.504 0.474 0.183 0.533 0.538 0.506

Ave. Perf. 0.491 0.568 0.512 0.353 0.579 0.628 0.613

0.344 0.390 0.356 0.263 0.400 0.430 0.438

win/tie/loss against BR 5/0/3 4/2/2 2/0/6 4/1/3 7/1/0 7/1/0

4/1/3 4/3/1 2/0/6 4/2/2 5/2/1 5/3/0
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Fig. 3 Performance for the compared methods and our proposal on delicious data with 15% labeled examples

The reason may owe to the fact that the baseline BR method becomes more competitive
and thus WELL turns to be risky.

– LEML also often improves the learning performance (19 cases in Table 5 and 35 cases
in Table 6), however, it still significantly decreases the learning performance in 18 cases
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Table 5 Micro F1 score for the
compared methods and our
proposed method for weak label
learning setting

Data set Methods 80% 40% 20% 10% 5%

emotions BR 0.090 0.659 0.739 0.774 0.740

WELL 0.161 0.704 0.783 0.808 0.821

LEML 0.718 0.721 0.724 0.723 0.731

SafeML 0.348 0.835 0.870 0.880 0.873

enron BR 0.301 0.556 0.624 0.632 0.662

WELL 0.362 0.604 0.763 0.848 0.851

LEML 0.537 0.783 0.839 0.856 0.867

SafeML 0.517 0.749 0.782 0.795 0.797

image BR 0.070 0.146 0.290 0.331 0.363

WELL 0.121 0.404 0.583 0.608 0.661

LEML 0.120 0.314 0.403 0.436 0.446

SafeML 0.086 0.602 0.753 0.793 0.792

scene BR 0.158 0.558 0.670 0.752 0.710

WELL 0.221 0.443 0.553 0.612 0.671

LEML 0.295 0.486 0.548 0.557 0.561

SafeML 0.414 0.811 0.861 0.874 0.878

yeast BR 0.209 0.627 0.702 0.725 0.733

WELL 0.251 0.436 0.487 0.504 0.516

LEML 0.519 0.627 0.633 0.634 0.661

SafeML 0.535 0.793 0.835 0.853 0.862

arts BR 0.050 0.238 0.305 0.300 0.334

WELL 0.123 0.343 0.403 0.436 0.441

LEML 0.174 0.347 0.404 0.421 0.430

SafeML 0.115 0.377 0.441 0.469 0.465

bibtex BR 0.292 0.476 0.525 0.552 0.558

WELL 0.278 0.473 0.579 0.600 0.631

LEML 0.204 0.364 0.446 0.485 0.500

SafeML 0.629 0.609 0.695 0.719 0.724

tmc2007 BR 0.428 0.670 0.733 0.745 0.757

WELL 0.475 0.802 0.838 0.850 0.853

LEML 0.242 0.551 0.610 0.630 0.638

SafeML 0.765 0.890 0.909 0.917 0.922

Ave. Perf. BR 0.200 0.491 0.574 0.601 0.607

WELL 0.249 0.526 0.624 0.658 0.681

LEML 0.351 0.524 0.576 0.593 0.604

SafeML 0.373 0.708 0.768 0.788 0.789

in Table 5 and 3 cases in Table 6. Under the same reason, LEML typically degenerates
the performance on few missing relevant labels.

– SafeML significantly improves the learning performance in 40 cases in terms of both
the Micro F1 and Macro F1 metrics. More importantly, it does not suffer from perfor-
mance degeneration on all the 80 cases. Further more, SafeML obtains the best average
performance among all the comparison methods.
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Table 6 Macro F1 score for the
compared methods and our
proposed method for weak label
learning setting

Data set Methods 80% 40% 20% 10% 5%

emotions BR 0.093 0.630 0.687 0.735 0.687

WELL 0.274 0.802 0.838 0.850 0.853

LEML 0.705 0.714 0.712 0.715 0.721

SafeML 0.323 0.801 0.841 0.859 0.844

enron BR 0.075 0.166 0.180 0.189 0.186

WELL 0.174 0.306 0.338 0.350 0.366

LEML 0.186 0.347 0.408 0.453 0.447

SafeML 0.130 0.250 0.272 0.283 0.253

image BR 0.068 0.129 0.236 0.276 0.299

WELL 0.074 0.206 0.246 0.350 0.366

LEML 0.108 0.265 0.348 0.405 0.412

SafeML 0.078 0.591 0.753 0.789 0.788

scene BR 0.144 0.526 0.654 0.732 0.715

WELL 0.176 0.501 0.646 0.651 0.680

LEML 0.194 0.532 0.648 0.657 0.769

SafeML 0.375 0.813 0.863 0.876 0.882

yeast BR 0.105 0.326 0.385 0.413 0.420

WELL 0.257 0.446 0.484 0.499 0.511

LEML 0.373 0.480 0.483 0.486 0.485

SafeML 0.234 0.464 0.532 0.562 0.575

arts BR 0.019 0.110 0.141 0.151 0.159

WELL 0.066 0.142 0.144 0.151 0.178

LEML 0.073 0.157 0.191 0.200 0.209

SafeML 0.046 0.171 0.204 0.224 0.215

bibtex BR 0.128 0.326 0.384 0.412 0.388

WELL 0.220 0.391 0.412 0.452 0.444

LEML 0.214 0.295 0.448 0.457 0.482

SafeML 0.506 0.479 0.577 0.602 0.581

tmc2007 BR 0.387 0.567 0.606 0.615 0.623

WELL 0.474 0.787 0.844 0.859 0.862

LEML 0.384 0.650 0.714 0.733 0.740

SafeML 0.639 0.799 0.824 0.839 0.848

Ave. Perf. BR 0.127 0.348 0.409 0.440 0.435

WELL 0.214 0.448 0.494 0.520 0.533

LEML 0.280 0.430 0.494 0.513 0.533

SafeML 0.291 0.546 0.608 0.629 0.623

Figure 4 shows the results of Top-k precision on three representative data sets. The results
on other data sets perform similarly. SafeML performs highly competitive performance with
compared methods, while unlike compared methods that degenerate learning performance
significantly in many cases, SafeML does not significantly hurt performance compared with
baseline BR method.
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Fig. 4 Top-5 precision on weak label learning

4.4 Results on extended weak label learning

For extended weak label learning, we create training data sets with varying portions of labels,
ranging from 20% (i.e., 80% of the whole training label matrix is missing) to 95% (i.e., 5% of
the whole training label matrix is missing). The missing labels are randomly chosen among
positive and negative examples of each class.

The results measured in Micro F1 and Macro F1 are presented in Tables 7 and 8. We can
have the following observations.

– WELL improves performance significantly (23 cases in Table 7 and 26 cases in Table 8),
however it significantly decreases the learning performance in 8 cases in Table 7 and 6
cases in Table 8.

– LEML also often improves the learning performance (29 cases in Table 7 and 34 cases
in Table 8), however, it still significantly decreases the learning performance in 7 cases
in Table 7 and 5 cases in Table 8.

– SafeML significantly improves the learning performance in 39/38 cases in termsofMicro
F1 and Macro F1, respectively. More importantly, it does not suffer from performance
degenerationon all the 80 cases.Moreover,SafeMLobtains the best averageperformance
among all the comparison methods.

Figure 5 shows the results of Top-k precision on three representative data sets. Results
on other data sets perform similarly. SafeML obtains highly competitive performance with
compared methods, while unlike compared methods that degenerate learning performance
significantly in many cases, SafeML does not significantly hurt performance compared with
baseline BR method.

4.5 Study on the effectiveness of the lower bound performance in Theorem 1

We now empirically study that the lower bound max
i=1,...,b

min
j=1,...,b

perf(Pi ,P j ) in Theorem 1 is

an effective term. Specifically, we compare the derived lower bound with the performance
of direct supervised multi-label learning. Table 9 shows the comparison results for F1 score
on five representative data sets in semi-supervised multi-label learning scenario with 15%
labeled data. The results on other setups behave similar. As can be seen, no matter for macro
F1 or micro F1 measure, the lower bound performance derived in Theorem 1 is clearly better
than that of direct supervised BR SVM. This demonstrates the effectiveness of the lower
bound in Theorem 1 and the safeness of our proposal.
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Table 7 Micro F1 score for the
compared methods and our
proposed method for extended
weak label learning setting

Data set Methods 80% 40% 20% 10% 5%

emotions BR 0.634 0.679 0.697 0.681 0.648

WELL 0.620 0.681 0.692 0.652 0.664

LEML 0.646 0.700 0.717 0.720 0.721

SafeML 0.663 0.696 0.700 0.701 0.710

enron BR 0.510 0.545 0.556 0.548 0.534

WELL 0.421 0.489 0.502 0.532 0.564

LEML 0.539 0.734 0.745 0.754 0.760

SafeML 0.550 0.569 0.573 0.576 0.565

image BR 0.134 0.292 0.344 0.325 0.322

WELL 0.220 0.383 0.399 0.442 0.464

LEML 0.484 0.470 0.464 0.460 0.464

SafeML 0.531 0.618 0.631 0.636 0.639

scene BR 0.499 0.670 0.704 0.702 0.700

WELL 0.420 0.698 0.690 0.722 0.740

LEML 0.381 0.678 0.653 0.742 0.740

SafeML 0.695 0.736 0.749 0.749 0.752

yeast BR 0.628 0.651 0.651 0.666 0.667

WELL 0.530 0.652 0.651 0.664 0.669

LEML 0.497 0.523 0.532 0.532 0.534

SafeML 0.654 0.675 0.676 0.680 0.680

arts BR 0.230 0.310 0.331 0.346 0.350

WELL 0.273 0.396 0.428 0.429 0.434

LEML 0.407 0.440 0.438 0.437 0.438

SafeML 0.321 0.397 0.410 0.413 0.422

bibtex BR 0.403 0.523 0.548 0.558 0.548

WELL 0.325 0.551 0.552 0.557 0.564

LEML 0.460 0.562 0.570 0.577 0.581

SafeML 0.629 0.609 0.695 0.719 0.724

tmc2007 BR 0.573 0.638 0.649 0.652 0.652

WELL 0.485 0.708 0.734 0.750 0.753

LEML 0.625 0.641 0.645 0.645 0.645

SafeML 0.765 0.890 0.909 0.917 0.922

Ave. Perf. BR 0.451 0.539 0.560 0.560 0.553

WELL 0.424 0.570 0.581 0.594 0.607

LEML 0.505 0.594 0.596 0.608 0.610

SafeML 0.601 0.649 0.668 0.674 0.678

4.6 Convergence and time complexity analysis

To generate pseudo label matrices, we train b base learners, which takes O(bdNlabeled L)

time and Nlabeled is the number of labeled data that usually far less than the size of whole data
set. At each iteration of our cutting-plane algorithm, we get Ŷ by solving Eq. (15) as a linear
programming, which takes O(Ntest L) time. In order to find the most violated constraint
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Table 8 Macro F1 score for the
compared methods and our
proposed method for extended
weak label learning setting

Data set Methods 80% 40% 20% 10% 5%

emotions BR 0.593 0.652 0.671 0.647 0.619

WELL 0.520 0.591 0.672 0.673 0.663

LEML 0.644 0.701 0.710 0.708 0.712

SafeML 0.646 0.680 0.683 0.683 0.678

enron BR 0.133 0.168 0.168 0.153 0.140

WELL 0.120 0.171 0.168 0.168 0.164

LEML 0.320 0.397 0.417 0.426 0.433

SafeML 0.153 0.192 0.202 0.198 0.192

image BR 0.112 0.239 0.282 0.268 0.290

WELL 0.120 0.381 0.392 0.452 0.464

LEML 0.460 0.456 0.416 0.427 0.431

SafeML 0.519 0.622 0.635 0.639 0.638

scene BR 0.461 0.662 0.697 0.698 0.681

WELL 0.420 0.661 0.702 0.702 0.694

LEML 0.367 0.620 0.700 0.741 0.746

SafeML 0.705 0.748 0.760 0.762 0.759

yeast BR 0.327 0.363 0.370 0.379 0.376

WELL 0.330 0.381 0.392 0.422 0.464

LEML 0.447 0.474 0.485 0.484 0.485

SafeML 0.399 0.439 0.447 0.449 0.452

arts BR 0.177 0.143 0.157 0.164 0.197

WELL 0.120 0.181 0.192 0.191 0.164

LEML 0.200 0.214 0.216 0.217 0.216

SafeML 0.124 0.180 0.193 0.193 0.198

bibtex BR 0.221 0.379 0.409 0.412 0.377

WELL 0.220 0.381 0.392 0.452 0.464

LEML 0.205 0.356 0.535 0.571 0.580

SafeML 0.506 0.479 0.577 0.602 0.581

tmc2007 BR 0.452 0.501 0.513 0.520 0.525

WELL 0.420 0.581 0.592 0.625 0.664

LEML 0.338 0.550 0.549 0.548 0.558

SafeML 0.639 0.799 0.824 0.839 0.848

Ave. Perf. BR 0.310 0.388 0.408 0.405 0.401

WELL 0.284 0.416 0.438 0.461 0.468

LEML 0.373 0.471 0.504 0.515 0.520

SafeML 0.461 0.517 0.540 0.546 0.543

for the current Ŷ, we solve a simple linear programming which takes O(b3) time. In total,
this takes O(t N L) time, where t is the number of iterations and no more than 100 in our
experiments. The convergence rate of our algorithm on two representative data sets is shown
in Fig. 6, from which we can see that it converges in an efficient manner. The convergence
rate of our proposal on other data sets performs similarly.
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Table 9 Performance comparison between the lower bound in Theorem 1 and direct supervised multi-label
learning

Data set The lower bound in Theorem 1 Direct BR SVM

Macro F1 Micro F1 Macro F1 Micro F1

emotions 0.774 0.855 0.539 0.592

enron 0.194 0.916 0.076 0.477

image 0.378 0.783 0.105 0.130

scene 0.739 0.866 0.422 0.458

yeast 0.501 0.908 0.318 0.620
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Fig. 5 Top-5 precision on extended weak label learning

Fig. 6 The convergence rate of
our proposal on two
representative data sets
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5 Conclusion

Multi-label learning with weakly labeled data is commonly occurred in reality. This includes,
e.g., (i) semi-supervisedmulti-label learningwhere completely labeled examples are partially
known; (ii) weak label learning where relevant labels of examples are partially known; (iii)
extended weak label learning where relevant and irrelevant labels of examples are partially
known. In this paper, we study to learn safe multi-label predictions for weakly labeled data,
which means multi-label learning method does not hurt performance when using weakly
labeled data. Toovercome this issue, in thisworkwe explicitly optimizemulti-label evaluation
metrics (F1 score and Top-k precision) via formulating ground-truth label assignments are
from a convex combination of basic multi-label learners. Although the optimization suffers
from infinite number of possible ground-truth label assignments, cutting-plane strategy is
adopted to iteratively generate themost helpful label assignments and consequently efficiently
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solve the optimization. Extensive experimental results on threeweakly labeled learning tasks,
namely, (i) semi-supervised multi-label learning; (ii) weak label learning and (iii) extended
weak label learning, show that our proposal clearly improves the safeness when using weakly
labeled data in comparison to many state-of-the-art methods.
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