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Abstract—In this paper, we study weakly supervised learning where a large amount of data supervision is not accessible. This

includes i) incomplete supervision, where only a small subset of labels is given, such as semi-supervised learning and domain

adaptation; ii) inexact supervision, where only coarse-grained labels are given, such as multi-instance learning and iii) inaccurate

supervision, where the given labels are not always ground-truth, such as label noise learning. Unlike supervised learning which typically

achieves performance improvement with more labeled examples, weakly supervised learning may sometimes even degenerate

performance with more weakly supervised data. Such deficiency seriously hinders the deployment of weakly supervised learning to

real tasks. It is thus highly desired to study safe weakly supervised learning, which never seriously hurts performance. To this end, we

present a generic ensemble learning scheme to derive a safe prediction by integrating multiple weakly supervised learners. We

optimize the worst-case performance gain and lead to a maximin optimization. This brings multiple advantages to safe weakly

supervised learning. First, for many commonly used convex loss functions in classification and regression, it is guaranteed to derive a

safe prediction under a mild condition. Second, prior knowledge related to the weight of the base weakly supervised learners can be

flexibly embedded. Third, it can be globally and efficiently addressed by simple convex quadratic or linear program. Finally, it is in an

intuitive geometric interpretation with the least square loss. Extensive experiments on various weakly supervised learning tasks,

including semi-supervised learning, domain adaptation, multi-instance learning and label noise learning demonstrate our effectiveness.

Index Terms—Weakly supervised learning, safe, semi-supervised learning, domain adaptation, multi-instance learning, label noise learning

Ç

1 INTRODUCTION

MACHINE learning has achieved great success in numer-
ous tasks, particularly in supervised learning such as

classification and regression. But most successful techni-
ques, such as deep learning [1], require ground-truth labels
to be given for a big training data set. It is noteworthy that
in many tasks, however, it can be difficult to attain strong
supervision due to the fact that the hand-labeled data sets
are time-consuming and expensive to collect. Thus, it is
desirable for machine learning techniques to be able to
work well with weakly supervised data [2].

Compared to the data in traditional supervised learning,
weakly supervised data does not have a large amount of
precise label information. Weakly supervised data is impor-
tant in machine learning and commonly appear in many
real applications. More specifically, three types of weakly
supervised data commonly exist [2].

� Incomplete supervised data, i.e., only a small subset of
training data is given with labels whereas the other
data remain unlabeled. For example, in image categori-
zation [3], it is easy to get a huge number of images
from the Internet, whereas only a small subset of
images can be annotated due to the annotation
cost. Representative techniques for this situation are
semi-supervised learning [4] which aims to learn a

prediction model by leveraging a number of unlabeled
data and domain adaptation [5]which aims to exploit fur-
ther supervision information from other related
domains.

� Inexact supervised data, i.e., only coarse-grained
labels are given. Reconsider the image categorization
task, it is desirable to have every object in the images
annotated; however, usually we only have image-
level labels rather than object-level labels. One repre-
sentative technique for this scenario is multi-instance
learning [6], which aims to improve the performance
by considering the coarse-grained label information.

� Inaccurate supervised data, i.e., the given labels have
not always been ground-truth. Such a situation occurs
in various tasks such as image categorization, when
the annotator is careless or weary, or the annotator is
not an expert. For this type of label information, label
noise learning techniques are one main paradigm to
learn a promising prediction fromnoisy label [7].

In traditional machine learning, it is often expected that

machine learning techniques such as supervised learningwith

the usage ofmore datawill be able to improve learning perfor-

mance. Suchobservation,however, no longerholds forweakly

supervised learning. There aremanystudies [4], [5], [6], [7], [8],

[9], [10], [11], [12], [13] reportingthat theusageofweaklysuper-

vised data may sometimes lead to performance degradation,

thatis, thelearningperformanceisevenworsethanthatofbase-

linemethodswithoutusingweaklysuperviseddata.Fig.1illus-

tratestheintuition.Morespecifically,

� Semi-supervised learning using unlabeled data may
be worse than supervised learning with only limited
labeled data [4], [8], [9], [10].
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� Domain adaptation has the phenomenon of negative
transfer [5], [11], [12], [13], [14] that the source
domain data contributes to the reduced performance
of learning in the target domain.

� Multi-instance learning may be outperformed by the
naive learning methods which simply assign the
coarse-grained label to a bag of instances [6].

� Label noise learning may be worse than that of learn-
ing from only a small amount of high-quality labeled
data [7], [15], [16].

Such observations obviously stray from the principle of
weakly supervised learning. It is desired to study safe
weakly supervised learning [17], so that the performance
will not be significantly hurt. There is just a little amount of
effort on this aspect recently, e.g., [9], [13], [18], whereas
they typically work on one concrete scenario. The proposal
suitable for various weakly supervised learning scenarios,
to our best knowledge, has not been thoroughly studied yet.

1.1 Our Contribution

In this paper, we present a general ensemble learning
scheme, SAFEW (SAFE Weakly supervised learning), which
learns the final prediction by integrating multiple weakly
supervised learners. Specifically, we propose a maximin
framework, which maximizes the performance gain in the
worst case. The framework brings multiple advantages to
safe weakly supervised learning. i) It can be shown that the
proposal is probably safe for many loss functions (e.g.,
square loss, hinge loss) in classification and regression, as
long as the ground-truth label assignment can be expressed
as a convex combination of base learners. ii) Prior knowl-
edge related to the weight of base learners can be easily
embedded in our framework. iii) The proposed formulation
can be globally and efficiently addressed via a simple con-
vex quadratic program or linear program. iv) It has an intui-
tive interpretation with the square loss function.

Extensive experimental results on multiple weakly super-
vised learning scenarios, i.e., semi-supervised learning,
domain adaptation, multi-instance learning and label noise
learning clearly demonstrate the effectiveness of our proposal.

1.2 Organization

This paper is organized as follows. We first introduce pre-
liminaries in Section 2 and then present our generic frame-
work in Section 3, in which we provide theoretical analysis
and study the setup of the weight of base learners. More-
over, we show how to optimize the proposed formulation
in Section 4 and relate to some existing work in Section 5.
Finally, we report the experimental results in Section 6 and
conclude the paper in Section 7.

2 PRELIMINARIES

In weakly supervised learning, due to the lack of sufficient
precise label information, ensemble learning that integrates
multiple base learners [19] is known as a popular learning
technology for weakly supervised data to derive robust per-
formance. Specifically, suppose we have obtained b predic-
tions ff 1; . . . ; f bg of unlabeled instances from multiple
weakly supervised base learners, where f i 2 Hu, i ¼ 1; . . . ; b
and u is the number of unlabeled instances. Here both clas-
sification and regression tasks for weakly supervised data
are considered. For classification task H ¼ fþ1;�1g and for
regression task H ¼ R. We summarize the main notations
appeared in our paper in Table 1.

Many strategies have been employed to generate multi-
ple weakly supervised learners, such as through different
learning algorithms, different sampling methods, different
model parameters, etc [19]. Previous studies typically focus
on deriving good performance from multiple base learners,
whereas failing to take the safeness of performance into
account. In fact, the good performance of multiple base
learners needs to compare with the baseline approach, and
should not suffer from performance degradation.

We let f 0 2 Hu denote the prediction of baseline
approaches, e.g., directly supervised learning with only lim-
ited labeled data. Our ultimate goal is here to derive a safe
prediction f ¼ gðff 1; . . . ; f bg; f0Þ, which often outperforms
the baseline f 0, meanwhile it would not be worse than f 0. In
other words, we would like to maximize the performance
gain between our prediction and the baseline prediction.

Fig. 1. In practice weakly supervised learning may be not safe, i.e., it may degenerate the performance with the usage of weakly supervised data.
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3 THE PROPOSED FRAMEWORK

We first consider a simpler case that the ground-truth label
assignment on unlabeled instances is known. Specifically,
let f� denote the ground-truth label assignment. Remind
that our goal is to find a prediction f that maximizes the per-
formance gain against the baseline f0. One can easily have
the objective function as

max
f2Hu

‘ðf0; f�Þ � ‘ðf ; f �Þ

Here ‘ð�; �Þ refers to a loss function, e.g., the square loss, the
hinge loss, etc. Table 2 summarizes some commonly used
loss functions for classification and regression. The smaller
the value of the loss function is, the better the performance
becomes.

However, obviously f � is unknown. To alleviate it,
inspired by [20], we assume that f � is realized as a convex
combination of base learners. Specifically, f � ¼Pb

i¼1 aif i
where aa ¼ ½a1;a2; . . . ;ab� � 0 be the weight of base learners
and

Pb
i¼1 ai ¼ 1. Then we have the following objective

instead by replacing the definition of f �,

max
f2Hu

‘ f0;
Xb
i¼1

aif i

 !
� ‘ f ;

Xb
i¼1

aif i

 !
:

In practice, however, one may still be hard to know
about the precise weight of base learners. We further
assume that aa is from a convex set M to make our pro-
posal more practical, where M captures the prior knowl-
edge about the importance of base learners and we will
discuss the setup of M in the later section. Without any
further information to locate the weight of base learners, to
guarantee the safeness, we aim to optimize the worst-case
performance gain, since, intuitively, the algorithm would
be robust as long as the good performance is guaranteed
in the worst case. Then we can obtain a general formula-
tion for weakly supervised data with respect to classifica-
tion and regression tasks as,

max
f2Hu

min
aa2M

‘ f0;
Xb
i¼1

aif i

 !
� ‘ f ;

Xb
i¼1

aif i

 !
: (1)

3.1 Analysis

We in this section show that Eq. (1) has safeness guarantees
for the commonly used convex loss functions as listed in
Table 2 in the classification and regression tasks of weakly
supervised learning. To achieve that, we first introduce a
result as follows.

Theorem 1. Suppose the ground-truth f� can be constructed by
base learners, i.e., f � 2 ff jPb

i¼1 aif i;aa 2 Mg. Let f̂ and âa be
the optimal solution to Eq. (1). We have ‘ðf̂ ; f�Þ � ‘ðf0; f �Þ and f̂
has already achieved the maximal performance gain against f 0.

Proof. First, we define,

Lðf ;aaÞ ¼ ‘ f0;
Xb
i¼1

aif i

 !
� ‘ f ;

Xb
i¼1

aif i

 !
:

Since Eq. (1) is a max-min formulation, the following
inequality holds for any feasible f and aa:

Lðf ; âaÞ � Lðf̂ ; âaÞ � Lðf̂ ;aaÞ:

Let aa� make f� ¼Pb
i¼1 a

�
i f i. By setting f and aa to be f 0

and aa�, we have,

‘ f0;
Xb
i¼1

âif i

 !
� ‘ f0;

Xb
i¼1

âif i

 !
� ‘ f0;

Xb
i¼1

a�
i f i

 !
� ‘ f̂ ;

Xb
i¼1

a�
i f i

 !

Thus,

‘ðf̂ ; f�Þ � ‘ðf 0; f �Þ:

TABLE 1
Summary of Notations Used in This Paper

Notation Meaning

u number of unlabeled instances
b number of weakly supervised base learners
H output space, for classification H ¼ fþ1;�1g;

for regressionH ¼ R
f 1; . . . ; f b 2 Hu prediction of weakly supervised learners for

unlabeled instances
f 0 2 Hu prediction of baseline approach, e.g.,

supervised learning with labeled data only
f � 2 Hu ground-truth prediction for unlabeled

instances
f̂ 2 Hu final prediction for unlabeled instances
‘ð�; �Þ loss function
aa weights of weakly supervised base learners
M a convex set of weights aa
Cclf covariance matrix of bweakly supervised

learners for classification task
Creg covariance matrix of bweakly supervised

learners for regression task

TABLE 2
Commonly Used Loss Functions ‘ðp;qÞ for Classification and Regression Tasks

Loss function Definition of ‘ðp;qÞ Task h

Hinge loss 1
u

Pu
i¼1 maxf1� piqi; 0g Classification 1

Cross entropy loss 1
u

Pu
i¼1 �pi lnðqiÞ � ð1� piÞ lnð1� qiÞ Classification 1

Mean square loss 1
u

Pu
i¼1ðpi � qiÞ2 ¼ 1

u ð1� pqÞ2 Classification 4

Mean square loss 1
u

Pu
i¼1ðpi � qiÞ2 ¼ 1

u kp� qk22 Regression 2 +M

Mean absolute loss 1
u

Pu
i¼1 jpi � qij ¼ 1

u kp� qk1 Regression 1

Mean �-insensitive loss 1
u

Pu
i¼1 maxfjpi � qij � �; 0g Regression 1

The prediction q ¼ ½q1; . . .; qu� 2 Ru and the label p ¼ ½p1; . . .; pu� 2 Hu where Hu ¼ fþ1;�1gu is for classification and Hu ¼ Ru is for regression. h is the Lip-
schitz constant andM ¼ maxfjaj; jbjg for regression tasks where the prediction value is in ½a; b�.
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Moreover, since we have already maximized the perfor-
mance gain in the worst case, f̂ has already achieved the
maximal performance gain against f0. tu
According to Theorem 1, we can see that Eq. (1) is a reason-

able formulation for our purpose, that is, the derived optimal
solution f̂ from Eq. (1) often outperforms f0 and it would not
get anyworse than f 0. In comparison to previous studies in [9],
[18], [20], the formulation in Eq.(1) brings multiple advantages.
In contrast to [9] which requires that the ground-truth is one of
the base learners, the condition in Theorem 1 is looser and
morepractical. In contrast to [18],we explicitly consider tomax-
imize the performance gain over baseline in Eq. (1). In contrast
to [20] that focuses on regression, ourwork is readily applicable
for both regression and classification tasks.

Assume that the loss function ‘ð�; �Þ is h-Lipschitz, i.e.,
k‘ðf1; f2Þ � ‘ðf1; f 3Þk � hkf2 � f 3k1 for any f1, f 2; f 3 2 ½�1; 1�.
Most of commonly used loss functions satisfy this property,
and we summarize the h of commonly used loss func-
tions [21] in Table 2. Let b�b� ¼ ½b�

1; � � � ;b�
b � 2 M be the opti-

mal solution to the objective,

b�b� ¼ argmin
bb2M

‘
Xb
i¼1

bif i; f
�

 !
;

and �� be the residual, i.e., �� ¼ f � �Pb
i¼1 b

�
i f i. We have the

following result,

Theorem 2. The performance gain of f̂ against f 0, i.e.,
‘ðf 0; f �Þ � ‘ðf̂ ; f�Þ, has a lower-bound �2hjj��jj1.

Proof. Note that
Pb

i¼1 b
�
i f i 2 ff jPb

i¼1 aif i;aa 2 Mg. Accord-
ing to Theorem 1, we have

‘ f0;
Xb
i¼1

b�
i f i

 !
� ‘ f̂ ;

Xb
i¼1

b�i f i

 !
� 0:

Since f� ¼Pb
i¼1 b

�
i f i þ ��,

j‘ðf̂ ; f�Þ � ‘ f̂ ;
Xb
i¼1

b�
i f i

 !
j � hjj��jj1:

The inequality holds for the reason that the loss function
is h-Lipschitz continuous. Similarly, we have, j‘ðf0; f �Þ �
‘ðf 0;

Pb
i¼1 b

�
i f iÞj � hjj��jj1, which means,

�hjj��jj1 � ‘ðf̂ ; f �Þ � ‘ f̂ ;
Xb
i¼1

b�
i f i

 !
� hjj��jj1

�hjj��jj1 � ‘ðf0; f�Þ � ‘ f0;
Xb
i¼1

b�
i f i

 !
� hjj��jj1:

Using the above two inequalities,

‘ðf0; f�Þ � ‘ðf̂ ; f�Þ

� ‘ f0;
Xb
i¼1

b�
i f i

 !
� hjj��jj1

 !
� ‘ f̂

Xb
i¼1

b�i f i

 !
þ hjj��jj1

 !

� �2hjj��jj1:

The second inequality holds due to ‘ðf 0;
Pb

i¼1 b
�
i f iÞ�

‘ðf̂ ;Pb
i¼1 b

�
i f iÞ � 0. tu

Theorem 2 discloses that the worst-case performance is
only related to the quality of base learners and has nothing
to do with the quantity of base learners.

It is worth mentioning that Theorem 1 only gives a suf-
ficient condition for safeness, rather than necessary condi-
tions. Similarly, Theorem 2 only gives the lower bound of
performance, not the exact performance. In other words,
even if the condition of Theorem 2 is not valid, our method
can still achieve robust performance. Our experimental
results clearly confirm this observation.

3.2 Weight the Base Learners

The question remained is that how to set up M which is
assumed as a convex set in previous sections. We can sim-
ply set M as a simplex, i.e., M ¼ faajPb

i¼1 ai ¼ 1;aa � 0g
as [9], [10], [20], but this strategy is too conservative. Obvi-
ously, the setup of M can be easily embedded with a vari-
ety of prior knowledge. For example, suppose that base
learner f i is more reliable than f j and the set of all such
indexes ði; jÞ is denoted as S, M could be set to faajai � aj

� 0; ði; jÞ 2 S;aa>1 ¼ 1;aa � 0g where 1 (0) refers to the all-
one (all-zero) vector, respectively; suppose that the impor-
tance values of base learners are known, denoted by
fr1; . . . ; rbg, one could set up M as faaj � g � ai � ri �
g; 8i ¼ 1; . . . ; b;aa>1 ¼ 1;aa � 0g where g is a small constant.
All of these require precise prior knowledge. One could
also set M via cross validation. However, that is time con-
suming and in weakly supervised learning, labeled data is
too few to afford a reliable cross validation. For this reason,
we present a method that learns the weights of base learn-
ers from data.

3.3 Regression

Let Creg be the b	 b covariance matrix of the b base
learners ff1; . . . ; fbgwith elements

Creg
ij ¼ E½ðfiðXÞ � miÞ>ðfjðXÞ � mjÞ�;

where X refers to the set of unlabeled instances and
mi ¼ E½fiðXÞ�. Let rrreg ¼ ½rreg1 ; . . . ; rregb � be the vector of cova-
riances between the base learners and the ground-truth
label assignment f�ðXÞ, i.e.,

r
reg
i ¼ E½ðf�ðXÞ � uÞ>ðfiðXÞ � miÞ�;

where u ¼ E½f�ðXÞ�. We minimize the residual w.r.t the
ground-truth for aa as,

aa� ¼ argmin
aa

E½MSE
Xb
i¼1

aifiðXÞ; f�ðXÞ
 !

�; (2)

where MSE refers to the Mean Squared Error. Eq. (2) has a
closed-form solution [22].

Theorem 3. (Bates and Granger, 1969) The optimal weight aa�

satisfies that

rrreg ¼ Crega�a�:
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We need to estimate Creg and rr. For Creg, it is
evident that ðf i � miÞ>ðf j � mjÞ is an unbiased estimation
of Creg

ij . Therefore, one could easily have Ĉreg with
elements

Ĉreg
ij ¼ ðf i � miÞ>ðf j � mjÞ;

be the unbiased estimation of Creg. For rr, the following
proposition shows that it is closely related to the perfor-
mance of base learners.

Proposition 1. Assume that ffiðXÞgi¼b
i¼1 is normalized to the

mean mi ¼ 0; 8i ¼ 1; . . .n and the standard deviation that
equals to 1. Consider mean squared error as the measurement,
we have, the bigger the value rregi , the smaller the loss of fi.

Proof. For rrreg, we have,

r
reg
i ¼ EðX;YÞ½ðf � � uÞ>ðf i � miÞ� ¼ E½ðf �Þ>f i�:

For MSE, we have,

MSEðf i; f �Þ ¼ E½ðf� � f iÞ2�
¼ E½jjf �jj2 þ jjf ijj2 � 2ðf �Þ>f i�
¼ 2� 2E½ðf�Þ>f i�
¼ 2� 2rregi :

Hence, the bigger the value r
reg
i , the smaller the mean

square loss of f i. tu
Therefore, we set M as faajĈregaa � 1d;aa>11 ¼ 1;aa � 0g,

where d is a constant, indicating that the base learners have
a low-bound performance (e.g., better than random-
guess) [18]. It is easy to verify thatM is a convex set.

3.4 Classification

Similar to regression tasks, let Cclf be the b	 bmatrix repre-
senting the agreement between base learners with elements
Cclf

ij ¼ E½fiðXÞ>fjðXÞ�. Let rrclf ¼ ½rclf1 ; rclf2 ; . . . ; rclfb � be the
vector that represents the agreement between the base
learner and the ground-truth,

r
clf
i ¼ E½f�ðXÞ>fiðXÞ�:

Taking classification accuracy as the performance measure,
it can be shown that,

Theorem 4. The optimal weight aa� in classification satisfies that
rrclf ¼ Cclfa�a�.

Similarly, we set M as faajĈclfaa � 1d;aa>11 ¼ 1;aa � 0g
where Ĉclf is the unbiased estimation of Cclf , with elements
Ĉclf

ij ¼ f>i f j.M is also a convex set.
In summary, on one hand, our formulation is able to

directly absorb the precise prior knowledge about the
importance of learners if available. On the other hand, it is
also capable of incorporating with the estimation obtained
by covariance matrix analysis on regression and classifica-
tion tasks when the precise prior knowledge is unavailable.

4 OPTIMIZATION

Another question unclear in our formulation is that, how
can we derive the optimal solution of Eq.(1). Eq. (1) is the

subtraction of two loss functions, which is often non-convex
and not trivial to derive the global optima [23]. Fortunately,
we find that for a class of commonly used convex loss func-
tion, Eq. (1) could be equivalently rewritten as a convex
optimization problem and thus the global optimal solution
is achieved. We describe the optimization procedure for
regression and classification respectively in this section.

4.1 Regression

For regression, we have the following theorem,

Theorem 5. For regression, suppose ‘ð�;Pb
i¼1 aif iÞ is convex to

aa and 8aa, and there exists f 2 Ru such that ‘ðf ;Pb
i¼1

aif iÞ ¼ 0, then Eq.(1) is a convex optimization.

We first give a lemma before proving Theorem 5.

Lemma 1. Under the condition in Theorem 5, in optimality, the
optimal solution f̂ and âa have the following relation, i.e.,
‘ðf̂ ;Pb

i¼1 âif iÞ ¼ 0.

Proof. Assume, to the contrary, ‘ðf̂ ;Pb
i¼1 âif iÞ 6¼ 0. Accord-

ing to the condition, there exists ~f such that
‘ð~f ;Pb

i¼1 âif iÞ ¼ 0. Obviously, 0 ¼ ‘ð~f ;Pb
i¼1 âif iÞ <

‘ðf̂ ;Pb
i¼1 âif iÞ. Hence, f̂ is not optimal, a contradiction. tu

We then prove Theorem 5.

Proof. Because of Lemma 1, the form of Eq. (1) for regres-
sion task is thus rewritten as,

min
aa2M

‘ f 0;
Xb
i¼1

aif i

 !
:

Remind that ‘ð�;Pb
i¼1 aif iÞ is convex to aa, therefore,

Eq. (1) is a convex optimization. tu
It is worth noting that the condition in Theorem 5 is rather

mild. Many regression loss functions, for example, mean
square loss, mean absolute loss [24] and mean �-insensitive
loss [25], all satisfy such amild condition in Theorem5.

Depending on Lemma 1 and Theorem 5, the formulation in
Eq. (3) can be globally and efficiently addressed for regression.
We adopt mean square loss (MSE) as an example to show the
optimization procedure since MSE is one of the most popular
loss functions for regression. With MSE, Eq. (1) can be written
as the following equivalent formwhich only relates to aa.

min
aa2M

�����
Xb
i¼1

aif i � f0

�����
2

: (3)

It is evident that Eq. (3) turns out to be a simple convex qua-
dratic program. Moreover, specifically, by expanding the
quadratic form in Eq. (3), it can be rewritten as,

min
aa2M

aa>Faa� v>aa; (4)

where F 2 Rb	b is a linear kernel matrix of f i’s, i.e,
Fij ¼ f>i f j and v ¼ ½2f>1 f 0; � � � ; 2f>b f 0�. Since F is positive
semi-definite, Eq. (4) is a convex quadratic program [26]
and can be efficiently addressed by off-the shelf optimiza-
tion packages, such as the MOSEK package.1

1. https://www.mosek.com/resources/downloads
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After solving the optimal solution aa�, the optimal
f ¼Pb

i¼1 a
�
i f i is obtained. Algorithm 1 summarizes the

pseudo code of the proposed method for regression task.

Algorithm 1. Optimization Procedure for Regression

Input: multiple base learner predictions ff igbi¼1 and certain
direct supervised regression prediction f 0
Output: the learned prediction �f
1: Construct a linear kernel matrix F where Fij ¼ f>i f j,

81 � i; j � b
2: Derive a vector v ¼ ½2f>1 f0; . . .; 2f>b f 0�
3: Solve the convex quadratic optimization Eq.(4) and obtain

the optimal solution aa� ¼ ½a�
1; . . . ;a

�
b �

4: Return �f ¼Pb
i¼1 a

�
i f i

It is not hard to realize that Eq. (3) meets a geometric pro-
jection problem. Specifically, let V ¼ ff jPb

i¼1 aif i;aa 2 Mg,
Eq. (3) can be rewritten as,

�f ¼ argmin
f2V

kf � f 0k2; (5)

which learns a projection of f 0 onto the convex set V.
Fig. 2 illustrates the intuition of our proposed method via

the viewpoint of geometric projection.
According to Pythagorean Theorem (theorem 2.4.1

in [27]), the distance between k�f � f�k should be smaller
than kf 0 � f�k if f � 2 V. Such an observation is consistent
with Theorem 1. The viewpoint of geometric projection pro-
vide an intuitive insight to help understand safe weakly
supervised learning.

4.2 Classification

Due to the noncontinuous feasible field of f , it could not
simply apply the lemma 1 in regression task to classifica-
tion. We now show that for the hinge loss, the optimal solu-
tion of Eq. (1) can be achieved. For the cross entropy loss, a
popular loss function, it can be solved by convex optimiza-
tion, which only needs a simple convex relaxation tech-
nique. Similar tricks could be possibly applicable for
additional convex classification losses.

We first have the following lemma,

Lemma 2. For classification task, the optimal f̂ and âa meet
the relation that f̂ ¼ signðPb

i¼1 âif iÞÞ where signðsÞ is the
sign of value s.

Proof. Assume, to the contrary, f̂ 6¼ signðPb
i¼1 âif iÞ.

According to the condition, there exist ~f such that
~f ¼ signðPb

i¼1 âif iÞ. Obviously, ‘ð~f ;Pb
i¼1 âif iÞ < ‘ðf̂ ;Pb

i¼1 âif iÞ. Hence, f̂ is not optimal, a contradiction. tu
We then have the following theorem,

Theorem 6. Suppose that f i 2 fþ1;�1gu, 8i ¼ 1; . . . ; b. Eq. (1)
is a convex optimization when ‘ð�; �Þ is the hinge loss.

Proof. With Lemma 2, Eq. (1) is thus rewritten as,

min
aa2M

‘ f0;
Xb
i¼1

aif i

 !
� ‘ sign

Xb
i¼1

aif i

 !
;
Xb
i¼1

aif i

 !
:

(6)

Since f i 2 fþ1;�1gu, 8i ¼ 1; . . . ; b and ‘ð�;Pb
i¼1 aif iÞ sat-

isfies the linearity to predictive results, the form
‘ðsignðPb

i¼1 aif iÞ;
Pb

i¼1 aif iÞ can be equivalently rewrit-
ten as ‘ðkPb

i¼1 aif ik1Þ. Therefore, Eq.(6) is equal to,

min
aa2M

‘ f 0;
Xb
i¼1

aif i

 !
þ ‘

Xb
i¼1

aif i

�����
�����
1

 !
: (7)

Eq.(7) is convex and a linear program. Let ~f be
Pb

i¼1 aif i,
then, Eq.(7) can be written as,

min
aa2M

‘ðf0;~fÞ þ ‘ðk~fk1Þ s.t. ~f ¼
Xb
i¼1

aif i: (8)

By introducing two auxiliary variables z ¼ j~f jþ~f
2 ;w ¼ j~f j�~f

2 ,
then, Eq. (8) can be transformed into,

min
aa2M;z;w

‘ðf 0;~fÞ þ ‘ð1>ðzþwÞÞ

s.t. ~f ¼
Xb
i¼1

aif i

~f þ z�w ¼ 0; z � 0;w � 0;

(9)

Furthermore, the loss function ‘ð�;~fÞ is linear function to
~f . Therefore, the objective and constraint are linear to
aa; z;w, thus, Eq. (9) is a linear program. tu
Eq. (9) can be globally addressed in an efficient manner

via the MOSEK package as well. After solving the optimal
solution aa�, the optimal f ¼Pb

i¼1 a
�
i f i is obtained. Algo-

rithm 2 summarizes the pseudo code of the proposed
method for classification task.

Algorithm 2. Optimization Procedure for Classification

Input: multiple base learner predictions ff igbi¼1 and certain
direct supervised regression prediction f0
Output: the learned prediction �f
1: Let u equals to the length of f0
2: Solve the linear optimization Eq.(9) and obtain the optimal

solution aa� ¼ ½a�
1; . . . ;a

�
b �

3: Return �f ¼Pb
i¼1 a

�
i f i

We further show that convexity is also feasible for the
cross entropy loss, a popular loss in deep neural net-
work [28], via a slight convex relaxation. Let

Fig. 2. Intuition of our proposal via the projection viewpoint. Intuitively,
the proposal learns a projection of f 0 onto a convex feasible set V.
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‘̂ðpÞ ¼ lnðpÞ 0:5 4 p 4 1
lnð1� pÞ 0 4 p < 0:5

�
: (10)

It is easy to show thatwhen ‘ð�; �Þ realizes the cross entropy loss,

�‘ sign
Xb
i¼1

aif i

 !
;
Xb
i¼1

aif i

 !
¼
Xu
j¼1

‘̂
Xb
i¼1

aif i

 !
j

0
@

1
A;

where ððPb
i¼1 aif iÞjÞ refers to the jth element of ðPb

i¼1 aif iÞ.
Let

gðpÞ ¼ ð2 ln 2Þp� 2 ln 2 0:5 4 p 4 1
�ð2 ln 2Þp 0 4 p < 0:5:

�
(11)

It is not hard to verify that gðpÞ realizes the convex hull, the

tightest convex relaxation of ‘̂ðpÞ.
Theorem 7. Let ~f ¼Pb

i¼1 aif i. Consider the optimization
problem,

min
aa

‘ðf0;~fÞ þ
Xu
j¼1

gð~fjÞ: (12)

It can be shown that Eq. (12) is convex and the convex relaxa-
tion of Eq. (1) with the cross entropy loss.

Proof. According to Lemma 2, the optimal f leads to
signðPb

i¼1 aif iÞ, which consequently makes Eq. (1) to
equivalently write as

min
aa

‘ðf 0;~fÞ þ
Xu
j¼1

‘̂ð~fjÞ: (13)

Remind that ‘ðf 0;~fÞ is the convex loss and gðpÞ is the
convex hull of ‘̂ðpÞ. We conclude that Eq. (12) is convex
and the convex relaxation of Eq. (1) with the cross
entropy loss. tu
Similarly, the optimal f ¼Pb

i¼1 a
�
i f i is obtained with the

optimal solution aa� of Eq. (12). Similar tricks could be
applied to cope with other convex classification losses.

5 RELATED WORK

Effectively exploiting weakly supervised data has been
attracted much attention from the past decade [2], [6], [7].
Many methods have been developed and there are some
discussions on the usefulness of weakly supervised data.

In semi-supervised learning, many methods have devel-
oped such as, generative model based approaches [29],
graph-based approaches [30], disagreement-based appr-
oaches [31] and semi-supervised SVMs [32]. In very recent,
efforts on safely using unlabeled data attract increasing atten-
tion. Li and Zhou [9] aimed to build safe semi-supervised
SVMs by optimizing the worst-case performance gain given
a set of candidate low-density separators, showing that the
proposal is probably safe given that low-density assumption
holds [4]. Balsubramani and Freund [18] learned a robust
prediction with the highest accuracy given that the ground-
truth label assignment is restricted to a specific candidate set.
Li, Kwok and Zhou [10] concerned to build a generic safe
semi-supervised classification framework for variants of per-
formance measures, e.g., AUC, F1 score, Topk precision.
However, these studies are restricted on semi-supervised

classification, and the effort on semi-supervised regression
has not been thoroughly studied.

In domain adaptation, a number of methods have been
developed, e.g., instances transfer based approaches [33], fea-
ture representation transfer based approaches [34], parameter
transfer based approaches [35], relational knowledge transfer
based approaches [36]. However, there are few discussions
on how to avoid negative transfer though it is regarded as
an important issue in domain adaptation [5]. Rosenstein
et al. [11] empirically showed that if two tasks are dissimilar,
then brute-force transfer may hurt the performance of the tar-
get task. Bakker andHeskes [14] presented a Bayesianmethod
for joint prior distribution of multiple tasks and considered
that some of the model parameters should be loosely con-
nected among tasks. Argyriou et al. [12] considered situations
that the representations should be different among different
groups of tasks and tasks within a group are easier to perform
domain adaptation. Ge et al. [13] assigned weight to source
domains corresponding to the relatedness to the target
domain and constructed the final target learner uses the
weight to attenuate the effects of negative transfer.

In multi-instance learning, many effective algorithms have
been developed, e.g., density-based approaches [37], k-nearest
neighbor based approaches [38], support vector machine
based approaches [39], ensemble based approaches [40], ker-
nel based approaches [41] and so on [6]. However, multi-
instance learning methods have uncertainty and sometimes
even worse than the simple supervised learning methods.
Ray andCraven [42] compared the performance of MILmeth-
ods against supervised methods on MIL. They found that in
many cases, supervised yield the most competitive results
and they also noted that, while some methods systematically
dominate others, the performance of algorithms was applica-
tion-dependent. Carbonneau et al. [43] studied the ability to
identify witnesses (positive instances) of several MIL meth-
ods. They found that being dependent on the nature of the
data, some algorithm performs well while others would have
difficulty. In this paper, we use the worst-case analysis to
overcome the model uncertainty and learn a safe prediction.

In label noise learning, many studies have been proposed,
such as data cleaning approaches, probabilistic label noise tol-
erant approaches, ensemble based approaches. There are also
a number of studies indicating that label noise will seriously
affect the learning performance [7], [15], [16], [44]. Consider-
able efforts have been made to enable models to be robust to
the presence of label noise. For example, in the aspect of theo-
retical consideration, Manwani and Satry [45] studied the
robustness of loss functions in the empirical riskminimization
framework and disclosed that 0-1 loss function is noise toler-
ant while the other loss functions are not naturally noisy toler-
ant. In the aspect of practical consideration, ensemble
methods, e.g., bagging and boosting are regarded to be robust
to label noise [7] and bagging often achieves a better result
than boosting in the presence of label noise [46].

6 EXPERIMENTS

In this section, comprehensive evaluations are performed to
verify the effectiveness of the proposed.2 Experiments are

2. http://lamda.nju.edu.cn/code_SAFEW.ashx
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conducted on all the four aforementioned weakly super-
vised learning tasks: semi-supervised learning (Section 6.1),
domain adaptation (Section 6.2), multi-instance learning
(Section 6.3) and label noise learning (Section 6.4).

6.1 Semi-Supervised Learning

For semi-supervised learning, we do experiments on regres-
sion tasks with a broad range of datasets3 that cover diverse
domains including physical measurements (abalone), health
(bodyfat), economics (cadata), activity recognition (mpg), etc.
The sample size ranges from around 100 (pyrim) to more
than 20,000 (cadata).

We compare the performance of the proposed SAFEW
with the baseline method and three state-of-the-art semi-
supervised regression methods. a) Baseline k-NN method,
which is a direct supervised nearest neighbor algorithm
trained on the labeled data only. b) COREG [47]: a represen-
tative semi-supervised regression method based on co-
training [31]. This algorithm uses two k-nearest neighbor
regressors with different distance metrics, each of which
labels the unlabeled data for the other regressors where
the labeling confidence is estimated through consulting
the influence of the labeling of unlabeled examples on the
labeled ones. c) Self-kNN: Semi-supervised extension of the
supervised kNN method based on self-training [48]. It first
trains a supervised kNN method based on only labeled
instances, and then predict the label of unlabeled instances
After that, by adding the predicted labels on the unlabeled
data as ”ground-truth”, another supervised kNN method is
trained. This process is repeated until predictions on the
unlabeled data no longer change or a maximum number of
iteration achieves. d) Self-LS: Semi-supervised extension of
the supervised least square method [49] based on self-train-
ing, which is similar to Self-kNN except that the supervised
method is adapted to the least square regression. e) We also
compare with the voting method, which uniformly weights
multiple base learners. This approach is found promising in
practice [19]. f) We also report the results of the oracle
method: OpW (Optimal Weighting) that learns the optimal
weight according to the ground-truth which we cannot
obtain in real applications.

For the baseline 1NN method, the euclidean distance is
used to locate the nearest neighbor. For the Self-kNN
method, the euclidean distance is used and k is set to 3. The
maximum number of iteration is set to 5 and further increas-
ing it does not improve performance. For the Self-LS
method, the parameters related to the importance of the
labeled and unlabeled instances are set to 1 and 0.1, respec-
tively. For the COREG method, the parameters are set to
the recommended one in the package and the two distance
metrics are employed by the euclidean and Mahalanobis
distances. For the Voting method and the proposed SAFE-

Wmethod, 3 semi-supervised regressors are used where
one is from the Self-LS method and the other two are from
the Self-kNN methods employing the euclidean and the
Cosine distance, respectively. For the proposed SAFEW, the
parameter d is set by 5-fold cross validation from the range
½0:5u; 0:7u�. In our experiments, all the features and labels
are normalized into [0,1]. For each data set, 5 and 10 labeled

instances are randomly selected and the rest ones are unla-
beled data. The experiment is repeated for 30 times, and the
average performance (mean
std) on the unlabeled data is
reported.

Table 3 shows the Mean Square Error of the compared
methods and the proposal on 5 and 10 labeled instances.
We have the following observations from Table 3. i) Self-
kNN generally improves the performance, however, it
causes serious performance degradation in 2 cases. ii) Self-
LS is not effective. One possible reason is the performance
of supervised LS is not as good as that of kNN in our
experimental data sets. iii) COREG achieves good perfor-
mance, whereas it also will significantly decrease the per-
formance in some cases. iv) The Voting method improves
both the average performance of Self-kNN and Self-LS, but
in 6 cases it significantly decreases the performance. v)
The proposed method achieves significant improvement in
6 and 7 cases, which are the most among all the compared
methods on 5 and 10 labeled instances, respectively. It also
obtains the best average performance. What is more
important, it does not seriously reduce the performance.
vi) The OpW method cannot achieve 0 error which means
that the assumption in Theorem 1 is usually not satisfied,
however, the proposal still achieves safe results. This
observation demonstrates that SAFEW is robust to the
assumption.

Overall the proposal improves the safeness of semi-
supervised learning, in addition, obtains highly competitive
performance compared with state-of-the-art approaches.

6.2 Domain Adaptation

We conduct compared experiments for domain adapta-
tion on two benchmark datasets,4 i.e., 20Newsgrous and
Landmine. The 20Newsgroups dataset [50] contains 19,997
documents and is partitioned into 20 different news-
groups. Following the setup in [33], [51], we generate six
different cross-domain data sets by utilizing its hierarchi-
cal structure. Specifically, the learning task is defined as
the top-category binary classification, where our goal is
to classify documents into one of the top-categories. For
each data set, two top-categories are chosen, one as posi-
tive and another as negative. Then we select some sub-
categories under the positive and negative classes respec-
tively to form a domain. In this work, we use documents
from four top-categories: Comp, Rec, Sci and Talk to gen-
erate data sets.

The Landmine dataset is a detection dataset which con-
tains 29 domains and 9 features. The data from domain 1 to
domain 5 are collected from a leafy area; the data from
Domain 20 to domain 24 are collected from a sand area. We
use the whole data from domain 1 to domain 5 as the source
domain and the data from domain 20 to domain 24 as five
target domains. For 20newsgroup, following [52], we ran-
domly select 10 percent instances in the target domain as
the labeled data and use 300 most important features as the
representation. For Landmine, 5 percent instances in the tar-
get domain are used as the labeled data.

We compare the performance of the proposed SAFEW
with the baseline method and 3 state-of-the-art domain

3. https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/ 4. http://www.cse.ust.hk/TL/
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adaptation methods. a) Baseline supervised LR method,
which trains a supervised logistic regression model for the
labeled data in the target domain only. b) Baseline domain
adaptation method which simply combines the data in the
source and target domain together to train a supervised
model. c) MIDA (Maximum Independence Domain Adap-
tation) method [53], which is a feature-level transfer learn-
ing algorithm that learns a domain-invariant subspace
between the source domain and target domain, and trained
a supervised model on the learned subspace. d) TCA
(Transfer Component Analysis) method [54], which is also
a feature-level transfer learning algorithm, and achieves
success in many domain adaptation tasks. e) TrAdaBoost
method [33], which uses boosting [55] to select the most use-
ful data in the source domain and has been proved as a
powerful transfer learning method. f) The OpW method
that has been mentioned previously.

For MIDA and TCA, the kernel type is set to the linear
kernel and the dimension of the subspace is set to 30. For
MIDA, TCA and the Original method, Logistic Regression
model is employed as the supervised model on the feature
space. For TrAdaBoost, SVM is adopted as the base learner
and the number of iterations is set to 20. MIDA, TCA and
the Original method are used as our base learners. Parame-
ter d is set by 5-fold cross validation from the range
½0:5u; 0:7u�. Experiments are repeated for 30 times and the
average accuracies on the unlabeled instances are reported.

Results are shown in Tables 4. We can see that, Original,
MIDA and TCA methods degenerate the performance in

many cases, while SAFEW does not suffer such a deficiency.
Moreover, in terms of average performance, SAFEW achieves
the best result. Therefore, our proposal achieves highly
competitive performance with compared methods while
more importantly, unlike previous methods that will hurt
performance in some cases, it does not degenerate the per-
formance. Besides, the OpW method still cannot achieve
100 percent accuracy which demonstrates that SAFEW is
robust to the safeness assumption.

6.3 Multi-Instance Learning

For multi-instance learning task, we evaluate the proposed
methods on five benchmark data sets popularly used in the
studies of MIL, including Musk1, Musk2, Elephant, Fox, Tiger.5

In addition, two commonly used MIL datasets, i.e., Birds [56]
and SIVAL [57] are also being used in experiments.

We compare the performance of the proposed SAFEWwith
2 baseline methods and 5 state-of-the-art domain adaptation
methods. a) Baseline SI-SVMmethod,which assigns the label
of its bag to each instance. The classifier assigns a label to
each instance. b) miSVM [39], which is a transductive SVM.
Instances inherit their bag label. The SVM is trained and clas-
sify each instance in the dataset. It is then retrained using the
new label assignments. This procedure is repeated until the
labels remain stable. c) C-kNN [38], which is an adaptation
of kNN toMIL problems. The distance between the two bags
is measured using the minimumHausdorff distance. C-kNN

TABLE 3
Mean Square Error (mean
std) for the Compared Methods and SAFEW Using 5 and 10 Labeled Instances

5 labeled instances

Dataset 1NN Self-kNN Self-LS COREG Voting OpW SAFEW

abalone .017 
 .007 .014 
 .003 .013 
 .004 .013 
 .003 .012 
 .003 .005 
 .001 .013 
 .003
bodyfat .024 
 .008 .025 
 .009 :054
 :016 .026 
 .008 :031
 :011 .018 
 .003 .025 
 .009
cadata .090 
 .031 .073 
 .023 .067 
 .022 .069 
 .028 .069 
 .022 .039 
 .014 .070 
 .023
cpusmall .027 
 .012 :031
 :008 :050
 :021 :031
 :009 .024 
 .006 .014 
 .003 .028 
 .009
eunite2001 .052 
 .017 .037 
 .015 .024 
 .012 .037 
 .011 .031 
 .013 .018 
 .005 .032 
 .010
housing .042 
 .007 .043 
 .009 :048
 :012 .041 
 .008 .042 
 .009 .024 
 .002 .041 
 .009
mg .071 
 .035 .057 
 .015 .053 
 .011 .054 
 .019 .054 
 .013 .028 
 .009 .053 
 .013
mpg .029 
 .012 .030 
 .012 :040
 :014 .031 
 .012 .031 
 .012 .016 
 .002 .030 
 .012
pyrim .032 
 .009 .027 
 .005 :063
 :012 .029 
 .011 .025 
 .007 .013 
 .002 .025 
 .005
space_ga .005 
 .002 .005 
 .003 :030
 :005 .004 
 .002 :008
 :002 .001 
 .000 .004 
 .002

Ave. Mse. .039 .034 .044 .033 .033 .020 .032

Win/Tie/Loss against 1NN 5/4/1 4/0/6 5/4/1 5/3/2 9/0/0 6/4/0

10 labeled instances

Dataset 1NN Self-kNN Self-LS COREG Voting OpW SAFEW

abalone .020 
 .010 .014 
 .005 .013 
 .004 .012 
 .003 .012 
 .003 .004 
 .001 .013 
 .005
bodyfat .019 
 .005 .019 
 .007 :041
 :013 .020 
 .006 :023
 :009 .010 
 .002 .018 
 .007
cadata .083 
 .029 .063 
 .012 .056 
 .007 .054 
 .010 .057 
 .009 .033 
 .011 .060 
 .013
cpusmall .024 
 .012 :027
 :008 :042
 :004 :028
 :008 .020 
 .005 .012 
 .003 .025 
 .008
eunite2001 .044 
 .014 .037 
 .013 .020 
 .006 .031 
 .009 .029 
 .009 .017 
 .002 .029 
 .007
housing .039 
 .010 .036 
 .009 .036 
 .009 .035 
 .005 .034 
 .008 .021 
 .003 .035 
 .009
mg .062 
 .019 .046 
 .015 .048 
 .011 .045 
 .015 .043 
 .014 .024 
 .004 .045 
 .014
mpg .022 
 .007 .020 
 .006 :030
 :014 .021 
 .007 .021 
 .008 .011 
 .001 .020 
 .006
pyrim .023 
 .006 .021 
 .005 :052
 :014 .022 
 .006 .020 
 .007 .009 
 .001 .020 
 .006
space_ga .004 
 .001 .003 
 .001 :028
 :002 .003 
 .001 :006
 :001 .000 
 .000 .003 
 .001

Ave. Mse. .034 .029 .037 .027 .026 .016 .027

Win/Tie/Loss against 1NN 6/3/1 4/1/5 6/3/1 7/1/2 9/0/0 7/3/0

For the comparedmethods, if the performance is significantly better/worse than the baselinemethod, the corresponding entries are then bolded/boxed. The average perfor-
mance is listed for comparison. The win/tie/loss counts against the baseline method are summarized and the methodwith the smallest number of losses is bolded.

5. http://www.uco.es/grupos/kdis/momil/
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relies on a two-level voting scheme. This algorithm was
widely used in instance classification [58]. d) CCE [59], which
is based on clustering and classifier ensembles. At first, the
feature space is clustered using a fixed number of clusters.
The bags are represented as binary vectors in which each bit
corresponds to a cluster. The binary codes are utilized to
train one of the classifiers in the ensemble. e)MIBoosting [60]:
This method is essentially the same as the gradient boosting
except that the loss function is based on bag classification
error. The instance is classified individually and their labels
are combined to obtain bag labels. f) mi-Graph [41]: This
method represents each bag by a graph in which instances
correspond to nodes. Cliques are identified in the graph to
adjust the instances weight. Instances belonging to larger cli-
ques have lower weight so that every concept present in the
bag is equally represented when instances are averaged. A
graph kernel captures the similarity between bags and is
used in an SVM. g) We also compare with the Voting
method, which uniformlyweightmultiple base learners.

For Birds and SIVAL, we adopt the Brown Creeper and
Apple as the target class, respectively. For C-kNN, we set refs
= 1 and citers = 5. For SI-SVM andmi-SVM,we adopt Libsvm
as the implementation and use the RBF kernel. For CCE,
MIBoosting, and miGraph, we set all the parameters as the
recommended one. For the Voting method and SAFEW, we
adopt SI-SVM, mi-SVM, C-kNN and mi-Graph as the base
learners. The parameter d is set by 5-fold cross validation
from the range [0.3u, 0.8u]. Experiment for each dataset is
repeated for 10 times and the average accuracy is reported.

Table 5 shows the accuracy of compared methods and the
proposal on 7 datasets. From the results, we can see that,
CCE, C-kNN, and MIBoosting degenerate the performance
inmany cases, while SAFEWdoes not suffer such a deficiency.
miGraph achieves the best average performance, but the pro-
posed SAFEW achieves the smallest number of losses against
the baseline method. Besides, compared with the naive
ensemble methods, SAFEW also achieves better performance.
This validates the effectiveness of SAFEW.

6.4 Label Noise Learning

We conduct experimental comparison for label noise learn-
ing on a number of frequently-used classification datasets,6

i.e., Australian, Breast-Cancer, Diabetes, Digit1, Heart, Iono-
sphere, Splice and USPS. For each data set, 80 percent of
instances are used for training and the rest are used for test-
ing. In the training set, 70 percent of instances are randomly
selected as the noisy or weakly labeled data and the rest
ones are high-quality labeled data. For the noisy labeled
data, their labels are randomly reversed with a probability
p% where p ranges from 10 percent to 40 percent with an
interval 10 percent.

We compare the performance of the proposed SAFEW
with the following methods. a) Baseline Sup-SVM method,
which is a supervised SVM trained on only high-quality
labeled data. b) Bagging, which is regarded as to be robust
with label noisy [7]. c) rLR (Robust Logistic Regression) [61],
that enhances the logistic regression model to handle label
noise. d) 3 classic classification methods: SVM, LR (Logistic
Regression), k-NN with regardless of label noise. For LR,
the glmfit function in Matlab is used. For k-NN method, k is
set to 3. For Sup-SVM and SVM method, Libsvm pack-
age [62] is adopted and the kernel is set to RBF kernel. For
Bagging method, we adopt the decision tree as the base
learner. For rLR method, the parameter is set to the recom-
mended one. For SAFEW, LR, SVM, and k-NN are invoked
as base learners and parameter d is set by 5-fold cross vali-
dation from the range ½0:5u; 0:7u�. Experiments are repeated
for 30 times, and the average classification accuracy is
reported.

Fig. 3 shows how the performance varies with the
increase of noisy data. From Fig. 3 we can have the follow-
ing observations. i) As the noise ratio increases, the accura-
cies of compared methods generally decrease; ii) Compared
with the baseline method, all the compared methods

TABLE 4
Classification Accuracy (mean 
 std) of Domain Adaptation Task for the Compared Methods

and SAFEW on 20newsgroup and Landmine Datasets

20newsgroup

Dataset LR Original MIDA TCA TrAdaBoost Voting OpW SAFEW

Comp vs Rec .703 
 .009 .749 
 .014 .796 
 .020 .794 
 .016 .808 
 .016 .796 
 .014 .889 
 .010 .796 
 .017
Comp vs Sci .823 
 .066 :799
 :019 .895 
 .019 .826 
 .017 .858 
 .020 .855 
 .024 .924 
 .019 .893 
 .021
Comp vs Talk .842 
 .069 :802
 :018 :823
 :016 .843 
 .011 :825
 :014 :823
 :017 .893 
 .015 .845 
 .016
Sci vs Talk .729 
 .105 .710 
 .012 .746 
 .016 :702
 :009 .717 
 .021 .729 
 .043 .824 
 .010 .747 
 .015
Rec vs Sci .801 
 .076 :775
 :016 .803 
 .015 .844 
 .012 .802 
 .015 .814 
 .024 .901 
 .015 .844 
 .016
Rec vs Talk .828 
 .045 .828 
 .012 .857 
 .011 .858 
 .013 .842 
 .011 .857 
 .012 .913 
 .012 .858 
 .011

Average .787 .777 .820 .811 .808 .807 .891 .831

Win/Tie/Loss against LR 1/2/3 4/1/1 3/2/1 3/2/1 3/2/1 6/0/0 5/1/0

Landmine

Domain-20 .922 
 .017 .924 
 .003 .927 
 .004 .926 
 .005 .918 
 .003 .924 
 .004 .963 
 .003 .927 
 .004
Domain-21 .936 
 .010 :931
 :005 .938 
 .005 :930
 :005 :926
 :003 .935 
 .006 .977 
 .004 .940 
 .004
Domain-22 .959 
 .005 .956 
 .004 :951
 :007 .965 
 .002 :910
 :003 .960 
 .004 .994 
 .002 .965 
 .002
Domain-23 .936 
 .010 :931
 :004 .942 
 .005 :931
 :005 .963 
 .004 .947 
 .003 .981 
 .003 .943 
 .004
Domain-24 .954 
 .005 .952 
 .003 :945
 :003 :943
 :003 .954 
 .003 .953 
 .002 .989 
 .003 .955 
 .002

Average .941 .939 .941 .939 .934 .943 .981 .946

Win/Tie/Loss against LR 0/3/2 2/1/2 1/1/3 1/2/2 1/4/0 5/0/0 3/2/0

6. https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/
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perform worse than Sup-SVM in many cases, especially
when the noise ratio becomes larger, while our proposed
SAFEW does not suffer from such deficiency. iii) The pro-
posed SAFEW achieves best average performance.

Overall, our proposal achieves highly competitive per-
formance compared with state-of-the-art label noise learn-
ing methods and never performs worse than the baseline
Sup-SVM method. These demonstrate the effectiveness of
the SAFEWmethod.

7 CONCLUSION

In this paper, we study safe weakly supervised learning
that will not hurt performance with the use of weakly
supervised data. This problem is crucial whereas has not
been extensively studied. Based on our preliminary
work [20], [63], in this paper we present a scheme to
derive a safe prediction by integrating multiple weakly
supervised learners. The resultant formulation has a
safeness guarantee for many commonly used convex loss
functions in classification and regression. Besides, it is
capable of involving prior knowledge about the weight
of base learners. Further, it can be globally solved effi-
ciently and extensive experiments validate the effective-
ness of our proposed algorithms. In future, it is
necessary to study safe weakly supervised learning with
adversarial examples.
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